1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * net/sched/sch_generic.c Generic packet scheduler routines. 4 * 5 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 6 * Jamal Hadi Salim, <hadi@cyberus.ca> 990601 7 * - Ingress support 8 */ 9 10 #include <linux/bitops.h> 11 #include <linux/module.h> 12 #include <linux/types.h> 13 #include <linux/kernel.h> 14 #include <linux/sched.h> 15 #include <linux/string.h> 16 #include <linux/errno.h> 17 #include <linux/netdevice.h> 18 #include <linux/skbuff.h> 19 #include <linux/rtnetlink.h> 20 #include <linux/init.h> 21 #include <linux/rcupdate.h> 22 #include <linux/list.h> 23 #include <linux/slab.h> 24 #include <linux/if_vlan.h> 25 #include <linux/skb_array.h> 26 #include <linux/if_macvlan.h> 27 #include <net/sch_generic.h> 28 #include <net/pkt_sched.h> 29 #include <net/dst.h> 30 #include <trace/events/qdisc.h> 31 #include <trace/events/net.h> 32 #include <net/xfrm.h> 33 34 /* Qdisc to use by default */ 35 const struct Qdisc_ops *default_qdisc_ops = &pfifo_fast_ops; 36 EXPORT_SYMBOL(default_qdisc_ops); 37 38 static void qdisc_maybe_clear_missed(struct Qdisc *q, 39 const struct netdev_queue *txq) 40 { 41 clear_bit(__QDISC_STATE_MISSED, &q->state); 42 43 /* Make sure the below netif_xmit_frozen_or_stopped() 44 * checking happens after clearing STATE_MISSED. 45 */ 46 smp_mb__after_atomic(); 47 48 /* Checking netif_xmit_frozen_or_stopped() again to 49 * make sure STATE_MISSED is set if the STATE_MISSED 50 * set by netif_tx_wake_queue()'s rescheduling of 51 * net_tx_action() is cleared by the above clear_bit(). 52 */ 53 if (!netif_xmit_frozen_or_stopped(txq)) 54 set_bit(__QDISC_STATE_MISSED, &q->state); 55 else 56 set_bit(__QDISC_STATE_DRAINING, &q->state); 57 } 58 59 /* Main transmission queue. */ 60 61 /* Modifications to data participating in scheduling must be protected with 62 * qdisc_lock(qdisc) spinlock. 63 * 64 * The idea is the following: 65 * - enqueue, dequeue are serialized via qdisc root lock 66 * - ingress filtering is also serialized via qdisc root lock 67 * - updates to tree and tree walking are only done under the rtnl mutex. 68 */ 69 70 #define SKB_XOFF_MAGIC ((struct sk_buff *)1UL) 71 72 static inline struct sk_buff *__skb_dequeue_bad_txq(struct Qdisc *q) 73 { 74 const struct netdev_queue *txq = q->dev_queue; 75 spinlock_t *lock = NULL; 76 struct sk_buff *skb; 77 78 if (q->flags & TCQ_F_NOLOCK) { 79 lock = qdisc_lock(q); 80 spin_lock(lock); 81 } 82 83 skb = skb_peek(&q->skb_bad_txq); 84 if (skb) { 85 /* check the reason of requeuing without tx lock first */ 86 txq = skb_get_tx_queue(txq->dev, skb); 87 if (!netif_xmit_frozen_or_stopped(txq)) { 88 skb = __skb_dequeue(&q->skb_bad_txq); 89 if (qdisc_is_percpu_stats(q)) { 90 qdisc_qstats_cpu_backlog_dec(q, skb); 91 qdisc_qstats_cpu_qlen_dec(q); 92 } else { 93 qdisc_qstats_backlog_dec(q, skb); 94 q->q.qlen--; 95 } 96 } else { 97 skb = SKB_XOFF_MAGIC; 98 qdisc_maybe_clear_missed(q, txq); 99 } 100 } 101 102 if (lock) 103 spin_unlock(lock); 104 105 return skb; 106 } 107 108 static inline struct sk_buff *qdisc_dequeue_skb_bad_txq(struct Qdisc *q) 109 { 110 struct sk_buff *skb = skb_peek(&q->skb_bad_txq); 111 112 if (unlikely(skb)) 113 skb = __skb_dequeue_bad_txq(q); 114 115 return skb; 116 } 117 118 static inline void qdisc_enqueue_skb_bad_txq(struct Qdisc *q, 119 struct sk_buff *skb) 120 { 121 spinlock_t *lock = NULL; 122 123 if (q->flags & TCQ_F_NOLOCK) { 124 lock = qdisc_lock(q); 125 spin_lock(lock); 126 } 127 128 __skb_queue_tail(&q->skb_bad_txq, skb); 129 130 if (qdisc_is_percpu_stats(q)) { 131 qdisc_qstats_cpu_backlog_inc(q, skb); 132 qdisc_qstats_cpu_qlen_inc(q); 133 } else { 134 qdisc_qstats_backlog_inc(q, skb); 135 q->q.qlen++; 136 } 137 138 if (lock) 139 spin_unlock(lock); 140 } 141 142 static inline void dev_requeue_skb(struct sk_buff *skb, struct Qdisc *q) 143 { 144 spinlock_t *lock = NULL; 145 146 if (q->flags & TCQ_F_NOLOCK) { 147 lock = qdisc_lock(q); 148 spin_lock(lock); 149 } 150 151 while (skb) { 152 struct sk_buff *next = skb->next; 153 154 __skb_queue_tail(&q->gso_skb, skb); 155 156 /* it's still part of the queue */ 157 if (qdisc_is_percpu_stats(q)) { 158 qdisc_qstats_cpu_requeues_inc(q); 159 qdisc_qstats_cpu_backlog_inc(q, skb); 160 qdisc_qstats_cpu_qlen_inc(q); 161 } else { 162 q->qstats.requeues++; 163 qdisc_qstats_backlog_inc(q, skb); 164 q->q.qlen++; 165 } 166 167 skb = next; 168 } 169 170 if (lock) { 171 spin_unlock(lock); 172 set_bit(__QDISC_STATE_MISSED, &q->state); 173 } else { 174 __netif_schedule(q); 175 } 176 } 177 178 static void try_bulk_dequeue_skb(struct Qdisc *q, 179 struct sk_buff *skb, 180 const struct netdev_queue *txq, 181 int *packets) 182 { 183 int bytelimit = qdisc_avail_bulklimit(txq) - skb->len; 184 185 while (bytelimit > 0) { 186 struct sk_buff *nskb = q->dequeue(q); 187 188 if (!nskb) 189 break; 190 191 bytelimit -= nskb->len; /* covers GSO len */ 192 skb->next = nskb; 193 skb = nskb; 194 (*packets)++; /* GSO counts as one pkt */ 195 } 196 skb_mark_not_on_list(skb); 197 } 198 199 /* This variant of try_bulk_dequeue_skb() makes sure 200 * all skbs in the chain are for the same txq 201 */ 202 static void try_bulk_dequeue_skb_slow(struct Qdisc *q, 203 struct sk_buff *skb, 204 int *packets) 205 { 206 int mapping = skb_get_queue_mapping(skb); 207 struct sk_buff *nskb; 208 int cnt = 0; 209 210 do { 211 nskb = q->dequeue(q); 212 if (!nskb) 213 break; 214 if (unlikely(skb_get_queue_mapping(nskb) != mapping)) { 215 qdisc_enqueue_skb_bad_txq(q, nskb); 216 break; 217 } 218 skb->next = nskb; 219 skb = nskb; 220 } while (++cnt < 8); 221 (*packets) += cnt; 222 skb_mark_not_on_list(skb); 223 } 224 225 /* Note that dequeue_skb can possibly return a SKB list (via skb->next). 226 * A requeued skb (via q->gso_skb) can also be a SKB list. 227 */ 228 static struct sk_buff *dequeue_skb(struct Qdisc *q, bool *validate, 229 int *packets) 230 { 231 const struct netdev_queue *txq = q->dev_queue; 232 struct sk_buff *skb = NULL; 233 234 *packets = 1; 235 if (unlikely(!skb_queue_empty(&q->gso_skb))) { 236 spinlock_t *lock = NULL; 237 238 if (q->flags & TCQ_F_NOLOCK) { 239 lock = qdisc_lock(q); 240 spin_lock(lock); 241 } 242 243 skb = skb_peek(&q->gso_skb); 244 245 /* skb may be null if another cpu pulls gso_skb off in between 246 * empty check and lock. 247 */ 248 if (!skb) { 249 if (lock) 250 spin_unlock(lock); 251 goto validate; 252 } 253 254 /* skb in gso_skb were already validated */ 255 *validate = false; 256 if (xfrm_offload(skb)) 257 *validate = true; 258 /* check the reason of requeuing without tx lock first */ 259 txq = skb_get_tx_queue(txq->dev, skb); 260 if (!netif_xmit_frozen_or_stopped(txq)) { 261 skb = __skb_dequeue(&q->gso_skb); 262 if (qdisc_is_percpu_stats(q)) { 263 qdisc_qstats_cpu_backlog_dec(q, skb); 264 qdisc_qstats_cpu_qlen_dec(q); 265 } else { 266 qdisc_qstats_backlog_dec(q, skb); 267 q->q.qlen--; 268 } 269 } else { 270 skb = NULL; 271 qdisc_maybe_clear_missed(q, txq); 272 } 273 if (lock) 274 spin_unlock(lock); 275 goto trace; 276 } 277 validate: 278 *validate = true; 279 280 if ((q->flags & TCQ_F_ONETXQUEUE) && 281 netif_xmit_frozen_or_stopped(txq)) { 282 qdisc_maybe_clear_missed(q, txq); 283 return skb; 284 } 285 286 skb = qdisc_dequeue_skb_bad_txq(q); 287 if (unlikely(skb)) { 288 if (skb == SKB_XOFF_MAGIC) 289 return NULL; 290 goto bulk; 291 } 292 skb = q->dequeue(q); 293 if (skb) { 294 bulk: 295 if (qdisc_may_bulk(q)) 296 try_bulk_dequeue_skb(q, skb, txq, packets); 297 else 298 try_bulk_dequeue_skb_slow(q, skb, packets); 299 } 300 trace: 301 trace_qdisc_dequeue(q, txq, *packets, skb); 302 return skb; 303 } 304 305 /* 306 * Transmit possibly several skbs, and handle the return status as 307 * required. Owning qdisc running bit guarantees that only one CPU 308 * can execute this function. 309 * 310 * Returns to the caller: 311 * false - hardware queue frozen backoff 312 * true - feel free to send more pkts 313 */ 314 bool sch_direct_xmit(struct sk_buff *skb, struct Qdisc *q, 315 struct net_device *dev, struct netdev_queue *txq, 316 spinlock_t *root_lock, bool validate) 317 { 318 int ret = NETDEV_TX_BUSY; 319 bool again = false; 320 321 /* And release qdisc */ 322 if (root_lock) 323 spin_unlock(root_lock); 324 325 /* Note that we validate skb (GSO, checksum, ...) outside of locks */ 326 if (validate) 327 skb = validate_xmit_skb_list(skb, dev, &again); 328 329 #ifdef CONFIG_XFRM_OFFLOAD 330 if (unlikely(again)) { 331 if (root_lock) 332 spin_lock(root_lock); 333 334 dev_requeue_skb(skb, q); 335 return false; 336 } 337 #endif 338 339 if (likely(skb)) { 340 HARD_TX_LOCK(dev, txq, smp_processor_id()); 341 if (!netif_xmit_frozen_or_stopped(txq)) 342 skb = dev_hard_start_xmit(skb, dev, txq, &ret); 343 else 344 qdisc_maybe_clear_missed(q, txq); 345 346 HARD_TX_UNLOCK(dev, txq); 347 } else { 348 if (root_lock) 349 spin_lock(root_lock); 350 return true; 351 } 352 353 if (root_lock) 354 spin_lock(root_lock); 355 356 if (!dev_xmit_complete(ret)) { 357 /* Driver returned NETDEV_TX_BUSY - requeue skb */ 358 if (unlikely(ret != NETDEV_TX_BUSY)) 359 net_warn_ratelimited("BUG %s code %d qlen %d\n", 360 dev->name, ret, q->q.qlen); 361 362 dev_requeue_skb(skb, q); 363 return false; 364 } 365 366 return true; 367 } 368 369 /* 370 * NOTE: Called under qdisc_lock(q) with locally disabled BH. 371 * 372 * running seqcount guarantees only one CPU can process 373 * this qdisc at a time. qdisc_lock(q) serializes queue accesses for 374 * this queue. 375 * 376 * netif_tx_lock serializes accesses to device driver. 377 * 378 * qdisc_lock(q) and netif_tx_lock are mutually exclusive, 379 * if one is grabbed, another must be free. 380 * 381 * Note, that this procedure can be called by a watchdog timer 382 * 383 * Returns to the caller: 384 * 0 - queue is empty or throttled. 385 * >0 - queue is not empty. 386 * 387 */ 388 static inline bool qdisc_restart(struct Qdisc *q, int *packets) 389 { 390 spinlock_t *root_lock = NULL; 391 struct netdev_queue *txq; 392 struct net_device *dev; 393 struct sk_buff *skb; 394 bool validate; 395 396 /* Dequeue packet */ 397 skb = dequeue_skb(q, &validate, packets); 398 if (unlikely(!skb)) 399 return false; 400 401 if (!(q->flags & TCQ_F_NOLOCK)) 402 root_lock = qdisc_lock(q); 403 404 dev = qdisc_dev(q); 405 txq = skb_get_tx_queue(dev, skb); 406 407 return sch_direct_xmit(skb, q, dev, txq, root_lock, validate); 408 } 409 410 void __qdisc_run(struct Qdisc *q) 411 { 412 int quota = READ_ONCE(dev_tx_weight); 413 int packets; 414 415 while (qdisc_restart(q, &packets)) { 416 quota -= packets; 417 if (quota <= 0) { 418 if (q->flags & TCQ_F_NOLOCK) 419 set_bit(__QDISC_STATE_MISSED, &q->state); 420 else 421 __netif_schedule(q); 422 423 break; 424 } 425 } 426 } 427 428 unsigned long dev_trans_start(struct net_device *dev) 429 { 430 unsigned long res = READ_ONCE(netdev_get_tx_queue(dev, 0)->trans_start); 431 unsigned long val; 432 unsigned int i; 433 434 for (i = 1; i < dev->num_tx_queues; i++) { 435 val = READ_ONCE(netdev_get_tx_queue(dev, i)->trans_start); 436 if (val && time_after(val, res)) 437 res = val; 438 } 439 440 return res; 441 } 442 EXPORT_SYMBOL(dev_trans_start); 443 444 static void netif_freeze_queues(struct net_device *dev) 445 { 446 unsigned int i; 447 int cpu; 448 449 cpu = smp_processor_id(); 450 for (i = 0; i < dev->num_tx_queues; i++) { 451 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 452 453 /* We are the only thread of execution doing a 454 * freeze, but we have to grab the _xmit_lock in 455 * order to synchronize with threads which are in 456 * the ->hard_start_xmit() handler and already 457 * checked the frozen bit. 458 */ 459 __netif_tx_lock(txq, cpu); 460 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 461 __netif_tx_unlock(txq); 462 } 463 } 464 465 void netif_tx_lock(struct net_device *dev) 466 { 467 spin_lock(&dev->tx_global_lock); 468 netif_freeze_queues(dev); 469 } 470 EXPORT_SYMBOL(netif_tx_lock); 471 472 static void netif_unfreeze_queues(struct net_device *dev) 473 { 474 unsigned int i; 475 476 for (i = 0; i < dev->num_tx_queues; i++) { 477 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 478 479 /* No need to grab the _xmit_lock here. If the 480 * queue is not stopped for another reason, we 481 * force a schedule. 482 */ 483 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 484 netif_schedule_queue(txq); 485 } 486 } 487 488 void netif_tx_unlock(struct net_device *dev) 489 { 490 netif_unfreeze_queues(dev); 491 spin_unlock(&dev->tx_global_lock); 492 } 493 EXPORT_SYMBOL(netif_tx_unlock); 494 495 static void dev_watchdog(struct timer_list *t) 496 { 497 struct net_device *dev = from_timer(dev, t, watchdog_timer); 498 bool release = true; 499 500 spin_lock(&dev->tx_global_lock); 501 if (!qdisc_tx_is_noop(dev)) { 502 if (netif_device_present(dev) && 503 netif_running(dev) && 504 netif_carrier_ok(dev)) { 505 unsigned int timedout_ms = 0; 506 unsigned int i; 507 unsigned long trans_start; 508 509 for (i = 0; i < dev->num_tx_queues; i++) { 510 struct netdev_queue *txq; 511 512 txq = netdev_get_tx_queue(dev, i); 513 trans_start = READ_ONCE(txq->trans_start); 514 if (netif_xmit_stopped(txq) && 515 time_after(jiffies, (trans_start + 516 dev->watchdog_timeo))) { 517 timedout_ms = jiffies_to_msecs(jiffies - trans_start); 518 atomic_long_inc(&txq->trans_timeout); 519 break; 520 } 521 } 522 523 if (unlikely(timedout_ms)) { 524 trace_net_dev_xmit_timeout(dev, i); 525 netdev_crit(dev, "NETDEV WATCHDOG: CPU: %d: transmit queue %u timed out %u ms\n", 526 raw_smp_processor_id(), 527 i, timedout_ms); 528 netif_freeze_queues(dev); 529 dev->netdev_ops->ndo_tx_timeout(dev, i); 530 netif_unfreeze_queues(dev); 531 } 532 if (!mod_timer(&dev->watchdog_timer, 533 round_jiffies(jiffies + 534 dev->watchdog_timeo))) 535 release = false; 536 } 537 } 538 spin_unlock(&dev->tx_global_lock); 539 540 if (release) 541 netdev_put(dev, &dev->watchdog_dev_tracker); 542 } 543 544 void __netdev_watchdog_up(struct net_device *dev) 545 { 546 if (dev->netdev_ops->ndo_tx_timeout) { 547 if (dev->watchdog_timeo <= 0) 548 dev->watchdog_timeo = 5*HZ; 549 if (!mod_timer(&dev->watchdog_timer, 550 round_jiffies(jiffies + dev->watchdog_timeo))) 551 netdev_hold(dev, &dev->watchdog_dev_tracker, 552 GFP_ATOMIC); 553 } 554 } 555 EXPORT_SYMBOL_GPL(__netdev_watchdog_up); 556 557 static void dev_watchdog_up(struct net_device *dev) 558 { 559 __netdev_watchdog_up(dev); 560 } 561 562 static void dev_watchdog_down(struct net_device *dev) 563 { 564 netif_tx_lock_bh(dev); 565 if (del_timer(&dev->watchdog_timer)) 566 netdev_put(dev, &dev->watchdog_dev_tracker); 567 netif_tx_unlock_bh(dev); 568 } 569 570 /** 571 * netif_carrier_on - set carrier 572 * @dev: network device 573 * 574 * Device has detected acquisition of carrier. 575 */ 576 void netif_carrier_on(struct net_device *dev) 577 { 578 if (test_and_clear_bit(__LINK_STATE_NOCARRIER, &dev->state)) { 579 if (dev->reg_state == NETREG_UNINITIALIZED) 580 return; 581 atomic_inc(&dev->carrier_up_count); 582 linkwatch_fire_event(dev); 583 if (netif_running(dev)) 584 __netdev_watchdog_up(dev); 585 } 586 } 587 EXPORT_SYMBOL(netif_carrier_on); 588 589 /** 590 * netif_carrier_off - clear carrier 591 * @dev: network device 592 * 593 * Device has detected loss of carrier. 594 */ 595 void netif_carrier_off(struct net_device *dev) 596 { 597 if (!test_and_set_bit(__LINK_STATE_NOCARRIER, &dev->state)) { 598 if (dev->reg_state == NETREG_UNINITIALIZED) 599 return; 600 atomic_inc(&dev->carrier_down_count); 601 linkwatch_fire_event(dev); 602 } 603 } 604 EXPORT_SYMBOL(netif_carrier_off); 605 606 /** 607 * netif_carrier_event - report carrier state event 608 * @dev: network device 609 * 610 * Device has detected a carrier event but the carrier state wasn't changed. 611 * Use in drivers when querying carrier state asynchronously, to avoid missing 612 * events (link flaps) if link recovers before it's queried. 613 */ 614 void netif_carrier_event(struct net_device *dev) 615 { 616 if (dev->reg_state == NETREG_UNINITIALIZED) 617 return; 618 atomic_inc(&dev->carrier_up_count); 619 atomic_inc(&dev->carrier_down_count); 620 linkwatch_fire_event(dev); 621 } 622 EXPORT_SYMBOL_GPL(netif_carrier_event); 623 624 /* "NOOP" scheduler: the best scheduler, recommended for all interfaces 625 under all circumstances. It is difficult to invent anything faster or 626 cheaper. 627 */ 628 629 static int noop_enqueue(struct sk_buff *skb, struct Qdisc *qdisc, 630 struct sk_buff **to_free) 631 { 632 __qdisc_drop(skb, to_free); 633 return NET_XMIT_CN; 634 } 635 636 static struct sk_buff *noop_dequeue(struct Qdisc *qdisc) 637 { 638 return NULL; 639 } 640 641 struct Qdisc_ops noop_qdisc_ops __read_mostly = { 642 .id = "noop", 643 .priv_size = 0, 644 .enqueue = noop_enqueue, 645 .dequeue = noop_dequeue, 646 .peek = noop_dequeue, 647 .owner = THIS_MODULE, 648 }; 649 650 static struct netdev_queue noop_netdev_queue = { 651 RCU_POINTER_INITIALIZER(qdisc, &noop_qdisc), 652 RCU_POINTER_INITIALIZER(qdisc_sleeping, &noop_qdisc), 653 }; 654 655 struct Qdisc noop_qdisc = { 656 .enqueue = noop_enqueue, 657 .dequeue = noop_dequeue, 658 .flags = TCQ_F_BUILTIN, 659 .ops = &noop_qdisc_ops, 660 .q.lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.q.lock), 661 .dev_queue = &noop_netdev_queue, 662 .busylock = __SPIN_LOCK_UNLOCKED(noop_qdisc.busylock), 663 .gso_skb = { 664 .next = (struct sk_buff *)&noop_qdisc.gso_skb, 665 .prev = (struct sk_buff *)&noop_qdisc.gso_skb, 666 .qlen = 0, 667 .lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.gso_skb.lock), 668 }, 669 .skb_bad_txq = { 670 .next = (struct sk_buff *)&noop_qdisc.skb_bad_txq, 671 .prev = (struct sk_buff *)&noop_qdisc.skb_bad_txq, 672 .qlen = 0, 673 .lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.skb_bad_txq.lock), 674 }, 675 }; 676 EXPORT_SYMBOL(noop_qdisc); 677 678 static int noqueue_init(struct Qdisc *qdisc, struct nlattr *opt, 679 struct netlink_ext_ack *extack) 680 { 681 /* register_qdisc() assigns a default of noop_enqueue if unset, 682 * but __dev_queue_xmit() treats noqueue only as such 683 * if this is NULL - so clear it here. */ 684 qdisc->enqueue = NULL; 685 return 0; 686 } 687 688 struct Qdisc_ops noqueue_qdisc_ops __read_mostly = { 689 .id = "noqueue", 690 .priv_size = 0, 691 .init = noqueue_init, 692 .enqueue = noop_enqueue, 693 .dequeue = noop_dequeue, 694 .peek = noop_dequeue, 695 .owner = THIS_MODULE, 696 }; 697 698 static const u8 prio2band[TC_PRIO_MAX + 1] = { 699 1, 2, 2, 2, 1, 2, 0, 0 , 1, 1, 1, 1, 1, 1, 1, 1 700 }; 701 702 /* 3-band FIFO queue: old style, but should be a bit faster than 703 generic prio+fifo combination. 704 */ 705 706 #define PFIFO_FAST_BANDS 3 707 708 /* 709 * Private data for a pfifo_fast scheduler containing: 710 * - rings for priority bands 711 */ 712 struct pfifo_fast_priv { 713 struct skb_array q[PFIFO_FAST_BANDS]; 714 }; 715 716 static inline struct skb_array *band2list(struct pfifo_fast_priv *priv, 717 int band) 718 { 719 return &priv->q[band]; 720 } 721 722 static int pfifo_fast_enqueue(struct sk_buff *skb, struct Qdisc *qdisc, 723 struct sk_buff **to_free) 724 { 725 int band = prio2band[skb->priority & TC_PRIO_MAX]; 726 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 727 struct skb_array *q = band2list(priv, band); 728 unsigned int pkt_len = qdisc_pkt_len(skb); 729 int err; 730 731 err = skb_array_produce(q, skb); 732 733 if (unlikely(err)) { 734 if (qdisc_is_percpu_stats(qdisc)) 735 return qdisc_drop_cpu(skb, qdisc, to_free); 736 else 737 return qdisc_drop(skb, qdisc, to_free); 738 } 739 740 qdisc_update_stats_at_enqueue(qdisc, pkt_len); 741 return NET_XMIT_SUCCESS; 742 } 743 744 static struct sk_buff *pfifo_fast_dequeue(struct Qdisc *qdisc) 745 { 746 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 747 struct sk_buff *skb = NULL; 748 bool need_retry = true; 749 int band; 750 751 retry: 752 for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) { 753 struct skb_array *q = band2list(priv, band); 754 755 if (__skb_array_empty(q)) 756 continue; 757 758 skb = __skb_array_consume(q); 759 } 760 if (likely(skb)) { 761 qdisc_update_stats_at_dequeue(qdisc, skb); 762 } else if (need_retry && 763 READ_ONCE(qdisc->state) & QDISC_STATE_NON_EMPTY) { 764 /* Delay clearing the STATE_MISSED here to reduce 765 * the overhead of the second spin_trylock() in 766 * qdisc_run_begin() and __netif_schedule() calling 767 * in qdisc_run_end(). 768 */ 769 clear_bit(__QDISC_STATE_MISSED, &qdisc->state); 770 clear_bit(__QDISC_STATE_DRAINING, &qdisc->state); 771 772 /* Make sure dequeuing happens after clearing 773 * STATE_MISSED. 774 */ 775 smp_mb__after_atomic(); 776 777 need_retry = false; 778 779 goto retry; 780 } 781 782 return skb; 783 } 784 785 static struct sk_buff *pfifo_fast_peek(struct Qdisc *qdisc) 786 { 787 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 788 struct sk_buff *skb = NULL; 789 int band; 790 791 for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) { 792 struct skb_array *q = band2list(priv, band); 793 794 skb = __skb_array_peek(q); 795 } 796 797 return skb; 798 } 799 800 static void pfifo_fast_reset(struct Qdisc *qdisc) 801 { 802 int i, band; 803 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 804 805 for (band = 0; band < PFIFO_FAST_BANDS; band++) { 806 struct skb_array *q = band2list(priv, band); 807 struct sk_buff *skb; 808 809 /* NULL ring is possible if destroy path is due to a failed 810 * skb_array_init() in pfifo_fast_init() case. 811 */ 812 if (!q->ring.queue) 813 continue; 814 815 while ((skb = __skb_array_consume(q)) != NULL) 816 kfree_skb(skb); 817 } 818 819 if (qdisc_is_percpu_stats(qdisc)) { 820 for_each_possible_cpu(i) { 821 struct gnet_stats_queue *q; 822 823 q = per_cpu_ptr(qdisc->cpu_qstats, i); 824 q->backlog = 0; 825 q->qlen = 0; 826 } 827 } 828 } 829 830 static int pfifo_fast_dump(struct Qdisc *qdisc, struct sk_buff *skb) 831 { 832 struct tc_prio_qopt opt = { .bands = PFIFO_FAST_BANDS }; 833 834 memcpy(&opt.priomap, prio2band, TC_PRIO_MAX + 1); 835 if (nla_put(skb, TCA_OPTIONS, sizeof(opt), &opt)) 836 goto nla_put_failure; 837 return skb->len; 838 839 nla_put_failure: 840 return -1; 841 } 842 843 static int pfifo_fast_init(struct Qdisc *qdisc, struct nlattr *opt, 844 struct netlink_ext_ack *extack) 845 { 846 unsigned int qlen = qdisc_dev(qdisc)->tx_queue_len; 847 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 848 int prio; 849 850 /* guard against zero length rings */ 851 if (!qlen) 852 return -EINVAL; 853 854 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) { 855 struct skb_array *q = band2list(priv, prio); 856 int err; 857 858 err = skb_array_init(q, qlen, GFP_KERNEL); 859 if (err) 860 return -ENOMEM; 861 } 862 863 /* Can by-pass the queue discipline */ 864 qdisc->flags |= TCQ_F_CAN_BYPASS; 865 return 0; 866 } 867 868 static void pfifo_fast_destroy(struct Qdisc *sch) 869 { 870 struct pfifo_fast_priv *priv = qdisc_priv(sch); 871 int prio; 872 873 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) { 874 struct skb_array *q = band2list(priv, prio); 875 876 /* NULL ring is possible if destroy path is due to a failed 877 * skb_array_init() in pfifo_fast_init() case. 878 */ 879 if (!q->ring.queue) 880 continue; 881 /* Destroy ring but no need to kfree_skb because a call to 882 * pfifo_fast_reset() has already done that work. 883 */ 884 ptr_ring_cleanup(&q->ring, NULL); 885 } 886 } 887 888 static int pfifo_fast_change_tx_queue_len(struct Qdisc *sch, 889 unsigned int new_len) 890 { 891 struct pfifo_fast_priv *priv = qdisc_priv(sch); 892 struct skb_array *bands[PFIFO_FAST_BANDS]; 893 int prio; 894 895 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) { 896 struct skb_array *q = band2list(priv, prio); 897 898 bands[prio] = q; 899 } 900 901 return skb_array_resize_multiple(bands, PFIFO_FAST_BANDS, new_len, 902 GFP_KERNEL); 903 } 904 905 struct Qdisc_ops pfifo_fast_ops __read_mostly = { 906 .id = "pfifo_fast", 907 .priv_size = sizeof(struct pfifo_fast_priv), 908 .enqueue = pfifo_fast_enqueue, 909 .dequeue = pfifo_fast_dequeue, 910 .peek = pfifo_fast_peek, 911 .init = pfifo_fast_init, 912 .destroy = pfifo_fast_destroy, 913 .reset = pfifo_fast_reset, 914 .dump = pfifo_fast_dump, 915 .change_tx_queue_len = pfifo_fast_change_tx_queue_len, 916 .owner = THIS_MODULE, 917 .static_flags = TCQ_F_NOLOCK | TCQ_F_CPUSTATS, 918 }; 919 EXPORT_SYMBOL(pfifo_fast_ops); 920 921 static struct lock_class_key qdisc_tx_busylock; 922 923 struct Qdisc *qdisc_alloc(struct netdev_queue *dev_queue, 924 const struct Qdisc_ops *ops, 925 struct netlink_ext_ack *extack) 926 { 927 struct Qdisc *sch; 928 unsigned int size = sizeof(*sch) + ops->priv_size; 929 int err = -ENOBUFS; 930 struct net_device *dev; 931 932 if (!dev_queue) { 933 NL_SET_ERR_MSG(extack, "No device queue given"); 934 err = -EINVAL; 935 goto errout; 936 } 937 938 dev = dev_queue->dev; 939 sch = kzalloc_node(size, GFP_KERNEL, netdev_queue_numa_node_read(dev_queue)); 940 941 if (!sch) 942 goto errout; 943 __skb_queue_head_init(&sch->gso_skb); 944 __skb_queue_head_init(&sch->skb_bad_txq); 945 gnet_stats_basic_sync_init(&sch->bstats); 946 lockdep_register_key(&sch->root_lock_key); 947 spin_lock_init(&sch->q.lock); 948 lockdep_set_class(&sch->q.lock, &sch->root_lock_key); 949 950 if (ops->static_flags & TCQ_F_CPUSTATS) { 951 sch->cpu_bstats = 952 netdev_alloc_pcpu_stats(struct gnet_stats_basic_sync); 953 if (!sch->cpu_bstats) 954 goto errout1; 955 956 sch->cpu_qstats = alloc_percpu(struct gnet_stats_queue); 957 if (!sch->cpu_qstats) { 958 free_percpu(sch->cpu_bstats); 959 goto errout1; 960 } 961 } 962 963 spin_lock_init(&sch->busylock); 964 lockdep_set_class(&sch->busylock, 965 dev->qdisc_tx_busylock ?: &qdisc_tx_busylock); 966 967 /* seqlock has the same scope of busylock, for NOLOCK qdisc */ 968 spin_lock_init(&sch->seqlock); 969 lockdep_set_class(&sch->seqlock, 970 dev->qdisc_tx_busylock ?: &qdisc_tx_busylock); 971 972 sch->ops = ops; 973 sch->flags = ops->static_flags; 974 sch->enqueue = ops->enqueue; 975 sch->dequeue = ops->dequeue; 976 sch->dev_queue = dev_queue; 977 netdev_hold(dev, &sch->dev_tracker, GFP_KERNEL); 978 refcount_set(&sch->refcnt, 1); 979 980 return sch; 981 errout1: 982 lockdep_unregister_key(&sch->root_lock_key); 983 kfree(sch); 984 errout: 985 return ERR_PTR(err); 986 } 987 988 struct Qdisc *qdisc_create_dflt(struct netdev_queue *dev_queue, 989 const struct Qdisc_ops *ops, 990 unsigned int parentid, 991 struct netlink_ext_ack *extack) 992 { 993 struct Qdisc *sch; 994 995 if (!try_module_get(ops->owner)) { 996 NL_SET_ERR_MSG(extack, "Failed to increase module reference counter"); 997 return NULL; 998 } 999 1000 sch = qdisc_alloc(dev_queue, ops, extack); 1001 if (IS_ERR(sch)) { 1002 module_put(ops->owner); 1003 return NULL; 1004 } 1005 sch->parent = parentid; 1006 1007 if (!ops->init || ops->init(sch, NULL, extack) == 0) { 1008 trace_qdisc_create(ops, dev_queue->dev, parentid); 1009 return sch; 1010 } 1011 1012 qdisc_put(sch); 1013 return NULL; 1014 } 1015 EXPORT_SYMBOL(qdisc_create_dflt); 1016 1017 /* Under qdisc_lock(qdisc) and BH! */ 1018 1019 void qdisc_reset(struct Qdisc *qdisc) 1020 { 1021 const struct Qdisc_ops *ops = qdisc->ops; 1022 1023 trace_qdisc_reset(qdisc); 1024 1025 if (ops->reset) 1026 ops->reset(qdisc); 1027 1028 __skb_queue_purge(&qdisc->gso_skb); 1029 __skb_queue_purge(&qdisc->skb_bad_txq); 1030 1031 qdisc->q.qlen = 0; 1032 qdisc->qstats.backlog = 0; 1033 } 1034 EXPORT_SYMBOL(qdisc_reset); 1035 1036 void qdisc_free(struct Qdisc *qdisc) 1037 { 1038 if (qdisc_is_percpu_stats(qdisc)) { 1039 free_percpu(qdisc->cpu_bstats); 1040 free_percpu(qdisc->cpu_qstats); 1041 } 1042 1043 kfree(qdisc); 1044 } 1045 1046 static void qdisc_free_cb(struct rcu_head *head) 1047 { 1048 struct Qdisc *q = container_of(head, struct Qdisc, rcu); 1049 1050 qdisc_free(q); 1051 } 1052 1053 static void __qdisc_destroy(struct Qdisc *qdisc) 1054 { 1055 const struct Qdisc_ops *ops = qdisc->ops; 1056 1057 #ifdef CONFIG_NET_SCHED 1058 qdisc_hash_del(qdisc); 1059 1060 qdisc_put_stab(rtnl_dereference(qdisc->stab)); 1061 #endif 1062 gen_kill_estimator(&qdisc->rate_est); 1063 1064 qdisc_reset(qdisc); 1065 1066 if (ops->destroy) 1067 ops->destroy(qdisc); 1068 1069 lockdep_unregister_key(&qdisc->root_lock_key); 1070 module_put(ops->owner); 1071 netdev_put(qdisc_dev(qdisc), &qdisc->dev_tracker); 1072 1073 trace_qdisc_destroy(qdisc); 1074 1075 call_rcu(&qdisc->rcu, qdisc_free_cb); 1076 } 1077 1078 void qdisc_destroy(struct Qdisc *qdisc) 1079 { 1080 if (qdisc->flags & TCQ_F_BUILTIN) 1081 return; 1082 1083 __qdisc_destroy(qdisc); 1084 } 1085 1086 void qdisc_put(struct Qdisc *qdisc) 1087 { 1088 if (!qdisc) 1089 return; 1090 1091 if (qdisc->flags & TCQ_F_BUILTIN || 1092 !refcount_dec_and_test(&qdisc->refcnt)) 1093 return; 1094 1095 __qdisc_destroy(qdisc); 1096 } 1097 EXPORT_SYMBOL(qdisc_put); 1098 1099 /* Version of qdisc_put() that is called with rtnl mutex unlocked. 1100 * Intended to be used as optimization, this function only takes rtnl lock if 1101 * qdisc reference counter reached zero. 1102 */ 1103 1104 void qdisc_put_unlocked(struct Qdisc *qdisc) 1105 { 1106 if (qdisc->flags & TCQ_F_BUILTIN || 1107 !refcount_dec_and_rtnl_lock(&qdisc->refcnt)) 1108 return; 1109 1110 __qdisc_destroy(qdisc); 1111 rtnl_unlock(); 1112 } 1113 EXPORT_SYMBOL(qdisc_put_unlocked); 1114 1115 /* Attach toplevel qdisc to device queue. */ 1116 struct Qdisc *dev_graft_qdisc(struct netdev_queue *dev_queue, 1117 struct Qdisc *qdisc) 1118 { 1119 struct Qdisc *oqdisc = rtnl_dereference(dev_queue->qdisc_sleeping); 1120 spinlock_t *root_lock; 1121 1122 root_lock = qdisc_lock(oqdisc); 1123 spin_lock_bh(root_lock); 1124 1125 /* ... and graft new one */ 1126 if (qdisc == NULL) 1127 qdisc = &noop_qdisc; 1128 rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc); 1129 rcu_assign_pointer(dev_queue->qdisc, &noop_qdisc); 1130 1131 spin_unlock_bh(root_lock); 1132 1133 return oqdisc; 1134 } 1135 EXPORT_SYMBOL(dev_graft_qdisc); 1136 1137 static void shutdown_scheduler_queue(struct net_device *dev, 1138 struct netdev_queue *dev_queue, 1139 void *_qdisc_default) 1140 { 1141 struct Qdisc *qdisc = rtnl_dereference(dev_queue->qdisc_sleeping); 1142 struct Qdisc *qdisc_default = _qdisc_default; 1143 1144 if (qdisc) { 1145 rcu_assign_pointer(dev_queue->qdisc, qdisc_default); 1146 rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc_default); 1147 1148 qdisc_put(qdisc); 1149 } 1150 } 1151 1152 static void attach_one_default_qdisc(struct net_device *dev, 1153 struct netdev_queue *dev_queue, 1154 void *_unused) 1155 { 1156 struct Qdisc *qdisc; 1157 const struct Qdisc_ops *ops = default_qdisc_ops; 1158 1159 if (dev->priv_flags & IFF_NO_QUEUE) 1160 ops = &noqueue_qdisc_ops; 1161 else if(dev->type == ARPHRD_CAN) 1162 ops = &pfifo_fast_ops; 1163 1164 qdisc = qdisc_create_dflt(dev_queue, ops, TC_H_ROOT, NULL); 1165 if (!qdisc) 1166 return; 1167 1168 if (!netif_is_multiqueue(dev)) 1169 qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT; 1170 rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc); 1171 } 1172 1173 static void attach_default_qdiscs(struct net_device *dev) 1174 { 1175 struct netdev_queue *txq; 1176 struct Qdisc *qdisc; 1177 1178 txq = netdev_get_tx_queue(dev, 0); 1179 1180 if (!netif_is_multiqueue(dev) || 1181 dev->priv_flags & IFF_NO_QUEUE) { 1182 netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL); 1183 qdisc = rtnl_dereference(txq->qdisc_sleeping); 1184 rcu_assign_pointer(dev->qdisc, qdisc); 1185 qdisc_refcount_inc(qdisc); 1186 } else { 1187 qdisc = qdisc_create_dflt(txq, &mq_qdisc_ops, TC_H_ROOT, NULL); 1188 if (qdisc) { 1189 rcu_assign_pointer(dev->qdisc, qdisc); 1190 qdisc->ops->attach(qdisc); 1191 } 1192 } 1193 qdisc = rtnl_dereference(dev->qdisc); 1194 1195 /* Detect default qdisc setup/init failed and fallback to "noqueue" */ 1196 if (qdisc == &noop_qdisc) { 1197 netdev_warn(dev, "default qdisc (%s) fail, fallback to %s\n", 1198 default_qdisc_ops->id, noqueue_qdisc_ops.id); 1199 netdev_for_each_tx_queue(dev, shutdown_scheduler_queue, &noop_qdisc); 1200 dev->priv_flags |= IFF_NO_QUEUE; 1201 netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL); 1202 qdisc = rtnl_dereference(txq->qdisc_sleeping); 1203 rcu_assign_pointer(dev->qdisc, qdisc); 1204 qdisc_refcount_inc(qdisc); 1205 dev->priv_flags ^= IFF_NO_QUEUE; 1206 } 1207 1208 #ifdef CONFIG_NET_SCHED 1209 if (qdisc != &noop_qdisc) 1210 qdisc_hash_add(qdisc, false); 1211 #endif 1212 } 1213 1214 static void transition_one_qdisc(struct net_device *dev, 1215 struct netdev_queue *dev_queue, 1216 void *_need_watchdog) 1217 { 1218 struct Qdisc *new_qdisc = rtnl_dereference(dev_queue->qdisc_sleeping); 1219 int *need_watchdog_p = _need_watchdog; 1220 1221 if (!(new_qdisc->flags & TCQ_F_BUILTIN)) 1222 clear_bit(__QDISC_STATE_DEACTIVATED, &new_qdisc->state); 1223 1224 rcu_assign_pointer(dev_queue->qdisc, new_qdisc); 1225 if (need_watchdog_p) { 1226 WRITE_ONCE(dev_queue->trans_start, 0); 1227 *need_watchdog_p = 1; 1228 } 1229 } 1230 1231 void dev_activate(struct net_device *dev) 1232 { 1233 int need_watchdog; 1234 1235 /* No queueing discipline is attached to device; 1236 * create default one for devices, which need queueing 1237 * and noqueue_qdisc for virtual interfaces 1238 */ 1239 1240 if (rtnl_dereference(dev->qdisc) == &noop_qdisc) 1241 attach_default_qdiscs(dev); 1242 1243 if (!netif_carrier_ok(dev)) 1244 /* Delay activation until next carrier-on event */ 1245 return; 1246 1247 need_watchdog = 0; 1248 netdev_for_each_tx_queue(dev, transition_one_qdisc, &need_watchdog); 1249 if (dev_ingress_queue(dev)) 1250 transition_one_qdisc(dev, dev_ingress_queue(dev), NULL); 1251 1252 if (need_watchdog) { 1253 netif_trans_update(dev); 1254 dev_watchdog_up(dev); 1255 } 1256 } 1257 EXPORT_SYMBOL(dev_activate); 1258 1259 static void qdisc_deactivate(struct Qdisc *qdisc) 1260 { 1261 if (qdisc->flags & TCQ_F_BUILTIN) 1262 return; 1263 1264 set_bit(__QDISC_STATE_DEACTIVATED, &qdisc->state); 1265 } 1266 1267 static void dev_deactivate_queue(struct net_device *dev, 1268 struct netdev_queue *dev_queue, 1269 void *_qdisc_default) 1270 { 1271 struct Qdisc *qdisc_default = _qdisc_default; 1272 struct Qdisc *qdisc; 1273 1274 qdisc = rtnl_dereference(dev_queue->qdisc); 1275 if (qdisc) { 1276 qdisc_deactivate(qdisc); 1277 rcu_assign_pointer(dev_queue->qdisc, qdisc_default); 1278 } 1279 } 1280 1281 static void dev_reset_queue(struct net_device *dev, 1282 struct netdev_queue *dev_queue, 1283 void *_unused) 1284 { 1285 struct Qdisc *qdisc; 1286 bool nolock; 1287 1288 qdisc = rtnl_dereference(dev_queue->qdisc_sleeping); 1289 if (!qdisc) 1290 return; 1291 1292 nolock = qdisc->flags & TCQ_F_NOLOCK; 1293 1294 if (nolock) 1295 spin_lock_bh(&qdisc->seqlock); 1296 spin_lock_bh(qdisc_lock(qdisc)); 1297 1298 qdisc_reset(qdisc); 1299 1300 spin_unlock_bh(qdisc_lock(qdisc)); 1301 if (nolock) { 1302 clear_bit(__QDISC_STATE_MISSED, &qdisc->state); 1303 clear_bit(__QDISC_STATE_DRAINING, &qdisc->state); 1304 spin_unlock_bh(&qdisc->seqlock); 1305 } 1306 } 1307 1308 static bool some_qdisc_is_busy(struct net_device *dev) 1309 { 1310 unsigned int i; 1311 1312 for (i = 0; i < dev->num_tx_queues; i++) { 1313 struct netdev_queue *dev_queue; 1314 spinlock_t *root_lock; 1315 struct Qdisc *q; 1316 int val; 1317 1318 dev_queue = netdev_get_tx_queue(dev, i); 1319 q = rtnl_dereference(dev_queue->qdisc_sleeping); 1320 1321 root_lock = qdisc_lock(q); 1322 spin_lock_bh(root_lock); 1323 1324 val = (qdisc_is_running(q) || 1325 test_bit(__QDISC_STATE_SCHED, &q->state)); 1326 1327 spin_unlock_bh(root_lock); 1328 1329 if (val) 1330 return true; 1331 } 1332 return false; 1333 } 1334 1335 /** 1336 * dev_deactivate_many - deactivate transmissions on several devices 1337 * @head: list of devices to deactivate 1338 * 1339 * This function returns only when all outstanding transmissions 1340 * have completed, unless all devices are in dismantle phase. 1341 */ 1342 void dev_deactivate_many(struct list_head *head) 1343 { 1344 struct net_device *dev; 1345 1346 list_for_each_entry(dev, head, close_list) { 1347 netdev_for_each_tx_queue(dev, dev_deactivate_queue, 1348 &noop_qdisc); 1349 if (dev_ingress_queue(dev)) 1350 dev_deactivate_queue(dev, dev_ingress_queue(dev), 1351 &noop_qdisc); 1352 1353 dev_watchdog_down(dev); 1354 } 1355 1356 /* Wait for outstanding qdisc-less dev_queue_xmit calls or 1357 * outstanding qdisc enqueuing calls. 1358 * This is avoided if all devices are in dismantle phase : 1359 * Caller will call synchronize_net() for us 1360 */ 1361 synchronize_net(); 1362 1363 list_for_each_entry(dev, head, close_list) { 1364 netdev_for_each_tx_queue(dev, dev_reset_queue, NULL); 1365 1366 if (dev_ingress_queue(dev)) 1367 dev_reset_queue(dev, dev_ingress_queue(dev), NULL); 1368 } 1369 1370 /* Wait for outstanding qdisc_run calls. */ 1371 list_for_each_entry(dev, head, close_list) { 1372 while (some_qdisc_is_busy(dev)) { 1373 /* wait_event() would avoid this sleep-loop but would 1374 * require expensive checks in the fast paths of packet 1375 * processing which isn't worth it. 1376 */ 1377 schedule_timeout_uninterruptible(1); 1378 } 1379 } 1380 } 1381 1382 void dev_deactivate(struct net_device *dev) 1383 { 1384 LIST_HEAD(single); 1385 1386 list_add(&dev->close_list, &single); 1387 dev_deactivate_many(&single); 1388 list_del(&single); 1389 } 1390 EXPORT_SYMBOL(dev_deactivate); 1391 1392 static int qdisc_change_tx_queue_len(struct net_device *dev, 1393 struct netdev_queue *dev_queue) 1394 { 1395 struct Qdisc *qdisc = rtnl_dereference(dev_queue->qdisc_sleeping); 1396 const struct Qdisc_ops *ops = qdisc->ops; 1397 1398 if (ops->change_tx_queue_len) 1399 return ops->change_tx_queue_len(qdisc, dev->tx_queue_len); 1400 return 0; 1401 } 1402 1403 void dev_qdisc_change_real_num_tx(struct net_device *dev, 1404 unsigned int new_real_tx) 1405 { 1406 struct Qdisc *qdisc = rtnl_dereference(dev->qdisc); 1407 1408 if (qdisc->ops->change_real_num_tx) 1409 qdisc->ops->change_real_num_tx(qdisc, new_real_tx); 1410 } 1411 1412 void mq_change_real_num_tx(struct Qdisc *sch, unsigned int new_real_tx) 1413 { 1414 #ifdef CONFIG_NET_SCHED 1415 struct net_device *dev = qdisc_dev(sch); 1416 struct Qdisc *qdisc; 1417 unsigned int i; 1418 1419 for (i = new_real_tx; i < dev->real_num_tx_queues; i++) { 1420 qdisc = rtnl_dereference(netdev_get_tx_queue(dev, i)->qdisc_sleeping); 1421 /* Only update the default qdiscs we created, 1422 * qdiscs with handles are always hashed. 1423 */ 1424 if (qdisc != &noop_qdisc && !qdisc->handle) 1425 qdisc_hash_del(qdisc); 1426 } 1427 for (i = dev->real_num_tx_queues; i < new_real_tx; i++) { 1428 qdisc = rtnl_dereference(netdev_get_tx_queue(dev, i)->qdisc_sleeping); 1429 if (qdisc != &noop_qdisc && !qdisc->handle) 1430 qdisc_hash_add(qdisc, false); 1431 } 1432 #endif 1433 } 1434 EXPORT_SYMBOL(mq_change_real_num_tx); 1435 1436 int dev_qdisc_change_tx_queue_len(struct net_device *dev) 1437 { 1438 bool up = dev->flags & IFF_UP; 1439 unsigned int i; 1440 int ret = 0; 1441 1442 if (up) 1443 dev_deactivate(dev); 1444 1445 for (i = 0; i < dev->num_tx_queues; i++) { 1446 ret = qdisc_change_tx_queue_len(dev, &dev->_tx[i]); 1447 1448 /* TODO: revert changes on a partial failure */ 1449 if (ret) 1450 break; 1451 } 1452 1453 if (up) 1454 dev_activate(dev); 1455 return ret; 1456 } 1457 1458 static void dev_init_scheduler_queue(struct net_device *dev, 1459 struct netdev_queue *dev_queue, 1460 void *_qdisc) 1461 { 1462 struct Qdisc *qdisc = _qdisc; 1463 1464 rcu_assign_pointer(dev_queue->qdisc, qdisc); 1465 rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc); 1466 } 1467 1468 void dev_init_scheduler(struct net_device *dev) 1469 { 1470 rcu_assign_pointer(dev->qdisc, &noop_qdisc); 1471 netdev_for_each_tx_queue(dev, dev_init_scheduler_queue, &noop_qdisc); 1472 if (dev_ingress_queue(dev)) 1473 dev_init_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc); 1474 1475 timer_setup(&dev->watchdog_timer, dev_watchdog, 0); 1476 } 1477 1478 void dev_shutdown(struct net_device *dev) 1479 { 1480 netdev_for_each_tx_queue(dev, shutdown_scheduler_queue, &noop_qdisc); 1481 if (dev_ingress_queue(dev)) 1482 shutdown_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc); 1483 qdisc_put(rtnl_dereference(dev->qdisc)); 1484 rcu_assign_pointer(dev->qdisc, &noop_qdisc); 1485 1486 WARN_ON(timer_pending(&dev->watchdog_timer)); 1487 } 1488 1489 /** 1490 * psched_ratecfg_precompute__() - Pre-compute values for reciprocal division 1491 * @rate: Rate to compute reciprocal division values of 1492 * @mult: Multiplier for reciprocal division 1493 * @shift: Shift for reciprocal division 1494 * 1495 * The multiplier and shift for reciprocal division by rate are stored 1496 * in mult and shift. 1497 * 1498 * The deal here is to replace a divide by a reciprocal one 1499 * in fast path (a reciprocal divide is a multiply and a shift) 1500 * 1501 * Normal formula would be : 1502 * time_in_ns = (NSEC_PER_SEC * len) / rate_bps 1503 * 1504 * We compute mult/shift to use instead : 1505 * time_in_ns = (len * mult) >> shift; 1506 * 1507 * We try to get the highest possible mult value for accuracy, 1508 * but have to make sure no overflows will ever happen. 1509 * 1510 * reciprocal_value() is not used here it doesn't handle 64-bit values. 1511 */ 1512 static void psched_ratecfg_precompute__(u64 rate, u32 *mult, u8 *shift) 1513 { 1514 u64 factor = NSEC_PER_SEC; 1515 1516 *mult = 1; 1517 *shift = 0; 1518 1519 if (rate <= 0) 1520 return; 1521 1522 for (;;) { 1523 *mult = div64_u64(factor, rate); 1524 if (*mult & (1U << 31) || factor & (1ULL << 63)) 1525 break; 1526 factor <<= 1; 1527 (*shift)++; 1528 } 1529 } 1530 1531 void psched_ratecfg_precompute(struct psched_ratecfg *r, 1532 const struct tc_ratespec *conf, 1533 u64 rate64) 1534 { 1535 memset(r, 0, sizeof(*r)); 1536 r->overhead = conf->overhead; 1537 r->mpu = conf->mpu; 1538 r->rate_bytes_ps = max_t(u64, conf->rate, rate64); 1539 r->linklayer = (conf->linklayer & TC_LINKLAYER_MASK); 1540 psched_ratecfg_precompute__(r->rate_bytes_ps, &r->mult, &r->shift); 1541 } 1542 EXPORT_SYMBOL(psched_ratecfg_precompute); 1543 1544 void psched_ppscfg_precompute(struct psched_pktrate *r, u64 pktrate64) 1545 { 1546 r->rate_pkts_ps = pktrate64; 1547 psched_ratecfg_precompute__(r->rate_pkts_ps, &r->mult, &r->shift); 1548 } 1549 EXPORT_SYMBOL(psched_ppscfg_precompute); 1550 1551 void mini_qdisc_pair_swap(struct mini_Qdisc_pair *miniqp, 1552 struct tcf_proto *tp_head) 1553 { 1554 /* Protected with chain0->filter_chain_lock. 1555 * Can't access chain directly because tp_head can be NULL. 1556 */ 1557 struct mini_Qdisc *miniq_old = 1558 rcu_dereference_protected(*miniqp->p_miniq, 1); 1559 struct mini_Qdisc *miniq; 1560 1561 if (!tp_head) { 1562 RCU_INIT_POINTER(*miniqp->p_miniq, NULL); 1563 } else { 1564 miniq = miniq_old != &miniqp->miniq1 ? 1565 &miniqp->miniq1 : &miniqp->miniq2; 1566 1567 /* We need to make sure that readers won't see the miniq 1568 * we are about to modify. So ensure that at least one RCU 1569 * grace period has elapsed since the miniq was made 1570 * inactive. 1571 */ 1572 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 1573 cond_synchronize_rcu(miniq->rcu_state); 1574 else if (!poll_state_synchronize_rcu(miniq->rcu_state)) 1575 synchronize_rcu_expedited(); 1576 1577 miniq->filter_list = tp_head; 1578 rcu_assign_pointer(*miniqp->p_miniq, miniq); 1579 } 1580 1581 if (miniq_old) 1582 /* This is counterpart of the rcu sync above. We need to 1583 * block potential new user of miniq_old until all readers 1584 * are not seeing it. 1585 */ 1586 miniq_old->rcu_state = start_poll_synchronize_rcu(); 1587 } 1588 EXPORT_SYMBOL(mini_qdisc_pair_swap); 1589 1590 void mini_qdisc_pair_block_init(struct mini_Qdisc_pair *miniqp, 1591 struct tcf_block *block) 1592 { 1593 miniqp->miniq1.block = block; 1594 miniqp->miniq2.block = block; 1595 } 1596 EXPORT_SYMBOL(mini_qdisc_pair_block_init); 1597 1598 void mini_qdisc_pair_init(struct mini_Qdisc_pair *miniqp, struct Qdisc *qdisc, 1599 struct mini_Qdisc __rcu **p_miniq) 1600 { 1601 miniqp->miniq1.cpu_bstats = qdisc->cpu_bstats; 1602 miniqp->miniq1.cpu_qstats = qdisc->cpu_qstats; 1603 miniqp->miniq2.cpu_bstats = qdisc->cpu_bstats; 1604 miniqp->miniq2.cpu_qstats = qdisc->cpu_qstats; 1605 miniqp->miniq1.rcu_state = get_state_synchronize_rcu(); 1606 miniqp->miniq2.rcu_state = miniqp->miniq1.rcu_state; 1607 miniqp->p_miniq = p_miniq; 1608 } 1609 EXPORT_SYMBOL(mini_qdisc_pair_init); 1610