1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * net/sched/sch_generic.c Generic packet scheduler routines. 4 * 5 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 6 * Jamal Hadi Salim, <hadi@cyberus.ca> 990601 7 * - Ingress support 8 */ 9 10 #include <linux/bitops.h> 11 #include <linux/module.h> 12 #include <linux/types.h> 13 #include <linux/kernel.h> 14 #include <linux/sched.h> 15 #include <linux/string.h> 16 #include <linux/errno.h> 17 #include <linux/netdevice.h> 18 #include <linux/skbuff.h> 19 #include <linux/rtnetlink.h> 20 #include <linux/init.h> 21 #include <linux/rcupdate.h> 22 #include <linux/list.h> 23 #include <linux/slab.h> 24 #include <linux/if_vlan.h> 25 #include <linux/skb_array.h> 26 #include <linux/if_macvlan.h> 27 #include <net/sch_generic.h> 28 #include <net/pkt_sched.h> 29 #include <net/dst.h> 30 #include <trace/events/qdisc.h> 31 #include <trace/events/net.h> 32 #include <net/xfrm.h> 33 34 /* Qdisc to use by default */ 35 const struct Qdisc_ops *default_qdisc_ops = &pfifo_fast_ops; 36 EXPORT_SYMBOL(default_qdisc_ops); 37 38 static void qdisc_maybe_clear_missed(struct Qdisc *q, 39 const struct netdev_queue *txq) 40 { 41 clear_bit(__QDISC_STATE_MISSED, &q->state); 42 43 /* Make sure the below netif_xmit_frozen_or_stopped() 44 * checking happens after clearing STATE_MISSED. 45 */ 46 smp_mb__after_atomic(); 47 48 /* Checking netif_xmit_frozen_or_stopped() again to 49 * make sure STATE_MISSED is set if the STATE_MISSED 50 * set by netif_tx_wake_queue()'s rescheduling of 51 * net_tx_action() is cleared by the above clear_bit(). 52 */ 53 if (!netif_xmit_frozen_or_stopped(txq)) 54 set_bit(__QDISC_STATE_MISSED, &q->state); 55 else 56 set_bit(__QDISC_STATE_DRAINING, &q->state); 57 } 58 59 /* Main transmission queue. */ 60 61 /* Modifications to data participating in scheduling must be protected with 62 * qdisc_lock(qdisc) spinlock. 63 * 64 * The idea is the following: 65 * - enqueue, dequeue are serialized via qdisc root lock 66 * - ingress filtering is also serialized via qdisc root lock 67 * - updates to tree and tree walking are only done under the rtnl mutex. 68 */ 69 70 #define SKB_XOFF_MAGIC ((struct sk_buff *)1UL) 71 72 static inline struct sk_buff *__skb_dequeue_bad_txq(struct Qdisc *q) 73 { 74 const struct netdev_queue *txq = q->dev_queue; 75 spinlock_t *lock = NULL; 76 struct sk_buff *skb; 77 78 if (q->flags & TCQ_F_NOLOCK) { 79 lock = qdisc_lock(q); 80 spin_lock(lock); 81 } 82 83 skb = skb_peek(&q->skb_bad_txq); 84 if (skb) { 85 /* check the reason of requeuing without tx lock first */ 86 txq = skb_get_tx_queue(txq->dev, skb); 87 if (!netif_xmit_frozen_or_stopped(txq)) { 88 skb = __skb_dequeue(&q->skb_bad_txq); 89 if (qdisc_is_percpu_stats(q)) { 90 qdisc_qstats_cpu_backlog_dec(q, skb); 91 qdisc_qstats_cpu_qlen_dec(q); 92 } else { 93 qdisc_qstats_backlog_dec(q, skb); 94 q->q.qlen--; 95 } 96 } else { 97 skb = SKB_XOFF_MAGIC; 98 qdisc_maybe_clear_missed(q, txq); 99 } 100 } 101 102 if (lock) 103 spin_unlock(lock); 104 105 return skb; 106 } 107 108 static inline struct sk_buff *qdisc_dequeue_skb_bad_txq(struct Qdisc *q) 109 { 110 struct sk_buff *skb = skb_peek(&q->skb_bad_txq); 111 112 if (unlikely(skb)) 113 skb = __skb_dequeue_bad_txq(q); 114 115 return skb; 116 } 117 118 static inline void qdisc_enqueue_skb_bad_txq(struct Qdisc *q, 119 struct sk_buff *skb) 120 { 121 spinlock_t *lock = NULL; 122 123 if (q->flags & TCQ_F_NOLOCK) { 124 lock = qdisc_lock(q); 125 spin_lock(lock); 126 } 127 128 __skb_queue_tail(&q->skb_bad_txq, skb); 129 130 if (qdisc_is_percpu_stats(q)) { 131 qdisc_qstats_cpu_backlog_inc(q, skb); 132 qdisc_qstats_cpu_qlen_inc(q); 133 } else { 134 qdisc_qstats_backlog_inc(q, skb); 135 q->q.qlen++; 136 } 137 138 if (lock) 139 spin_unlock(lock); 140 } 141 142 static inline void dev_requeue_skb(struct sk_buff *skb, struct Qdisc *q) 143 { 144 spinlock_t *lock = NULL; 145 146 if (q->flags & TCQ_F_NOLOCK) { 147 lock = qdisc_lock(q); 148 spin_lock(lock); 149 } 150 151 while (skb) { 152 struct sk_buff *next = skb->next; 153 154 __skb_queue_tail(&q->gso_skb, skb); 155 156 /* it's still part of the queue */ 157 if (qdisc_is_percpu_stats(q)) { 158 qdisc_qstats_cpu_requeues_inc(q); 159 qdisc_qstats_cpu_backlog_inc(q, skb); 160 qdisc_qstats_cpu_qlen_inc(q); 161 } else { 162 q->qstats.requeues++; 163 qdisc_qstats_backlog_inc(q, skb); 164 q->q.qlen++; 165 } 166 167 skb = next; 168 } 169 170 if (lock) { 171 spin_unlock(lock); 172 set_bit(__QDISC_STATE_MISSED, &q->state); 173 } else { 174 __netif_schedule(q); 175 } 176 } 177 178 static void try_bulk_dequeue_skb(struct Qdisc *q, 179 struct sk_buff *skb, 180 const struct netdev_queue *txq, 181 int *packets) 182 { 183 int bytelimit = qdisc_avail_bulklimit(txq) - skb->len; 184 185 while (bytelimit > 0) { 186 struct sk_buff *nskb = q->dequeue(q); 187 188 if (!nskb) 189 break; 190 191 bytelimit -= nskb->len; /* covers GSO len */ 192 skb->next = nskb; 193 skb = nskb; 194 (*packets)++; /* GSO counts as one pkt */ 195 } 196 skb_mark_not_on_list(skb); 197 } 198 199 /* This variant of try_bulk_dequeue_skb() makes sure 200 * all skbs in the chain are for the same txq 201 */ 202 static void try_bulk_dequeue_skb_slow(struct Qdisc *q, 203 struct sk_buff *skb, 204 int *packets) 205 { 206 int mapping = skb_get_queue_mapping(skb); 207 struct sk_buff *nskb; 208 int cnt = 0; 209 210 do { 211 nskb = q->dequeue(q); 212 if (!nskb) 213 break; 214 if (unlikely(skb_get_queue_mapping(nskb) != mapping)) { 215 qdisc_enqueue_skb_bad_txq(q, nskb); 216 break; 217 } 218 skb->next = nskb; 219 skb = nskb; 220 } while (++cnt < 8); 221 (*packets) += cnt; 222 skb_mark_not_on_list(skb); 223 } 224 225 /* Note that dequeue_skb can possibly return a SKB list (via skb->next). 226 * A requeued skb (via q->gso_skb) can also be a SKB list. 227 */ 228 static struct sk_buff *dequeue_skb(struct Qdisc *q, bool *validate, 229 int *packets) 230 { 231 const struct netdev_queue *txq = q->dev_queue; 232 struct sk_buff *skb = NULL; 233 234 *packets = 1; 235 if (unlikely(!skb_queue_empty(&q->gso_skb))) { 236 spinlock_t *lock = NULL; 237 238 if (q->flags & TCQ_F_NOLOCK) { 239 lock = qdisc_lock(q); 240 spin_lock(lock); 241 } 242 243 skb = skb_peek(&q->gso_skb); 244 245 /* skb may be null if another cpu pulls gso_skb off in between 246 * empty check and lock. 247 */ 248 if (!skb) { 249 if (lock) 250 spin_unlock(lock); 251 goto validate; 252 } 253 254 /* skb in gso_skb were already validated */ 255 *validate = false; 256 if (xfrm_offload(skb)) 257 *validate = true; 258 /* check the reason of requeuing without tx lock first */ 259 txq = skb_get_tx_queue(txq->dev, skb); 260 if (!netif_xmit_frozen_or_stopped(txq)) { 261 skb = __skb_dequeue(&q->gso_skb); 262 if (qdisc_is_percpu_stats(q)) { 263 qdisc_qstats_cpu_backlog_dec(q, skb); 264 qdisc_qstats_cpu_qlen_dec(q); 265 } else { 266 qdisc_qstats_backlog_dec(q, skb); 267 q->q.qlen--; 268 } 269 } else { 270 skb = NULL; 271 qdisc_maybe_clear_missed(q, txq); 272 } 273 if (lock) 274 spin_unlock(lock); 275 goto trace; 276 } 277 validate: 278 *validate = true; 279 280 if ((q->flags & TCQ_F_ONETXQUEUE) && 281 netif_xmit_frozen_or_stopped(txq)) { 282 qdisc_maybe_clear_missed(q, txq); 283 return skb; 284 } 285 286 skb = qdisc_dequeue_skb_bad_txq(q); 287 if (unlikely(skb)) { 288 if (skb == SKB_XOFF_MAGIC) 289 return NULL; 290 goto bulk; 291 } 292 skb = q->dequeue(q); 293 if (skb) { 294 bulk: 295 if (qdisc_may_bulk(q)) 296 try_bulk_dequeue_skb(q, skb, txq, packets); 297 else 298 try_bulk_dequeue_skb_slow(q, skb, packets); 299 } 300 trace: 301 trace_qdisc_dequeue(q, txq, *packets, skb); 302 return skb; 303 } 304 305 /* 306 * Transmit possibly several skbs, and handle the return status as 307 * required. Owning running seqcount bit guarantees that 308 * only one CPU can execute this function. 309 * 310 * Returns to the caller: 311 * false - hardware queue frozen backoff 312 * true - feel free to send more pkts 313 */ 314 bool sch_direct_xmit(struct sk_buff *skb, struct Qdisc *q, 315 struct net_device *dev, struct netdev_queue *txq, 316 spinlock_t *root_lock, bool validate) 317 { 318 int ret = NETDEV_TX_BUSY; 319 bool again = false; 320 321 /* And release qdisc */ 322 if (root_lock) 323 spin_unlock(root_lock); 324 325 /* Note that we validate skb (GSO, checksum, ...) outside of locks */ 326 if (validate) 327 skb = validate_xmit_skb_list(skb, dev, &again); 328 329 #ifdef CONFIG_XFRM_OFFLOAD 330 if (unlikely(again)) { 331 if (root_lock) 332 spin_lock(root_lock); 333 334 dev_requeue_skb(skb, q); 335 return false; 336 } 337 #endif 338 339 if (likely(skb)) { 340 HARD_TX_LOCK(dev, txq, smp_processor_id()); 341 if (!netif_xmit_frozen_or_stopped(txq)) 342 skb = dev_hard_start_xmit(skb, dev, txq, &ret); 343 else 344 qdisc_maybe_clear_missed(q, txq); 345 346 HARD_TX_UNLOCK(dev, txq); 347 } else { 348 if (root_lock) 349 spin_lock(root_lock); 350 return true; 351 } 352 353 if (root_lock) 354 spin_lock(root_lock); 355 356 if (!dev_xmit_complete(ret)) { 357 /* Driver returned NETDEV_TX_BUSY - requeue skb */ 358 if (unlikely(ret != NETDEV_TX_BUSY)) 359 net_warn_ratelimited("BUG %s code %d qlen %d\n", 360 dev->name, ret, q->q.qlen); 361 362 dev_requeue_skb(skb, q); 363 return false; 364 } 365 366 return true; 367 } 368 369 /* 370 * NOTE: Called under qdisc_lock(q) with locally disabled BH. 371 * 372 * running seqcount guarantees only one CPU can process 373 * this qdisc at a time. qdisc_lock(q) serializes queue accesses for 374 * this queue. 375 * 376 * netif_tx_lock serializes accesses to device driver. 377 * 378 * qdisc_lock(q) and netif_tx_lock are mutually exclusive, 379 * if one is grabbed, another must be free. 380 * 381 * Note, that this procedure can be called by a watchdog timer 382 * 383 * Returns to the caller: 384 * 0 - queue is empty or throttled. 385 * >0 - queue is not empty. 386 * 387 */ 388 static inline bool qdisc_restart(struct Qdisc *q, int *packets) 389 { 390 spinlock_t *root_lock = NULL; 391 struct netdev_queue *txq; 392 struct net_device *dev; 393 struct sk_buff *skb; 394 bool validate; 395 396 /* Dequeue packet */ 397 skb = dequeue_skb(q, &validate, packets); 398 if (unlikely(!skb)) 399 return false; 400 401 if (!(q->flags & TCQ_F_NOLOCK)) 402 root_lock = qdisc_lock(q); 403 404 dev = qdisc_dev(q); 405 txq = skb_get_tx_queue(dev, skb); 406 407 return sch_direct_xmit(skb, q, dev, txq, root_lock, validate); 408 } 409 410 void __qdisc_run(struct Qdisc *q) 411 { 412 int quota = dev_tx_weight; 413 int packets; 414 415 while (qdisc_restart(q, &packets)) { 416 quota -= packets; 417 if (quota <= 0) { 418 if (q->flags & TCQ_F_NOLOCK) 419 set_bit(__QDISC_STATE_MISSED, &q->state); 420 else 421 __netif_schedule(q); 422 423 break; 424 } 425 } 426 } 427 428 unsigned long dev_trans_start(struct net_device *dev) 429 { 430 unsigned long val, res; 431 unsigned int i; 432 433 if (is_vlan_dev(dev)) 434 dev = vlan_dev_real_dev(dev); 435 else if (netif_is_macvlan(dev)) 436 dev = macvlan_dev_real_dev(dev); 437 res = netdev_get_tx_queue(dev, 0)->trans_start; 438 for (i = 1; i < dev->num_tx_queues; i++) { 439 val = netdev_get_tx_queue(dev, i)->trans_start; 440 if (val && time_after(val, res)) 441 res = val; 442 } 443 444 return res; 445 } 446 EXPORT_SYMBOL(dev_trans_start); 447 448 static void dev_watchdog(struct timer_list *t) 449 { 450 struct net_device *dev = from_timer(dev, t, watchdog_timer); 451 452 netif_tx_lock(dev); 453 if (!qdisc_tx_is_noop(dev)) { 454 if (netif_device_present(dev) && 455 netif_running(dev) && 456 netif_carrier_ok(dev)) { 457 int some_queue_timedout = 0; 458 unsigned int i; 459 unsigned long trans_start; 460 461 for (i = 0; i < dev->num_tx_queues; i++) { 462 struct netdev_queue *txq; 463 464 txq = netdev_get_tx_queue(dev, i); 465 trans_start = txq->trans_start; 466 if (netif_xmit_stopped(txq) && 467 time_after(jiffies, (trans_start + 468 dev->watchdog_timeo))) { 469 some_queue_timedout = 1; 470 txq->trans_timeout++; 471 break; 472 } 473 } 474 475 if (some_queue_timedout) { 476 trace_net_dev_xmit_timeout(dev, i); 477 WARN_ONCE(1, KERN_INFO "NETDEV WATCHDOG: %s (%s): transmit queue %u timed out\n", 478 dev->name, netdev_drivername(dev), i); 479 dev->netdev_ops->ndo_tx_timeout(dev, i); 480 } 481 if (!mod_timer(&dev->watchdog_timer, 482 round_jiffies(jiffies + 483 dev->watchdog_timeo))) 484 dev_hold(dev); 485 } 486 } 487 netif_tx_unlock(dev); 488 489 dev_put(dev); 490 } 491 492 void __netdev_watchdog_up(struct net_device *dev) 493 { 494 if (dev->netdev_ops->ndo_tx_timeout) { 495 if (dev->watchdog_timeo <= 0) 496 dev->watchdog_timeo = 5*HZ; 497 if (!mod_timer(&dev->watchdog_timer, 498 round_jiffies(jiffies + dev->watchdog_timeo))) 499 dev_hold(dev); 500 } 501 } 502 EXPORT_SYMBOL_GPL(__netdev_watchdog_up); 503 504 static void dev_watchdog_up(struct net_device *dev) 505 { 506 __netdev_watchdog_up(dev); 507 } 508 509 static void dev_watchdog_down(struct net_device *dev) 510 { 511 netif_tx_lock_bh(dev); 512 if (del_timer(&dev->watchdog_timer)) 513 dev_put(dev); 514 netif_tx_unlock_bh(dev); 515 } 516 517 /** 518 * netif_carrier_on - set carrier 519 * @dev: network device 520 * 521 * Device has detected acquisition of carrier. 522 */ 523 void netif_carrier_on(struct net_device *dev) 524 { 525 if (test_and_clear_bit(__LINK_STATE_NOCARRIER, &dev->state)) { 526 if (dev->reg_state == NETREG_UNINITIALIZED) 527 return; 528 atomic_inc(&dev->carrier_up_count); 529 linkwatch_fire_event(dev); 530 if (netif_running(dev)) 531 __netdev_watchdog_up(dev); 532 } 533 } 534 EXPORT_SYMBOL(netif_carrier_on); 535 536 /** 537 * netif_carrier_off - clear carrier 538 * @dev: network device 539 * 540 * Device has detected loss of carrier. 541 */ 542 void netif_carrier_off(struct net_device *dev) 543 { 544 if (!test_and_set_bit(__LINK_STATE_NOCARRIER, &dev->state)) { 545 if (dev->reg_state == NETREG_UNINITIALIZED) 546 return; 547 atomic_inc(&dev->carrier_down_count); 548 linkwatch_fire_event(dev); 549 } 550 } 551 EXPORT_SYMBOL(netif_carrier_off); 552 553 /** 554 * netif_carrier_event - report carrier state event 555 * @dev: network device 556 * 557 * Device has detected a carrier event but the carrier state wasn't changed. 558 * Use in drivers when querying carrier state asynchronously, to avoid missing 559 * events (link flaps) if link recovers before it's queried. 560 */ 561 void netif_carrier_event(struct net_device *dev) 562 { 563 if (dev->reg_state == NETREG_UNINITIALIZED) 564 return; 565 atomic_inc(&dev->carrier_up_count); 566 atomic_inc(&dev->carrier_down_count); 567 linkwatch_fire_event(dev); 568 } 569 EXPORT_SYMBOL_GPL(netif_carrier_event); 570 571 /* "NOOP" scheduler: the best scheduler, recommended for all interfaces 572 under all circumstances. It is difficult to invent anything faster or 573 cheaper. 574 */ 575 576 static int noop_enqueue(struct sk_buff *skb, struct Qdisc *qdisc, 577 struct sk_buff **to_free) 578 { 579 __qdisc_drop(skb, to_free); 580 return NET_XMIT_CN; 581 } 582 583 static struct sk_buff *noop_dequeue(struct Qdisc *qdisc) 584 { 585 return NULL; 586 } 587 588 struct Qdisc_ops noop_qdisc_ops __read_mostly = { 589 .id = "noop", 590 .priv_size = 0, 591 .enqueue = noop_enqueue, 592 .dequeue = noop_dequeue, 593 .peek = noop_dequeue, 594 .owner = THIS_MODULE, 595 }; 596 597 static struct netdev_queue noop_netdev_queue = { 598 RCU_POINTER_INITIALIZER(qdisc, &noop_qdisc), 599 .qdisc_sleeping = &noop_qdisc, 600 }; 601 602 struct Qdisc noop_qdisc = { 603 .enqueue = noop_enqueue, 604 .dequeue = noop_dequeue, 605 .flags = TCQ_F_BUILTIN, 606 .ops = &noop_qdisc_ops, 607 .q.lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.q.lock), 608 .dev_queue = &noop_netdev_queue, 609 .running = SEQCNT_ZERO(noop_qdisc.running), 610 .busylock = __SPIN_LOCK_UNLOCKED(noop_qdisc.busylock), 611 .gso_skb = { 612 .next = (struct sk_buff *)&noop_qdisc.gso_skb, 613 .prev = (struct sk_buff *)&noop_qdisc.gso_skb, 614 .qlen = 0, 615 .lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.gso_skb.lock), 616 }, 617 .skb_bad_txq = { 618 .next = (struct sk_buff *)&noop_qdisc.skb_bad_txq, 619 .prev = (struct sk_buff *)&noop_qdisc.skb_bad_txq, 620 .qlen = 0, 621 .lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.skb_bad_txq.lock), 622 }, 623 }; 624 EXPORT_SYMBOL(noop_qdisc); 625 626 static int noqueue_init(struct Qdisc *qdisc, struct nlattr *opt, 627 struct netlink_ext_ack *extack) 628 { 629 /* register_qdisc() assigns a default of noop_enqueue if unset, 630 * but __dev_queue_xmit() treats noqueue only as such 631 * if this is NULL - so clear it here. */ 632 qdisc->enqueue = NULL; 633 return 0; 634 } 635 636 struct Qdisc_ops noqueue_qdisc_ops __read_mostly = { 637 .id = "noqueue", 638 .priv_size = 0, 639 .init = noqueue_init, 640 .enqueue = noop_enqueue, 641 .dequeue = noop_dequeue, 642 .peek = noop_dequeue, 643 .owner = THIS_MODULE, 644 }; 645 646 static const u8 prio2band[TC_PRIO_MAX + 1] = { 647 1, 2, 2, 2, 1, 2, 0, 0 , 1, 1, 1, 1, 1, 1, 1, 1 648 }; 649 650 /* 3-band FIFO queue: old style, but should be a bit faster than 651 generic prio+fifo combination. 652 */ 653 654 #define PFIFO_FAST_BANDS 3 655 656 /* 657 * Private data for a pfifo_fast scheduler containing: 658 * - rings for priority bands 659 */ 660 struct pfifo_fast_priv { 661 struct skb_array q[PFIFO_FAST_BANDS]; 662 }; 663 664 static inline struct skb_array *band2list(struct pfifo_fast_priv *priv, 665 int band) 666 { 667 return &priv->q[band]; 668 } 669 670 static int pfifo_fast_enqueue(struct sk_buff *skb, struct Qdisc *qdisc, 671 struct sk_buff **to_free) 672 { 673 int band = prio2band[skb->priority & TC_PRIO_MAX]; 674 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 675 struct skb_array *q = band2list(priv, band); 676 unsigned int pkt_len = qdisc_pkt_len(skb); 677 int err; 678 679 err = skb_array_produce(q, skb); 680 681 if (unlikely(err)) { 682 if (qdisc_is_percpu_stats(qdisc)) 683 return qdisc_drop_cpu(skb, qdisc, to_free); 684 else 685 return qdisc_drop(skb, qdisc, to_free); 686 } 687 688 qdisc_update_stats_at_enqueue(qdisc, pkt_len); 689 return NET_XMIT_SUCCESS; 690 } 691 692 static struct sk_buff *pfifo_fast_dequeue(struct Qdisc *qdisc) 693 { 694 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 695 struct sk_buff *skb = NULL; 696 bool need_retry = true; 697 int band; 698 699 retry: 700 for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) { 701 struct skb_array *q = band2list(priv, band); 702 703 if (__skb_array_empty(q)) 704 continue; 705 706 skb = __skb_array_consume(q); 707 } 708 if (likely(skb)) { 709 qdisc_update_stats_at_dequeue(qdisc, skb); 710 } else if (need_retry && 711 READ_ONCE(qdisc->state) & QDISC_STATE_NON_EMPTY) { 712 /* Delay clearing the STATE_MISSED here to reduce 713 * the overhead of the second spin_trylock() in 714 * qdisc_run_begin() and __netif_schedule() calling 715 * in qdisc_run_end(). 716 */ 717 clear_bit(__QDISC_STATE_MISSED, &qdisc->state); 718 clear_bit(__QDISC_STATE_DRAINING, &qdisc->state); 719 720 /* Make sure dequeuing happens after clearing 721 * STATE_MISSED. 722 */ 723 smp_mb__after_atomic(); 724 725 need_retry = false; 726 727 goto retry; 728 } 729 730 return skb; 731 } 732 733 static struct sk_buff *pfifo_fast_peek(struct Qdisc *qdisc) 734 { 735 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 736 struct sk_buff *skb = NULL; 737 int band; 738 739 for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) { 740 struct skb_array *q = band2list(priv, band); 741 742 skb = __skb_array_peek(q); 743 } 744 745 return skb; 746 } 747 748 static void pfifo_fast_reset(struct Qdisc *qdisc) 749 { 750 int i, band; 751 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 752 753 for (band = 0; band < PFIFO_FAST_BANDS; band++) { 754 struct skb_array *q = band2list(priv, band); 755 struct sk_buff *skb; 756 757 /* NULL ring is possible if destroy path is due to a failed 758 * skb_array_init() in pfifo_fast_init() case. 759 */ 760 if (!q->ring.queue) 761 continue; 762 763 while ((skb = __skb_array_consume(q)) != NULL) 764 kfree_skb(skb); 765 } 766 767 if (qdisc_is_percpu_stats(qdisc)) { 768 for_each_possible_cpu(i) { 769 struct gnet_stats_queue *q; 770 771 q = per_cpu_ptr(qdisc->cpu_qstats, i); 772 q->backlog = 0; 773 q->qlen = 0; 774 } 775 } 776 } 777 778 static int pfifo_fast_dump(struct Qdisc *qdisc, struct sk_buff *skb) 779 { 780 struct tc_prio_qopt opt = { .bands = PFIFO_FAST_BANDS }; 781 782 memcpy(&opt.priomap, prio2band, TC_PRIO_MAX + 1); 783 if (nla_put(skb, TCA_OPTIONS, sizeof(opt), &opt)) 784 goto nla_put_failure; 785 return skb->len; 786 787 nla_put_failure: 788 return -1; 789 } 790 791 static int pfifo_fast_init(struct Qdisc *qdisc, struct nlattr *opt, 792 struct netlink_ext_ack *extack) 793 { 794 unsigned int qlen = qdisc_dev(qdisc)->tx_queue_len; 795 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 796 int prio; 797 798 /* guard against zero length rings */ 799 if (!qlen) 800 return -EINVAL; 801 802 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) { 803 struct skb_array *q = band2list(priv, prio); 804 int err; 805 806 err = skb_array_init(q, qlen, GFP_KERNEL); 807 if (err) 808 return -ENOMEM; 809 } 810 811 /* Can by-pass the queue discipline */ 812 qdisc->flags |= TCQ_F_CAN_BYPASS; 813 return 0; 814 } 815 816 static void pfifo_fast_destroy(struct Qdisc *sch) 817 { 818 struct pfifo_fast_priv *priv = qdisc_priv(sch); 819 int prio; 820 821 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) { 822 struct skb_array *q = band2list(priv, prio); 823 824 /* NULL ring is possible if destroy path is due to a failed 825 * skb_array_init() in pfifo_fast_init() case. 826 */ 827 if (!q->ring.queue) 828 continue; 829 /* Destroy ring but no need to kfree_skb because a call to 830 * pfifo_fast_reset() has already done that work. 831 */ 832 ptr_ring_cleanup(&q->ring, NULL); 833 } 834 } 835 836 static int pfifo_fast_change_tx_queue_len(struct Qdisc *sch, 837 unsigned int new_len) 838 { 839 struct pfifo_fast_priv *priv = qdisc_priv(sch); 840 struct skb_array *bands[PFIFO_FAST_BANDS]; 841 int prio; 842 843 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) { 844 struct skb_array *q = band2list(priv, prio); 845 846 bands[prio] = q; 847 } 848 849 return skb_array_resize_multiple(bands, PFIFO_FAST_BANDS, new_len, 850 GFP_KERNEL); 851 } 852 853 struct Qdisc_ops pfifo_fast_ops __read_mostly = { 854 .id = "pfifo_fast", 855 .priv_size = sizeof(struct pfifo_fast_priv), 856 .enqueue = pfifo_fast_enqueue, 857 .dequeue = pfifo_fast_dequeue, 858 .peek = pfifo_fast_peek, 859 .init = pfifo_fast_init, 860 .destroy = pfifo_fast_destroy, 861 .reset = pfifo_fast_reset, 862 .dump = pfifo_fast_dump, 863 .change_tx_queue_len = pfifo_fast_change_tx_queue_len, 864 .owner = THIS_MODULE, 865 .static_flags = TCQ_F_NOLOCK | TCQ_F_CPUSTATS, 866 }; 867 EXPORT_SYMBOL(pfifo_fast_ops); 868 869 static struct lock_class_key qdisc_tx_busylock; 870 static struct lock_class_key qdisc_running_key; 871 872 struct Qdisc *qdisc_alloc(struct netdev_queue *dev_queue, 873 const struct Qdisc_ops *ops, 874 struct netlink_ext_ack *extack) 875 { 876 struct Qdisc *sch; 877 unsigned int size = sizeof(*sch) + ops->priv_size; 878 int err = -ENOBUFS; 879 struct net_device *dev; 880 881 if (!dev_queue) { 882 NL_SET_ERR_MSG(extack, "No device queue given"); 883 err = -EINVAL; 884 goto errout; 885 } 886 887 dev = dev_queue->dev; 888 sch = kzalloc_node(size, GFP_KERNEL, netdev_queue_numa_node_read(dev_queue)); 889 890 if (!sch) 891 goto errout; 892 __skb_queue_head_init(&sch->gso_skb); 893 __skb_queue_head_init(&sch->skb_bad_txq); 894 qdisc_skb_head_init(&sch->q); 895 spin_lock_init(&sch->q.lock); 896 897 if (ops->static_flags & TCQ_F_CPUSTATS) { 898 sch->cpu_bstats = 899 netdev_alloc_pcpu_stats(struct gnet_stats_basic_cpu); 900 if (!sch->cpu_bstats) 901 goto errout1; 902 903 sch->cpu_qstats = alloc_percpu(struct gnet_stats_queue); 904 if (!sch->cpu_qstats) { 905 free_percpu(sch->cpu_bstats); 906 goto errout1; 907 } 908 } 909 910 spin_lock_init(&sch->busylock); 911 lockdep_set_class(&sch->busylock, 912 dev->qdisc_tx_busylock ?: &qdisc_tx_busylock); 913 914 /* seqlock has the same scope of busylock, for NOLOCK qdisc */ 915 spin_lock_init(&sch->seqlock); 916 lockdep_set_class(&sch->seqlock, 917 dev->qdisc_tx_busylock ?: &qdisc_tx_busylock); 918 919 seqcount_init(&sch->running); 920 lockdep_set_class(&sch->running, 921 dev->qdisc_running_key ?: &qdisc_running_key); 922 923 sch->ops = ops; 924 sch->flags = ops->static_flags; 925 sch->enqueue = ops->enqueue; 926 sch->dequeue = ops->dequeue; 927 sch->dev_queue = dev_queue; 928 dev_hold(dev); 929 refcount_set(&sch->refcnt, 1); 930 931 return sch; 932 errout1: 933 kfree(sch); 934 errout: 935 return ERR_PTR(err); 936 } 937 938 struct Qdisc *qdisc_create_dflt(struct netdev_queue *dev_queue, 939 const struct Qdisc_ops *ops, 940 unsigned int parentid, 941 struct netlink_ext_ack *extack) 942 { 943 struct Qdisc *sch; 944 945 if (!try_module_get(ops->owner)) { 946 NL_SET_ERR_MSG(extack, "Failed to increase module reference counter"); 947 return NULL; 948 } 949 950 sch = qdisc_alloc(dev_queue, ops, extack); 951 if (IS_ERR(sch)) { 952 module_put(ops->owner); 953 return NULL; 954 } 955 sch->parent = parentid; 956 957 if (!ops->init || ops->init(sch, NULL, extack) == 0) { 958 trace_qdisc_create(ops, dev_queue->dev, parentid); 959 return sch; 960 } 961 962 qdisc_put(sch); 963 return NULL; 964 } 965 EXPORT_SYMBOL(qdisc_create_dflt); 966 967 /* Under qdisc_lock(qdisc) and BH! */ 968 969 void qdisc_reset(struct Qdisc *qdisc) 970 { 971 const struct Qdisc_ops *ops = qdisc->ops; 972 struct sk_buff *skb, *tmp; 973 974 trace_qdisc_reset(qdisc); 975 976 if (ops->reset) 977 ops->reset(qdisc); 978 979 skb_queue_walk_safe(&qdisc->gso_skb, skb, tmp) { 980 __skb_unlink(skb, &qdisc->gso_skb); 981 kfree_skb_list(skb); 982 } 983 984 skb_queue_walk_safe(&qdisc->skb_bad_txq, skb, tmp) { 985 __skb_unlink(skb, &qdisc->skb_bad_txq); 986 kfree_skb_list(skb); 987 } 988 989 qdisc->q.qlen = 0; 990 qdisc->qstats.backlog = 0; 991 } 992 EXPORT_SYMBOL(qdisc_reset); 993 994 void qdisc_free(struct Qdisc *qdisc) 995 { 996 if (qdisc_is_percpu_stats(qdisc)) { 997 free_percpu(qdisc->cpu_bstats); 998 free_percpu(qdisc->cpu_qstats); 999 } 1000 1001 kfree(qdisc); 1002 } 1003 1004 static void qdisc_free_cb(struct rcu_head *head) 1005 { 1006 struct Qdisc *q = container_of(head, struct Qdisc, rcu); 1007 1008 qdisc_free(q); 1009 } 1010 1011 static void qdisc_destroy(struct Qdisc *qdisc) 1012 { 1013 const struct Qdisc_ops *ops = qdisc->ops; 1014 1015 #ifdef CONFIG_NET_SCHED 1016 qdisc_hash_del(qdisc); 1017 1018 qdisc_put_stab(rtnl_dereference(qdisc->stab)); 1019 #endif 1020 gen_kill_estimator(&qdisc->rate_est); 1021 1022 qdisc_reset(qdisc); 1023 1024 if (ops->destroy) 1025 ops->destroy(qdisc); 1026 1027 module_put(ops->owner); 1028 dev_put(qdisc_dev(qdisc)); 1029 1030 trace_qdisc_destroy(qdisc); 1031 1032 call_rcu(&qdisc->rcu, qdisc_free_cb); 1033 } 1034 1035 void qdisc_put(struct Qdisc *qdisc) 1036 { 1037 if (!qdisc) 1038 return; 1039 1040 if (qdisc->flags & TCQ_F_BUILTIN || 1041 !refcount_dec_and_test(&qdisc->refcnt)) 1042 return; 1043 1044 qdisc_destroy(qdisc); 1045 } 1046 EXPORT_SYMBOL(qdisc_put); 1047 1048 /* Version of qdisc_put() that is called with rtnl mutex unlocked. 1049 * Intended to be used as optimization, this function only takes rtnl lock if 1050 * qdisc reference counter reached zero. 1051 */ 1052 1053 void qdisc_put_unlocked(struct Qdisc *qdisc) 1054 { 1055 if (qdisc->flags & TCQ_F_BUILTIN || 1056 !refcount_dec_and_rtnl_lock(&qdisc->refcnt)) 1057 return; 1058 1059 qdisc_destroy(qdisc); 1060 rtnl_unlock(); 1061 } 1062 EXPORT_SYMBOL(qdisc_put_unlocked); 1063 1064 /* Attach toplevel qdisc to device queue. */ 1065 struct Qdisc *dev_graft_qdisc(struct netdev_queue *dev_queue, 1066 struct Qdisc *qdisc) 1067 { 1068 struct Qdisc *oqdisc = dev_queue->qdisc_sleeping; 1069 spinlock_t *root_lock; 1070 1071 root_lock = qdisc_lock(oqdisc); 1072 spin_lock_bh(root_lock); 1073 1074 /* ... and graft new one */ 1075 if (qdisc == NULL) 1076 qdisc = &noop_qdisc; 1077 dev_queue->qdisc_sleeping = qdisc; 1078 rcu_assign_pointer(dev_queue->qdisc, &noop_qdisc); 1079 1080 spin_unlock_bh(root_lock); 1081 1082 return oqdisc; 1083 } 1084 EXPORT_SYMBOL(dev_graft_qdisc); 1085 1086 static void attach_one_default_qdisc(struct net_device *dev, 1087 struct netdev_queue *dev_queue, 1088 void *_unused) 1089 { 1090 struct Qdisc *qdisc; 1091 const struct Qdisc_ops *ops = default_qdisc_ops; 1092 1093 if (dev->priv_flags & IFF_NO_QUEUE) 1094 ops = &noqueue_qdisc_ops; 1095 else if(dev->type == ARPHRD_CAN) 1096 ops = &pfifo_fast_ops; 1097 1098 qdisc = qdisc_create_dflt(dev_queue, ops, TC_H_ROOT, NULL); 1099 if (!qdisc) 1100 return; 1101 1102 if (!netif_is_multiqueue(dev)) 1103 qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT; 1104 dev_queue->qdisc_sleeping = qdisc; 1105 } 1106 1107 static void attach_default_qdiscs(struct net_device *dev) 1108 { 1109 struct netdev_queue *txq; 1110 struct Qdisc *qdisc; 1111 1112 txq = netdev_get_tx_queue(dev, 0); 1113 1114 if (!netif_is_multiqueue(dev) || 1115 dev->priv_flags & IFF_NO_QUEUE) { 1116 netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL); 1117 dev->qdisc = txq->qdisc_sleeping; 1118 qdisc_refcount_inc(dev->qdisc); 1119 } else { 1120 qdisc = qdisc_create_dflt(txq, &mq_qdisc_ops, TC_H_ROOT, NULL); 1121 if (qdisc) { 1122 dev->qdisc = qdisc; 1123 qdisc->ops->attach(qdisc); 1124 } 1125 } 1126 1127 /* Detect default qdisc setup/init failed and fallback to "noqueue" */ 1128 if (dev->qdisc == &noop_qdisc) { 1129 netdev_warn(dev, "default qdisc (%s) fail, fallback to %s\n", 1130 default_qdisc_ops->id, noqueue_qdisc_ops.id); 1131 dev->priv_flags |= IFF_NO_QUEUE; 1132 netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL); 1133 dev->qdisc = txq->qdisc_sleeping; 1134 qdisc_refcount_inc(dev->qdisc); 1135 dev->priv_flags ^= IFF_NO_QUEUE; 1136 } 1137 1138 #ifdef CONFIG_NET_SCHED 1139 if (dev->qdisc != &noop_qdisc) 1140 qdisc_hash_add(dev->qdisc, false); 1141 #endif 1142 } 1143 1144 static void transition_one_qdisc(struct net_device *dev, 1145 struct netdev_queue *dev_queue, 1146 void *_need_watchdog) 1147 { 1148 struct Qdisc *new_qdisc = dev_queue->qdisc_sleeping; 1149 int *need_watchdog_p = _need_watchdog; 1150 1151 if (!(new_qdisc->flags & TCQ_F_BUILTIN)) 1152 clear_bit(__QDISC_STATE_DEACTIVATED, &new_qdisc->state); 1153 1154 rcu_assign_pointer(dev_queue->qdisc, new_qdisc); 1155 if (need_watchdog_p) { 1156 dev_queue->trans_start = 0; 1157 *need_watchdog_p = 1; 1158 } 1159 } 1160 1161 void dev_activate(struct net_device *dev) 1162 { 1163 int need_watchdog; 1164 1165 /* No queueing discipline is attached to device; 1166 * create default one for devices, which need queueing 1167 * and noqueue_qdisc for virtual interfaces 1168 */ 1169 1170 if (dev->qdisc == &noop_qdisc) 1171 attach_default_qdiscs(dev); 1172 1173 if (!netif_carrier_ok(dev)) 1174 /* Delay activation until next carrier-on event */ 1175 return; 1176 1177 need_watchdog = 0; 1178 netdev_for_each_tx_queue(dev, transition_one_qdisc, &need_watchdog); 1179 if (dev_ingress_queue(dev)) 1180 transition_one_qdisc(dev, dev_ingress_queue(dev), NULL); 1181 1182 if (need_watchdog) { 1183 netif_trans_update(dev); 1184 dev_watchdog_up(dev); 1185 } 1186 } 1187 EXPORT_SYMBOL(dev_activate); 1188 1189 static void qdisc_deactivate(struct Qdisc *qdisc) 1190 { 1191 if (qdisc->flags & TCQ_F_BUILTIN) 1192 return; 1193 1194 set_bit(__QDISC_STATE_DEACTIVATED, &qdisc->state); 1195 } 1196 1197 static void dev_deactivate_queue(struct net_device *dev, 1198 struct netdev_queue *dev_queue, 1199 void *_qdisc_default) 1200 { 1201 struct Qdisc *qdisc_default = _qdisc_default; 1202 struct Qdisc *qdisc; 1203 1204 qdisc = rtnl_dereference(dev_queue->qdisc); 1205 if (qdisc) { 1206 qdisc_deactivate(qdisc); 1207 rcu_assign_pointer(dev_queue->qdisc, qdisc_default); 1208 } 1209 } 1210 1211 static void dev_reset_queue(struct net_device *dev, 1212 struct netdev_queue *dev_queue, 1213 void *_unused) 1214 { 1215 struct Qdisc *qdisc; 1216 bool nolock; 1217 1218 qdisc = dev_queue->qdisc_sleeping; 1219 if (!qdisc) 1220 return; 1221 1222 nolock = qdisc->flags & TCQ_F_NOLOCK; 1223 1224 if (nolock) 1225 spin_lock_bh(&qdisc->seqlock); 1226 spin_lock_bh(qdisc_lock(qdisc)); 1227 1228 qdisc_reset(qdisc); 1229 1230 spin_unlock_bh(qdisc_lock(qdisc)); 1231 if (nolock) { 1232 clear_bit(__QDISC_STATE_MISSED, &qdisc->state); 1233 clear_bit(__QDISC_STATE_DRAINING, &qdisc->state); 1234 spin_unlock_bh(&qdisc->seqlock); 1235 } 1236 } 1237 1238 static bool some_qdisc_is_busy(struct net_device *dev) 1239 { 1240 unsigned int i; 1241 1242 for (i = 0; i < dev->num_tx_queues; i++) { 1243 struct netdev_queue *dev_queue; 1244 spinlock_t *root_lock; 1245 struct Qdisc *q; 1246 int val; 1247 1248 dev_queue = netdev_get_tx_queue(dev, i); 1249 q = dev_queue->qdisc_sleeping; 1250 1251 root_lock = qdisc_lock(q); 1252 spin_lock_bh(root_lock); 1253 1254 val = (qdisc_is_running(q) || 1255 test_bit(__QDISC_STATE_SCHED, &q->state)); 1256 1257 spin_unlock_bh(root_lock); 1258 1259 if (val) 1260 return true; 1261 } 1262 return false; 1263 } 1264 1265 /** 1266 * dev_deactivate_many - deactivate transmissions on several devices 1267 * @head: list of devices to deactivate 1268 * 1269 * This function returns only when all outstanding transmissions 1270 * have completed, unless all devices are in dismantle phase. 1271 */ 1272 void dev_deactivate_many(struct list_head *head) 1273 { 1274 struct net_device *dev; 1275 1276 list_for_each_entry(dev, head, close_list) { 1277 netdev_for_each_tx_queue(dev, dev_deactivate_queue, 1278 &noop_qdisc); 1279 if (dev_ingress_queue(dev)) 1280 dev_deactivate_queue(dev, dev_ingress_queue(dev), 1281 &noop_qdisc); 1282 1283 dev_watchdog_down(dev); 1284 } 1285 1286 /* Wait for outstanding qdisc-less dev_queue_xmit calls or 1287 * outstanding qdisc enqueuing calls. 1288 * This is avoided if all devices are in dismantle phase : 1289 * Caller will call synchronize_net() for us 1290 */ 1291 synchronize_net(); 1292 1293 list_for_each_entry(dev, head, close_list) { 1294 netdev_for_each_tx_queue(dev, dev_reset_queue, NULL); 1295 1296 if (dev_ingress_queue(dev)) 1297 dev_reset_queue(dev, dev_ingress_queue(dev), NULL); 1298 } 1299 1300 /* Wait for outstanding qdisc_run calls. */ 1301 list_for_each_entry(dev, head, close_list) { 1302 while (some_qdisc_is_busy(dev)) { 1303 /* wait_event() would avoid this sleep-loop but would 1304 * require expensive checks in the fast paths of packet 1305 * processing which isn't worth it. 1306 */ 1307 schedule_timeout_uninterruptible(1); 1308 } 1309 } 1310 } 1311 1312 void dev_deactivate(struct net_device *dev) 1313 { 1314 LIST_HEAD(single); 1315 1316 list_add(&dev->close_list, &single); 1317 dev_deactivate_many(&single); 1318 list_del(&single); 1319 } 1320 EXPORT_SYMBOL(dev_deactivate); 1321 1322 static int qdisc_change_tx_queue_len(struct net_device *dev, 1323 struct netdev_queue *dev_queue) 1324 { 1325 struct Qdisc *qdisc = dev_queue->qdisc_sleeping; 1326 const struct Qdisc_ops *ops = qdisc->ops; 1327 1328 if (ops->change_tx_queue_len) 1329 return ops->change_tx_queue_len(qdisc, dev->tx_queue_len); 1330 return 0; 1331 } 1332 1333 int dev_qdisc_change_tx_queue_len(struct net_device *dev) 1334 { 1335 bool up = dev->flags & IFF_UP; 1336 unsigned int i; 1337 int ret = 0; 1338 1339 if (up) 1340 dev_deactivate(dev); 1341 1342 for (i = 0; i < dev->num_tx_queues; i++) { 1343 ret = qdisc_change_tx_queue_len(dev, &dev->_tx[i]); 1344 1345 /* TODO: revert changes on a partial failure */ 1346 if (ret) 1347 break; 1348 } 1349 1350 if (up) 1351 dev_activate(dev); 1352 return ret; 1353 } 1354 1355 static void dev_init_scheduler_queue(struct net_device *dev, 1356 struct netdev_queue *dev_queue, 1357 void *_qdisc) 1358 { 1359 struct Qdisc *qdisc = _qdisc; 1360 1361 rcu_assign_pointer(dev_queue->qdisc, qdisc); 1362 dev_queue->qdisc_sleeping = qdisc; 1363 } 1364 1365 void dev_init_scheduler(struct net_device *dev) 1366 { 1367 dev->qdisc = &noop_qdisc; 1368 netdev_for_each_tx_queue(dev, dev_init_scheduler_queue, &noop_qdisc); 1369 if (dev_ingress_queue(dev)) 1370 dev_init_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc); 1371 1372 timer_setup(&dev->watchdog_timer, dev_watchdog, 0); 1373 } 1374 1375 static void shutdown_scheduler_queue(struct net_device *dev, 1376 struct netdev_queue *dev_queue, 1377 void *_qdisc_default) 1378 { 1379 struct Qdisc *qdisc = dev_queue->qdisc_sleeping; 1380 struct Qdisc *qdisc_default = _qdisc_default; 1381 1382 if (qdisc) { 1383 rcu_assign_pointer(dev_queue->qdisc, qdisc_default); 1384 dev_queue->qdisc_sleeping = qdisc_default; 1385 1386 qdisc_put(qdisc); 1387 } 1388 } 1389 1390 void dev_shutdown(struct net_device *dev) 1391 { 1392 netdev_for_each_tx_queue(dev, shutdown_scheduler_queue, &noop_qdisc); 1393 if (dev_ingress_queue(dev)) 1394 shutdown_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc); 1395 qdisc_put(dev->qdisc); 1396 dev->qdisc = &noop_qdisc; 1397 1398 WARN_ON(timer_pending(&dev->watchdog_timer)); 1399 } 1400 1401 /** 1402 * psched_ratecfg_precompute__() - Pre-compute values for reciprocal division 1403 * @rate: Rate to compute reciprocal division values of 1404 * @mult: Multiplier for reciprocal division 1405 * @shift: Shift for reciprocal division 1406 * 1407 * The multiplier and shift for reciprocal division by rate are stored 1408 * in mult and shift. 1409 * 1410 * The deal here is to replace a divide by a reciprocal one 1411 * in fast path (a reciprocal divide is a multiply and a shift) 1412 * 1413 * Normal formula would be : 1414 * time_in_ns = (NSEC_PER_SEC * len) / rate_bps 1415 * 1416 * We compute mult/shift to use instead : 1417 * time_in_ns = (len * mult) >> shift; 1418 * 1419 * We try to get the highest possible mult value for accuracy, 1420 * but have to make sure no overflows will ever happen. 1421 * 1422 * reciprocal_value() is not used here it doesn't handle 64-bit values. 1423 */ 1424 static void psched_ratecfg_precompute__(u64 rate, u32 *mult, u8 *shift) 1425 { 1426 u64 factor = NSEC_PER_SEC; 1427 1428 *mult = 1; 1429 *shift = 0; 1430 1431 if (rate <= 0) 1432 return; 1433 1434 for (;;) { 1435 *mult = div64_u64(factor, rate); 1436 if (*mult & (1U << 31) || factor & (1ULL << 63)) 1437 break; 1438 factor <<= 1; 1439 (*shift)++; 1440 } 1441 } 1442 1443 void psched_ratecfg_precompute(struct psched_ratecfg *r, 1444 const struct tc_ratespec *conf, 1445 u64 rate64) 1446 { 1447 memset(r, 0, sizeof(*r)); 1448 r->overhead = conf->overhead; 1449 r->rate_bytes_ps = max_t(u64, conf->rate, rate64); 1450 r->linklayer = (conf->linklayer & TC_LINKLAYER_MASK); 1451 psched_ratecfg_precompute__(r->rate_bytes_ps, &r->mult, &r->shift); 1452 } 1453 EXPORT_SYMBOL(psched_ratecfg_precompute); 1454 1455 void psched_ppscfg_precompute(struct psched_pktrate *r, u64 pktrate64) 1456 { 1457 r->rate_pkts_ps = pktrate64; 1458 psched_ratecfg_precompute__(r->rate_pkts_ps, &r->mult, &r->shift); 1459 } 1460 EXPORT_SYMBOL(psched_ppscfg_precompute); 1461 1462 static void mini_qdisc_rcu_func(struct rcu_head *head) 1463 { 1464 } 1465 1466 void mini_qdisc_pair_swap(struct mini_Qdisc_pair *miniqp, 1467 struct tcf_proto *tp_head) 1468 { 1469 /* Protected with chain0->filter_chain_lock. 1470 * Can't access chain directly because tp_head can be NULL. 1471 */ 1472 struct mini_Qdisc *miniq_old = 1473 rcu_dereference_protected(*miniqp->p_miniq, 1); 1474 struct mini_Qdisc *miniq; 1475 1476 if (!tp_head) { 1477 RCU_INIT_POINTER(*miniqp->p_miniq, NULL); 1478 /* Wait for flying RCU callback before it is freed. */ 1479 rcu_barrier(); 1480 return; 1481 } 1482 1483 miniq = !miniq_old || miniq_old == &miniqp->miniq2 ? 1484 &miniqp->miniq1 : &miniqp->miniq2; 1485 1486 /* We need to make sure that readers won't see the miniq 1487 * we are about to modify. So wait until previous call_rcu callback 1488 * is done. 1489 */ 1490 rcu_barrier(); 1491 miniq->filter_list = tp_head; 1492 rcu_assign_pointer(*miniqp->p_miniq, miniq); 1493 1494 if (miniq_old) 1495 /* This is counterpart of the rcu barriers above. We need to 1496 * block potential new user of miniq_old until all readers 1497 * are not seeing it. 1498 */ 1499 call_rcu(&miniq_old->rcu, mini_qdisc_rcu_func); 1500 } 1501 EXPORT_SYMBOL(mini_qdisc_pair_swap); 1502 1503 void mini_qdisc_pair_block_init(struct mini_Qdisc_pair *miniqp, 1504 struct tcf_block *block) 1505 { 1506 miniqp->miniq1.block = block; 1507 miniqp->miniq2.block = block; 1508 } 1509 EXPORT_SYMBOL(mini_qdisc_pair_block_init); 1510 1511 void mini_qdisc_pair_init(struct mini_Qdisc_pair *miniqp, struct Qdisc *qdisc, 1512 struct mini_Qdisc __rcu **p_miniq) 1513 { 1514 miniqp->miniq1.cpu_bstats = qdisc->cpu_bstats; 1515 miniqp->miniq1.cpu_qstats = qdisc->cpu_qstats; 1516 miniqp->miniq2.cpu_bstats = qdisc->cpu_bstats; 1517 miniqp->miniq2.cpu_qstats = qdisc->cpu_qstats; 1518 miniqp->p_miniq = p_miniq; 1519 } 1520 EXPORT_SYMBOL(mini_qdisc_pair_init); 1521