xref: /openbmc/linux/net/sched/sch_generic.c (revision a7bdb199)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * net/sched/sch_generic.c	Generic packet scheduler routines.
4  *
5  * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
6  *              Jamal Hadi Salim, <hadi@cyberus.ca> 990601
7  *              - Ingress support
8  */
9 
10 #include <linux/bitops.h>
11 #include <linux/module.h>
12 #include <linux/types.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/string.h>
16 #include <linux/errno.h>
17 #include <linux/netdevice.h>
18 #include <linux/skbuff.h>
19 #include <linux/rtnetlink.h>
20 #include <linux/init.h>
21 #include <linux/rcupdate.h>
22 #include <linux/list.h>
23 #include <linux/slab.h>
24 #include <linux/if_vlan.h>
25 #include <linux/skb_array.h>
26 #include <linux/if_macvlan.h>
27 #include <net/sch_generic.h>
28 #include <net/pkt_sched.h>
29 #include <net/dst.h>
30 #include <trace/events/qdisc.h>
31 #include <trace/events/net.h>
32 #include <net/xfrm.h>
33 
34 /* Qdisc to use by default */
35 const struct Qdisc_ops *default_qdisc_ops = &pfifo_fast_ops;
36 EXPORT_SYMBOL(default_qdisc_ops);
37 
qdisc_maybe_clear_missed(struct Qdisc * q,const struct netdev_queue * txq)38 static void qdisc_maybe_clear_missed(struct Qdisc *q,
39 				     const struct netdev_queue *txq)
40 {
41 	clear_bit(__QDISC_STATE_MISSED, &q->state);
42 
43 	/* Make sure the below netif_xmit_frozen_or_stopped()
44 	 * checking happens after clearing STATE_MISSED.
45 	 */
46 	smp_mb__after_atomic();
47 
48 	/* Checking netif_xmit_frozen_or_stopped() again to
49 	 * make sure STATE_MISSED is set if the STATE_MISSED
50 	 * set by netif_tx_wake_queue()'s rescheduling of
51 	 * net_tx_action() is cleared by the above clear_bit().
52 	 */
53 	if (!netif_xmit_frozen_or_stopped(txq))
54 		set_bit(__QDISC_STATE_MISSED, &q->state);
55 	else
56 		set_bit(__QDISC_STATE_DRAINING, &q->state);
57 }
58 
59 /* Main transmission queue. */
60 
61 /* Modifications to data participating in scheduling must be protected with
62  * qdisc_lock(qdisc) spinlock.
63  *
64  * The idea is the following:
65  * - enqueue, dequeue are serialized via qdisc root lock
66  * - ingress filtering is also serialized via qdisc root lock
67  * - updates to tree and tree walking are only done under the rtnl mutex.
68  */
69 
70 #define SKB_XOFF_MAGIC ((struct sk_buff *)1UL)
71 
__skb_dequeue_bad_txq(struct Qdisc * q)72 static inline struct sk_buff *__skb_dequeue_bad_txq(struct Qdisc *q)
73 {
74 	const struct netdev_queue *txq = q->dev_queue;
75 	spinlock_t *lock = NULL;
76 	struct sk_buff *skb;
77 
78 	if (q->flags & TCQ_F_NOLOCK) {
79 		lock = qdisc_lock(q);
80 		spin_lock(lock);
81 	}
82 
83 	skb = skb_peek(&q->skb_bad_txq);
84 	if (skb) {
85 		/* check the reason of requeuing without tx lock first */
86 		txq = skb_get_tx_queue(txq->dev, skb);
87 		if (!netif_xmit_frozen_or_stopped(txq)) {
88 			skb = __skb_dequeue(&q->skb_bad_txq);
89 			if (qdisc_is_percpu_stats(q)) {
90 				qdisc_qstats_cpu_backlog_dec(q, skb);
91 				qdisc_qstats_cpu_qlen_dec(q);
92 			} else {
93 				qdisc_qstats_backlog_dec(q, skb);
94 				q->q.qlen--;
95 			}
96 		} else {
97 			skb = SKB_XOFF_MAGIC;
98 			qdisc_maybe_clear_missed(q, txq);
99 		}
100 	}
101 
102 	if (lock)
103 		spin_unlock(lock);
104 
105 	return skb;
106 }
107 
qdisc_dequeue_skb_bad_txq(struct Qdisc * q)108 static inline struct sk_buff *qdisc_dequeue_skb_bad_txq(struct Qdisc *q)
109 {
110 	struct sk_buff *skb = skb_peek(&q->skb_bad_txq);
111 
112 	if (unlikely(skb))
113 		skb = __skb_dequeue_bad_txq(q);
114 
115 	return skb;
116 }
117 
qdisc_enqueue_skb_bad_txq(struct Qdisc * q,struct sk_buff * skb)118 static inline void qdisc_enqueue_skb_bad_txq(struct Qdisc *q,
119 					     struct sk_buff *skb)
120 {
121 	spinlock_t *lock = NULL;
122 
123 	if (q->flags & TCQ_F_NOLOCK) {
124 		lock = qdisc_lock(q);
125 		spin_lock(lock);
126 	}
127 
128 	__skb_queue_tail(&q->skb_bad_txq, skb);
129 
130 	if (qdisc_is_percpu_stats(q)) {
131 		qdisc_qstats_cpu_backlog_inc(q, skb);
132 		qdisc_qstats_cpu_qlen_inc(q);
133 	} else {
134 		qdisc_qstats_backlog_inc(q, skb);
135 		q->q.qlen++;
136 	}
137 
138 	if (lock)
139 		spin_unlock(lock);
140 }
141 
dev_requeue_skb(struct sk_buff * skb,struct Qdisc * q)142 static inline void dev_requeue_skb(struct sk_buff *skb, struct Qdisc *q)
143 {
144 	spinlock_t *lock = NULL;
145 
146 	if (q->flags & TCQ_F_NOLOCK) {
147 		lock = qdisc_lock(q);
148 		spin_lock(lock);
149 	}
150 
151 	while (skb) {
152 		struct sk_buff *next = skb->next;
153 
154 		__skb_queue_tail(&q->gso_skb, skb);
155 
156 		/* it's still part of the queue */
157 		if (qdisc_is_percpu_stats(q)) {
158 			qdisc_qstats_cpu_requeues_inc(q);
159 			qdisc_qstats_cpu_backlog_inc(q, skb);
160 			qdisc_qstats_cpu_qlen_inc(q);
161 		} else {
162 			q->qstats.requeues++;
163 			qdisc_qstats_backlog_inc(q, skb);
164 			q->q.qlen++;
165 		}
166 
167 		skb = next;
168 	}
169 
170 	if (lock) {
171 		spin_unlock(lock);
172 		set_bit(__QDISC_STATE_MISSED, &q->state);
173 	} else {
174 		__netif_schedule(q);
175 	}
176 }
177 
try_bulk_dequeue_skb(struct Qdisc * q,struct sk_buff * skb,const struct netdev_queue * txq,int * packets)178 static void try_bulk_dequeue_skb(struct Qdisc *q,
179 				 struct sk_buff *skb,
180 				 const struct netdev_queue *txq,
181 				 int *packets)
182 {
183 	int bytelimit = qdisc_avail_bulklimit(txq) - skb->len;
184 
185 	while (bytelimit > 0) {
186 		struct sk_buff *nskb = q->dequeue(q);
187 
188 		if (!nskb)
189 			break;
190 
191 		bytelimit -= nskb->len; /* covers GSO len */
192 		skb->next = nskb;
193 		skb = nskb;
194 		(*packets)++; /* GSO counts as one pkt */
195 	}
196 	skb_mark_not_on_list(skb);
197 }
198 
199 /* This variant of try_bulk_dequeue_skb() makes sure
200  * all skbs in the chain are for the same txq
201  */
try_bulk_dequeue_skb_slow(struct Qdisc * q,struct sk_buff * skb,int * packets)202 static void try_bulk_dequeue_skb_slow(struct Qdisc *q,
203 				      struct sk_buff *skb,
204 				      int *packets)
205 {
206 	int mapping = skb_get_queue_mapping(skb);
207 	struct sk_buff *nskb;
208 	int cnt = 0;
209 
210 	do {
211 		nskb = q->dequeue(q);
212 		if (!nskb)
213 			break;
214 		if (unlikely(skb_get_queue_mapping(nskb) != mapping)) {
215 			qdisc_enqueue_skb_bad_txq(q, nskb);
216 			break;
217 		}
218 		skb->next = nskb;
219 		skb = nskb;
220 	} while (++cnt < 8);
221 	(*packets) += cnt;
222 	skb_mark_not_on_list(skb);
223 }
224 
225 /* Note that dequeue_skb can possibly return a SKB list (via skb->next).
226  * A requeued skb (via q->gso_skb) can also be a SKB list.
227  */
dequeue_skb(struct Qdisc * q,bool * validate,int * packets)228 static struct sk_buff *dequeue_skb(struct Qdisc *q, bool *validate,
229 				   int *packets)
230 {
231 	const struct netdev_queue *txq = q->dev_queue;
232 	struct sk_buff *skb = NULL;
233 
234 	*packets = 1;
235 	if (unlikely(!skb_queue_empty(&q->gso_skb))) {
236 		spinlock_t *lock = NULL;
237 
238 		if (q->flags & TCQ_F_NOLOCK) {
239 			lock = qdisc_lock(q);
240 			spin_lock(lock);
241 		}
242 
243 		skb = skb_peek(&q->gso_skb);
244 
245 		/* skb may be null if another cpu pulls gso_skb off in between
246 		 * empty check and lock.
247 		 */
248 		if (!skb) {
249 			if (lock)
250 				spin_unlock(lock);
251 			goto validate;
252 		}
253 
254 		/* skb in gso_skb were already validated */
255 		*validate = false;
256 		if (xfrm_offload(skb))
257 			*validate = true;
258 		/* check the reason of requeuing without tx lock first */
259 		txq = skb_get_tx_queue(txq->dev, skb);
260 		if (!netif_xmit_frozen_or_stopped(txq)) {
261 			skb = __skb_dequeue(&q->gso_skb);
262 			if (qdisc_is_percpu_stats(q)) {
263 				qdisc_qstats_cpu_backlog_dec(q, skb);
264 				qdisc_qstats_cpu_qlen_dec(q);
265 			} else {
266 				qdisc_qstats_backlog_dec(q, skb);
267 				q->q.qlen--;
268 			}
269 		} else {
270 			skb = NULL;
271 			qdisc_maybe_clear_missed(q, txq);
272 		}
273 		if (lock)
274 			spin_unlock(lock);
275 		goto trace;
276 	}
277 validate:
278 	*validate = true;
279 
280 	if ((q->flags & TCQ_F_ONETXQUEUE) &&
281 	    netif_xmit_frozen_or_stopped(txq)) {
282 		qdisc_maybe_clear_missed(q, txq);
283 		return skb;
284 	}
285 
286 	skb = qdisc_dequeue_skb_bad_txq(q);
287 	if (unlikely(skb)) {
288 		if (skb == SKB_XOFF_MAGIC)
289 			return NULL;
290 		goto bulk;
291 	}
292 	skb = q->dequeue(q);
293 	if (skb) {
294 bulk:
295 		if (qdisc_may_bulk(q))
296 			try_bulk_dequeue_skb(q, skb, txq, packets);
297 		else
298 			try_bulk_dequeue_skb_slow(q, skb, packets);
299 	}
300 trace:
301 	trace_qdisc_dequeue(q, txq, *packets, skb);
302 	return skb;
303 }
304 
305 /*
306  * Transmit possibly several skbs, and handle the return status as
307  * required. Owning qdisc running bit guarantees that only one CPU
308  * can execute this function.
309  *
310  * Returns to the caller:
311  *				false  - hardware queue frozen backoff
312  *				true   - feel free to send more pkts
313  */
sch_direct_xmit(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq,spinlock_t * root_lock,bool validate)314 bool sch_direct_xmit(struct sk_buff *skb, struct Qdisc *q,
315 		     struct net_device *dev, struct netdev_queue *txq,
316 		     spinlock_t *root_lock, bool validate)
317 {
318 	int ret = NETDEV_TX_BUSY;
319 	bool again = false;
320 
321 	/* And release qdisc */
322 	if (root_lock)
323 		spin_unlock(root_lock);
324 
325 	/* Note that we validate skb (GSO, checksum, ...) outside of locks */
326 	if (validate)
327 		skb = validate_xmit_skb_list(skb, dev, &again);
328 
329 #ifdef CONFIG_XFRM_OFFLOAD
330 	if (unlikely(again)) {
331 		if (root_lock)
332 			spin_lock(root_lock);
333 
334 		dev_requeue_skb(skb, q);
335 		return false;
336 	}
337 #endif
338 
339 	if (likely(skb)) {
340 		HARD_TX_LOCK(dev, txq, smp_processor_id());
341 		if (!netif_xmit_frozen_or_stopped(txq))
342 			skb = dev_hard_start_xmit(skb, dev, txq, &ret);
343 		else
344 			qdisc_maybe_clear_missed(q, txq);
345 
346 		HARD_TX_UNLOCK(dev, txq);
347 	} else {
348 		if (root_lock)
349 			spin_lock(root_lock);
350 		return true;
351 	}
352 
353 	if (root_lock)
354 		spin_lock(root_lock);
355 
356 	if (!dev_xmit_complete(ret)) {
357 		/* Driver returned NETDEV_TX_BUSY - requeue skb */
358 		if (unlikely(ret != NETDEV_TX_BUSY))
359 			net_warn_ratelimited("BUG %s code %d qlen %d\n",
360 					     dev->name, ret, q->q.qlen);
361 
362 		dev_requeue_skb(skb, q);
363 		return false;
364 	}
365 
366 	return true;
367 }
368 
369 /*
370  * NOTE: Called under qdisc_lock(q) with locally disabled BH.
371  *
372  * running seqcount guarantees only one CPU can process
373  * this qdisc at a time. qdisc_lock(q) serializes queue accesses for
374  * this queue.
375  *
376  *  netif_tx_lock serializes accesses to device driver.
377  *
378  *  qdisc_lock(q) and netif_tx_lock are mutually exclusive,
379  *  if one is grabbed, another must be free.
380  *
381  * Note, that this procedure can be called by a watchdog timer
382  *
383  * Returns to the caller:
384  *				0  - queue is empty or throttled.
385  *				>0 - queue is not empty.
386  *
387  */
qdisc_restart(struct Qdisc * q,int * packets)388 static inline bool qdisc_restart(struct Qdisc *q, int *packets)
389 {
390 	spinlock_t *root_lock = NULL;
391 	struct netdev_queue *txq;
392 	struct net_device *dev;
393 	struct sk_buff *skb;
394 	bool validate;
395 
396 	/* Dequeue packet */
397 	skb = dequeue_skb(q, &validate, packets);
398 	if (unlikely(!skb))
399 		return false;
400 
401 	if (!(q->flags & TCQ_F_NOLOCK))
402 		root_lock = qdisc_lock(q);
403 
404 	dev = qdisc_dev(q);
405 	txq = skb_get_tx_queue(dev, skb);
406 
407 	return sch_direct_xmit(skb, q, dev, txq, root_lock, validate);
408 }
409 
__qdisc_run(struct Qdisc * q)410 void __qdisc_run(struct Qdisc *q)
411 {
412 	int quota = READ_ONCE(dev_tx_weight);
413 	int packets;
414 
415 	while (qdisc_restart(q, &packets)) {
416 		quota -= packets;
417 		if (quota <= 0) {
418 			if (q->flags & TCQ_F_NOLOCK)
419 				set_bit(__QDISC_STATE_MISSED, &q->state);
420 			else
421 				__netif_schedule(q);
422 
423 			break;
424 		}
425 	}
426 }
427 
dev_trans_start(struct net_device * dev)428 unsigned long dev_trans_start(struct net_device *dev)
429 {
430 	unsigned long res = READ_ONCE(netdev_get_tx_queue(dev, 0)->trans_start);
431 	unsigned long val;
432 	unsigned int i;
433 
434 	for (i = 1; i < dev->num_tx_queues; i++) {
435 		val = READ_ONCE(netdev_get_tx_queue(dev, i)->trans_start);
436 		if (val && time_after(val, res))
437 			res = val;
438 	}
439 
440 	return res;
441 }
442 EXPORT_SYMBOL(dev_trans_start);
443 
netif_freeze_queues(struct net_device * dev)444 static void netif_freeze_queues(struct net_device *dev)
445 {
446 	unsigned int i;
447 	int cpu;
448 
449 	cpu = smp_processor_id();
450 	for (i = 0; i < dev->num_tx_queues; i++) {
451 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
452 
453 		/* We are the only thread of execution doing a
454 		 * freeze, but we have to grab the _xmit_lock in
455 		 * order to synchronize with threads which are in
456 		 * the ->hard_start_xmit() handler and already
457 		 * checked the frozen bit.
458 		 */
459 		__netif_tx_lock(txq, cpu);
460 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
461 		__netif_tx_unlock(txq);
462 	}
463 }
464 
netif_tx_lock(struct net_device * dev)465 void netif_tx_lock(struct net_device *dev)
466 {
467 	spin_lock(&dev->tx_global_lock);
468 	netif_freeze_queues(dev);
469 }
470 EXPORT_SYMBOL(netif_tx_lock);
471 
netif_unfreeze_queues(struct net_device * dev)472 static void netif_unfreeze_queues(struct net_device *dev)
473 {
474 	unsigned int i;
475 
476 	for (i = 0; i < dev->num_tx_queues; i++) {
477 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
478 
479 		/* No need to grab the _xmit_lock here.  If the
480 		 * queue is not stopped for another reason, we
481 		 * force a schedule.
482 		 */
483 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
484 		netif_schedule_queue(txq);
485 	}
486 }
487 
netif_tx_unlock(struct net_device * dev)488 void netif_tx_unlock(struct net_device *dev)
489 {
490 	netif_unfreeze_queues(dev);
491 	spin_unlock(&dev->tx_global_lock);
492 }
493 EXPORT_SYMBOL(netif_tx_unlock);
494 
dev_watchdog(struct timer_list * t)495 static void dev_watchdog(struct timer_list *t)
496 {
497 	struct net_device *dev = from_timer(dev, t, watchdog_timer);
498 	bool release = true;
499 
500 	spin_lock(&dev->tx_global_lock);
501 	if (!qdisc_tx_is_noop(dev)) {
502 		if (netif_device_present(dev) &&
503 		    netif_running(dev) &&
504 		    netif_carrier_ok(dev)) {
505 			unsigned int timedout_ms = 0;
506 			unsigned int i;
507 			unsigned long trans_start;
508 			unsigned long oldest_start = jiffies;
509 
510 			for (i = 0; i < dev->num_tx_queues; i++) {
511 				struct netdev_queue *txq;
512 
513 				txq = netdev_get_tx_queue(dev, i);
514 				if (!netif_xmit_stopped(txq))
515 					continue;
516 
517 				/* Paired with WRITE_ONCE() + smp_mb...() in
518 				 * netdev_tx_sent_queue() and netif_tx_stop_queue().
519 				 */
520 				smp_mb();
521 				trans_start = READ_ONCE(txq->trans_start);
522 
523 				if (time_after(jiffies, trans_start + dev->watchdog_timeo)) {
524 					timedout_ms = jiffies_to_msecs(jiffies - trans_start);
525 					atomic_long_inc(&txq->trans_timeout);
526 					break;
527 				}
528 				if (time_after(oldest_start, trans_start))
529 					oldest_start = trans_start;
530 			}
531 
532 			if (unlikely(timedout_ms)) {
533 				trace_net_dev_xmit_timeout(dev, i);
534 				netdev_crit(dev, "NETDEV WATCHDOG: CPU: %d: transmit queue %u timed out %u ms\n",
535 					    raw_smp_processor_id(),
536 					    i, timedout_ms);
537 				netif_freeze_queues(dev);
538 				dev->netdev_ops->ndo_tx_timeout(dev, i);
539 				netif_unfreeze_queues(dev);
540 			}
541 			if (!mod_timer(&dev->watchdog_timer,
542 				       round_jiffies(oldest_start +
543 						     dev->watchdog_timeo)))
544 				release = false;
545 		}
546 	}
547 	spin_unlock(&dev->tx_global_lock);
548 
549 	if (release)
550 		netdev_put(dev, &dev->watchdog_dev_tracker);
551 }
552 
__netdev_watchdog_up(struct net_device * dev)553 void __netdev_watchdog_up(struct net_device *dev)
554 {
555 	if (dev->netdev_ops->ndo_tx_timeout) {
556 		if (dev->watchdog_timeo <= 0)
557 			dev->watchdog_timeo = 5*HZ;
558 		if (!mod_timer(&dev->watchdog_timer,
559 			       round_jiffies(jiffies + dev->watchdog_timeo)))
560 			netdev_hold(dev, &dev->watchdog_dev_tracker,
561 				    GFP_ATOMIC);
562 	}
563 }
564 EXPORT_SYMBOL_GPL(__netdev_watchdog_up);
565 
dev_watchdog_up(struct net_device * dev)566 static void dev_watchdog_up(struct net_device *dev)
567 {
568 	__netdev_watchdog_up(dev);
569 }
570 
dev_watchdog_down(struct net_device * dev)571 static void dev_watchdog_down(struct net_device *dev)
572 {
573 	netif_tx_lock_bh(dev);
574 	if (del_timer(&dev->watchdog_timer))
575 		netdev_put(dev, &dev->watchdog_dev_tracker);
576 	netif_tx_unlock_bh(dev);
577 }
578 
579 /**
580  *	netif_carrier_on - set carrier
581  *	@dev: network device
582  *
583  * Device has detected acquisition of carrier.
584  */
netif_carrier_on(struct net_device * dev)585 void netif_carrier_on(struct net_device *dev)
586 {
587 	if (test_and_clear_bit(__LINK_STATE_NOCARRIER, &dev->state)) {
588 		if (dev->reg_state == NETREG_UNINITIALIZED)
589 			return;
590 		atomic_inc(&dev->carrier_up_count);
591 		linkwatch_fire_event(dev);
592 		if (netif_running(dev))
593 			__netdev_watchdog_up(dev);
594 	}
595 }
596 EXPORT_SYMBOL(netif_carrier_on);
597 
598 /**
599  *	netif_carrier_off - clear carrier
600  *	@dev: network device
601  *
602  * Device has detected loss of carrier.
603  */
netif_carrier_off(struct net_device * dev)604 void netif_carrier_off(struct net_device *dev)
605 {
606 	if (!test_and_set_bit(__LINK_STATE_NOCARRIER, &dev->state)) {
607 		if (dev->reg_state == NETREG_UNINITIALIZED)
608 			return;
609 		atomic_inc(&dev->carrier_down_count);
610 		linkwatch_fire_event(dev);
611 	}
612 }
613 EXPORT_SYMBOL(netif_carrier_off);
614 
615 /**
616  *	netif_carrier_event - report carrier state event
617  *	@dev: network device
618  *
619  * Device has detected a carrier event but the carrier state wasn't changed.
620  * Use in drivers when querying carrier state asynchronously, to avoid missing
621  * events (link flaps) if link recovers before it's queried.
622  */
netif_carrier_event(struct net_device * dev)623 void netif_carrier_event(struct net_device *dev)
624 {
625 	if (dev->reg_state == NETREG_UNINITIALIZED)
626 		return;
627 	atomic_inc(&dev->carrier_up_count);
628 	atomic_inc(&dev->carrier_down_count);
629 	linkwatch_fire_event(dev);
630 }
631 EXPORT_SYMBOL_GPL(netif_carrier_event);
632 
633 /* "NOOP" scheduler: the best scheduler, recommended for all interfaces
634    under all circumstances. It is difficult to invent anything faster or
635    cheaper.
636  */
637 
noop_enqueue(struct sk_buff * skb,struct Qdisc * qdisc,struct sk_buff ** to_free)638 static int noop_enqueue(struct sk_buff *skb, struct Qdisc *qdisc,
639 			struct sk_buff **to_free)
640 {
641 	__qdisc_drop(skb, to_free);
642 	return NET_XMIT_CN;
643 }
644 
noop_dequeue(struct Qdisc * qdisc)645 static struct sk_buff *noop_dequeue(struct Qdisc *qdisc)
646 {
647 	return NULL;
648 }
649 
650 struct Qdisc_ops noop_qdisc_ops __read_mostly = {
651 	.id		=	"noop",
652 	.priv_size	=	0,
653 	.enqueue	=	noop_enqueue,
654 	.dequeue	=	noop_dequeue,
655 	.peek		=	noop_dequeue,
656 	.owner		=	THIS_MODULE,
657 };
658 
659 static struct netdev_queue noop_netdev_queue = {
660 	RCU_POINTER_INITIALIZER(qdisc, &noop_qdisc),
661 	RCU_POINTER_INITIALIZER(qdisc_sleeping, &noop_qdisc),
662 };
663 
664 struct Qdisc noop_qdisc = {
665 	.enqueue	=	noop_enqueue,
666 	.dequeue	=	noop_dequeue,
667 	.flags		=	TCQ_F_BUILTIN,
668 	.ops		=	&noop_qdisc_ops,
669 	.q.lock		=	__SPIN_LOCK_UNLOCKED(noop_qdisc.q.lock),
670 	.dev_queue	=	&noop_netdev_queue,
671 	.busylock	=	__SPIN_LOCK_UNLOCKED(noop_qdisc.busylock),
672 	.gso_skb = {
673 		.next = (struct sk_buff *)&noop_qdisc.gso_skb,
674 		.prev = (struct sk_buff *)&noop_qdisc.gso_skb,
675 		.qlen = 0,
676 		.lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.gso_skb.lock),
677 	},
678 	.skb_bad_txq = {
679 		.next = (struct sk_buff *)&noop_qdisc.skb_bad_txq,
680 		.prev = (struct sk_buff *)&noop_qdisc.skb_bad_txq,
681 		.qlen = 0,
682 		.lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.skb_bad_txq.lock),
683 	},
684 };
685 EXPORT_SYMBOL(noop_qdisc);
686 
noqueue_init(struct Qdisc * qdisc,struct nlattr * opt,struct netlink_ext_ack * extack)687 static int noqueue_init(struct Qdisc *qdisc, struct nlattr *opt,
688 			struct netlink_ext_ack *extack)
689 {
690 	/* register_qdisc() assigns a default of noop_enqueue if unset,
691 	 * but __dev_queue_xmit() treats noqueue only as such
692 	 * if this is NULL - so clear it here. */
693 	qdisc->enqueue = NULL;
694 	return 0;
695 }
696 
697 struct Qdisc_ops noqueue_qdisc_ops __read_mostly = {
698 	.id		=	"noqueue",
699 	.priv_size	=	0,
700 	.init		=	noqueue_init,
701 	.enqueue	=	noop_enqueue,
702 	.dequeue	=	noop_dequeue,
703 	.peek		=	noop_dequeue,
704 	.owner		=	THIS_MODULE,
705 };
706 
707 static const u8 prio2band[TC_PRIO_MAX + 1] = {
708 	1, 2, 2, 2, 1, 2, 0, 0 , 1, 1, 1, 1, 1, 1, 1, 1
709 };
710 
711 /* 3-band FIFO queue: old style, but should be a bit faster than
712    generic prio+fifo combination.
713  */
714 
715 #define PFIFO_FAST_BANDS 3
716 
717 /*
718  * Private data for a pfifo_fast scheduler containing:
719  *	- rings for priority bands
720  */
721 struct pfifo_fast_priv {
722 	struct skb_array q[PFIFO_FAST_BANDS];
723 };
724 
band2list(struct pfifo_fast_priv * priv,int band)725 static inline struct skb_array *band2list(struct pfifo_fast_priv *priv,
726 					  int band)
727 {
728 	return &priv->q[band];
729 }
730 
pfifo_fast_enqueue(struct sk_buff * skb,struct Qdisc * qdisc,struct sk_buff ** to_free)731 static int pfifo_fast_enqueue(struct sk_buff *skb, struct Qdisc *qdisc,
732 			      struct sk_buff **to_free)
733 {
734 	int band = prio2band[skb->priority & TC_PRIO_MAX];
735 	struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
736 	struct skb_array *q = band2list(priv, band);
737 	unsigned int pkt_len = qdisc_pkt_len(skb);
738 	int err;
739 
740 	err = skb_array_produce(q, skb);
741 
742 	if (unlikely(err)) {
743 		if (qdisc_is_percpu_stats(qdisc))
744 			return qdisc_drop_cpu(skb, qdisc, to_free);
745 		else
746 			return qdisc_drop(skb, qdisc, to_free);
747 	}
748 
749 	qdisc_update_stats_at_enqueue(qdisc, pkt_len);
750 	return NET_XMIT_SUCCESS;
751 }
752 
pfifo_fast_dequeue(struct Qdisc * qdisc)753 static struct sk_buff *pfifo_fast_dequeue(struct Qdisc *qdisc)
754 {
755 	struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
756 	struct sk_buff *skb = NULL;
757 	bool need_retry = true;
758 	int band;
759 
760 retry:
761 	for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) {
762 		struct skb_array *q = band2list(priv, band);
763 
764 		if (__skb_array_empty(q))
765 			continue;
766 
767 		skb = __skb_array_consume(q);
768 	}
769 	if (likely(skb)) {
770 		qdisc_update_stats_at_dequeue(qdisc, skb);
771 	} else if (need_retry &&
772 		   READ_ONCE(qdisc->state) & QDISC_STATE_NON_EMPTY) {
773 		/* Delay clearing the STATE_MISSED here to reduce
774 		 * the overhead of the second spin_trylock() in
775 		 * qdisc_run_begin() and __netif_schedule() calling
776 		 * in qdisc_run_end().
777 		 */
778 		clear_bit(__QDISC_STATE_MISSED, &qdisc->state);
779 		clear_bit(__QDISC_STATE_DRAINING, &qdisc->state);
780 
781 		/* Make sure dequeuing happens after clearing
782 		 * STATE_MISSED.
783 		 */
784 		smp_mb__after_atomic();
785 
786 		need_retry = false;
787 
788 		goto retry;
789 	}
790 
791 	return skb;
792 }
793 
pfifo_fast_peek(struct Qdisc * qdisc)794 static struct sk_buff *pfifo_fast_peek(struct Qdisc *qdisc)
795 {
796 	struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
797 	struct sk_buff *skb = NULL;
798 	int band;
799 
800 	for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) {
801 		struct skb_array *q = band2list(priv, band);
802 
803 		skb = __skb_array_peek(q);
804 	}
805 
806 	return skb;
807 }
808 
pfifo_fast_reset(struct Qdisc * qdisc)809 static void pfifo_fast_reset(struct Qdisc *qdisc)
810 {
811 	int i, band;
812 	struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
813 
814 	for (band = 0; band < PFIFO_FAST_BANDS; band++) {
815 		struct skb_array *q = band2list(priv, band);
816 		struct sk_buff *skb;
817 
818 		/* NULL ring is possible if destroy path is due to a failed
819 		 * skb_array_init() in pfifo_fast_init() case.
820 		 */
821 		if (!q->ring.queue)
822 			continue;
823 
824 		while ((skb = __skb_array_consume(q)) != NULL)
825 			kfree_skb(skb);
826 	}
827 
828 	if (qdisc_is_percpu_stats(qdisc)) {
829 		for_each_possible_cpu(i) {
830 			struct gnet_stats_queue *q;
831 
832 			q = per_cpu_ptr(qdisc->cpu_qstats, i);
833 			q->backlog = 0;
834 			q->qlen = 0;
835 		}
836 	}
837 }
838 
pfifo_fast_dump(struct Qdisc * qdisc,struct sk_buff * skb)839 static int pfifo_fast_dump(struct Qdisc *qdisc, struct sk_buff *skb)
840 {
841 	struct tc_prio_qopt opt = { .bands = PFIFO_FAST_BANDS };
842 
843 	memcpy(&opt.priomap, prio2band, TC_PRIO_MAX + 1);
844 	if (nla_put(skb, TCA_OPTIONS, sizeof(opt), &opt))
845 		goto nla_put_failure;
846 	return skb->len;
847 
848 nla_put_failure:
849 	return -1;
850 }
851 
pfifo_fast_init(struct Qdisc * qdisc,struct nlattr * opt,struct netlink_ext_ack * extack)852 static int pfifo_fast_init(struct Qdisc *qdisc, struct nlattr *opt,
853 			   struct netlink_ext_ack *extack)
854 {
855 	unsigned int qlen = qdisc_dev(qdisc)->tx_queue_len;
856 	struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
857 	int prio;
858 
859 	/* guard against zero length rings */
860 	if (!qlen)
861 		return -EINVAL;
862 
863 	for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) {
864 		struct skb_array *q = band2list(priv, prio);
865 		int err;
866 
867 		err = skb_array_init(q, qlen, GFP_KERNEL);
868 		if (err)
869 			return -ENOMEM;
870 	}
871 
872 	/* Can by-pass the queue discipline */
873 	qdisc->flags |= TCQ_F_CAN_BYPASS;
874 	return 0;
875 }
876 
pfifo_fast_destroy(struct Qdisc * sch)877 static void pfifo_fast_destroy(struct Qdisc *sch)
878 {
879 	struct pfifo_fast_priv *priv = qdisc_priv(sch);
880 	int prio;
881 
882 	for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) {
883 		struct skb_array *q = band2list(priv, prio);
884 
885 		/* NULL ring is possible if destroy path is due to a failed
886 		 * skb_array_init() in pfifo_fast_init() case.
887 		 */
888 		if (!q->ring.queue)
889 			continue;
890 		/* Destroy ring but no need to kfree_skb because a call to
891 		 * pfifo_fast_reset() has already done that work.
892 		 */
893 		ptr_ring_cleanup(&q->ring, NULL);
894 	}
895 }
896 
pfifo_fast_change_tx_queue_len(struct Qdisc * sch,unsigned int new_len)897 static int pfifo_fast_change_tx_queue_len(struct Qdisc *sch,
898 					  unsigned int new_len)
899 {
900 	struct pfifo_fast_priv *priv = qdisc_priv(sch);
901 	struct skb_array *bands[PFIFO_FAST_BANDS];
902 	int prio;
903 
904 	for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) {
905 		struct skb_array *q = band2list(priv, prio);
906 
907 		bands[prio] = q;
908 	}
909 
910 	return skb_array_resize_multiple(bands, PFIFO_FAST_BANDS, new_len,
911 					 GFP_KERNEL);
912 }
913 
914 struct Qdisc_ops pfifo_fast_ops __read_mostly = {
915 	.id		=	"pfifo_fast",
916 	.priv_size	=	sizeof(struct pfifo_fast_priv),
917 	.enqueue	=	pfifo_fast_enqueue,
918 	.dequeue	=	pfifo_fast_dequeue,
919 	.peek		=	pfifo_fast_peek,
920 	.init		=	pfifo_fast_init,
921 	.destroy	=	pfifo_fast_destroy,
922 	.reset		=	pfifo_fast_reset,
923 	.dump		=	pfifo_fast_dump,
924 	.change_tx_queue_len =  pfifo_fast_change_tx_queue_len,
925 	.owner		=	THIS_MODULE,
926 	.static_flags	=	TCQ_F_NOLOCK | TCQ_F_CPUSTATS,
927 };
928 EXPORT_SYMBOL(pfifo_fast_ops);
929 
930 static struct lock_class_key qdisc_tx_busylock;
931 
qdisc_alloc(struct netdev_queue * dev_queue,const struct Qdisc_ops * ops,struct netlink_ext_ack * extack)932 struct Qdisc *qdisc_alloc(struct netdev_queue *dev_queue,
933 			  const struct Qdisc_ops *ops,
934 			  struct netlink_ext_ack *extack)
935 {
936 	struct Qdisc *sch;
937 	unsigned int size = sizeof(*sch) + ops->priv_size;
938 	int err = -ENOBUFS;
939 	struct net_device *dev;
940 
941 	if (!dev_queue) {
942 		NL_SET_ERR_MSG(extack, "No device queue given");
943 		err = -EINVAL;
944 		goto errout;
945 	}
946 
947 	dev = dev_queue->dev;
948 	sch = kzalloc_node(size, GFP_KERNEL, netdev_queue_numa_node_read(dev_queue));
949 
950 	if (!sch)
951 		goto errout;
952 	__skb_queue_head_init(&sch->gso_skb);
953 	__skb_queue_head_init(&sch->skb_bad_txq);
954 	gnet_stats_basic_sync_init(&sch->bstats);
955 	lockdep_register_key(&sch->root_lock_key);
956 	spin_lock_init(&sch->q.lock);
957 	lockdep_set_class(&sch->q.lock, &sch->root_lock_key);
958 
959 	if (ops->static_flags & TCQ_F_CPUSTATS) {
960 		sch->cpu_bstats =
961 			netdev_alloc_pcpu_stats(struct gnet_stats_basic_sync);
962 		if (!sch->cpu_bstats)
963 			goto errout1;
964 
965 		sch->cpu_qstats = alloc_percpu(struct gnet_stats_queue);
966 		if (!sch->cpu_qstats) {
967 			free_percpu(sch->cpu_bstats);
968 			goto errout1;
969 		}
970 	}
971 
972 	spin_lock_init(&sch->busylock);
973 	lockdep_set_class(&sch->busylock,
974 			  dev->qdisc_tx_busylock ?: &qdisc_tx_busylock);
975 
976 	/* seqlock has the same scope of busylock, for NOLOCK qdisc */
977 	spin_lock_init(&sch->seqlock);
978 	lockdep_set_class(&sch->seqlock,
979 			  dev->qdisc_tx_busylock ?: &qdisc_tx_busylock);
980 
981 	sch->ops = ops;
982 	sch->flags = ops->static_flags;
983 	sch->enqueue = ops->enqueue;
984 	sch->dequeue = ops->dequeue;
985 	sch->dev_queue = dev_queue;
986 	netdev_hold(dev, &sch->dev_tracker, GFP_KERNEL);
987 	refcount_set(&sch->refcnt, 1);
988 
989 	return sch;
990 errout1:
991 	lockdep_unregister_key(&sch->root_lock_key);
992 	kfree(sch);
993 errout:
994 	return ERR_PTR(err);
995 }
996 
qdisc_create_dflt(struct netdev_queue * dev_queue,const struct Qdisc_ops * ops,unsigned int parentid,struct netlink_ext_ack * extack)997 struct Qdisc *qdisc_create_dflt(struct netdev_queue *dev_queue,
998 				const struct Qdisc_ops *ops,
999 				unsigned int parentid,
1000 				struct netlink_ext_ack *extack)
1001 {
1002 	struct Qdisc *sch;
1003 
1004 	if (!try_module_get(ops->owner)) {
1005 		NL_SET_ERR_MSG(extack, "Failed to increase module reference counter");
1006 		return NULL;
1007 	}
1008 
1009 	sch = qdisc_alloc(dev_queue, ops, extack);
1010 	if (IS_ERR(sch)) {
1011 		module_put(ops->owner);
1012 		return NULL;
1013 	}
1014 	sch->parent = parentid;
1015 
1016 	if (!ops->init || ops->init(sch, NULL, extack) == 0) {
1017 		trace_qdisc_create(ops, dev_queue->dev, parentid);
1018 		return sch;
1019 	}
1020 
1021 	qdisc_put(sch);
1022 	return NULL;
1023 }
1024 EXPORT_SYMBOL(qdisc_create_dflt);
1025 
1026 /* Under qdisc_lock(qdisc) and BH! */
1027 
qdisc_reset(struct Qdisc * qdisc)1028 void qdisc_reset(struct Qdisc *qdisc)
1029 {
1030 	const struct Qdisc_ops *ops = qdisc->ops;
1031 
1032 	trace_qdisc_reset(qdisc);
1033 
1034 	if (ops->reset)
1035 		ops->reset(qdisc);
1036 
1037 	__skb_queue_purge(&qdisc->gso_skb);
1038 	__skb_queue_purge(&qdisc->skb_bad_txq);
1039 
1040 	qdisc->q.qlen = 0;
1041 	qdisc->qstats.backlog = 0;
1042 }
1043 EXPORT_SYMBOL(qdisc_reset);
1044 
qdisc_free(struct Qdisc * qdisc)1045 void qdisc_free(struct Qdisc *qdisc)
1046 {
1047 	if (qdisc_is_percpu_stats(qdisc)) {
1048 		free_percpu(qdisc->cpu_bstats);
1049 		free_percpu(qdisc->cpu_qstats);
1050 	}
1051 
1052 	kfree(qdisc);
1053 }
1054 
qdisc_free_cb(struct rcu_head * head)1055 static void qdisc_free_cb(struct rcu_head *head)
1056 {
1057 	struct Qdisc *q = container_of(head, struct Qdisc, rcu);
1058 
1059 	qdisc_free(q);
1060 }
1061 
__qdisc_destroy(struct Qdisc * qdisc)1062 static void __qdisc_destroy(struct Qdisc *qdisc)
1063 {
1064 	const struct Qdisc_ops  *ops = qdisc->ops;
1065 
1066 #ifdef CONFIG_NET_SCHED
1067 	qdisc_hash_del(qdisc);
1068 
1069 	qdisc_put_stab(rtnl_dereference(qdisc->stab));
1070 #endif
1071 	gen_kill_estimator(&qdisc->rate_est);
1072 
1073 	qdisc_reset(qdisc);
1074 
1075 	if (ops->destroy)
1076 		ops->destroy(qdisc);
1077 
1078 	lockdep_unregister_key(&qdisc->root_lock_key);
1079 	module_put(ops->owner);
1080 	netdev_put(qdisc_dev(qdisc), &qdisc->dev_tracker);
1081 
1082 	trace_qdisc_destroy(qdisc);
1083 
1084 	call_rcu(&qdisc->rcu, qdisc_free_cb);
1085 }
1086 
qdisc_destroy(struct Qdisc * qdisc)1087 void qdisc_destroy(struct Qdisc *qdisc)
1088 {
1089 	if (qdisc->flags & TCQ_F_BUILTIN)
1090 		return;
1091 
1092 	__qdisc_destroy(qdisc);
1093 }
1094 
qdisc_put(struct Qdisc * qdisc)1095 void qdisc_put(struct Qdisc *qdisc)
1096 {
1097 	if (!qdisc)
1098 		return;
1099 
1100 	if (qdisc->flags & TCQ_F_BUILTIN ||
1101 	    !refcount_dec_and_test(&qdisc->refcnt))
1102 		return;
1103 
1104 	__qdisc_destroy(qdisc);
1105 }
1106 EXPORT_SYMBOL(qdisc_put);
1107 
1108 /* Version of qdisc_put() that is called with rtnl mutex unlocked.
1109  * Intended to be used as optimization, this function only takes rtnl lock if
1110  * qdisc reference counter reached zero.
1111  */
1112 
qdisc_put_unlocked(struct Qdisc * qdisc)1113 void qdisc_put_unlocked(struct Qdisc *qdisc)
1114 {
1115 	if (qdisc->flags & TCQ_F_BUILTIN ||
1116 	    !refcount_dec_and_rtnl_lock(&qdisc->refcnt))
1117 		return;
1118 
1119 	__qdisc_destroy(qdisc);
1120 	rtnl_unlock();
1121 }
1122 EXPORT_SYMBOL(qdisc_put_unlocked);
1123 
1124 /* Attach toplevel qdisc to device queue. */
dev_graft_qdisc(struct netdev_queue * dev_queue,struct Qdisc * qdisc)1125 struct Qdisc *dev_graft_qdisc(struct netdev_queue *dev_queue,
1126 			      struct Qdisc *qdisc)
1127 {
1128 	struct Qdisc *oqdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1129 	spinlock_t *root_lock;
1130 
1131 	root_lock = qdisc_lock(oqdisc);
1132 	spin_lock_bh(root_lock);
1133 
1134 	/* ... and graft new one */
1135 	if (qdisc == NULL)
1136 		qdisc = &noop_qdisc;
1137 	rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc);
1138 	rcu_assign_pointer(dev_queue->qdisc, &noop_qdisc);
1139 
1140 	spin_unlock_bh(root_lock);
1141 
1142 	return oqdisc;
1143 }
1144 EXPORT_SYMBOL(dev_graft_qdisc);
1145 
shutdown_scheduler_queue(struct net_device * dev,struct netdev_queue * dev_queue,void * _qdisc_default)1146 static void shutdown_scheduler_queue(struct net_device *dev,
1147 				     struct netdev_queue *dev_queue,
1148 				     void *_qdisc_default)
1149 {
1150 	struct Qdisc *qdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1151 	struct Qdisc *qdisc_default = _qdisc_default;
1152 
1153 	if (qdisc) {
1154 		rcu_assign_pointer(dev_queue->qdisc, qdisc_default);
1155 		rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc_default);
1156 
1157 		qdisc_put(qdisc);
1158 	}
1159 }
1160 
attach_one_default_qdisc(struct net_device * dev,struct netdev_queue * dev_queue,void * _unused)1161 static void attach_one_default_qdisc(struct net_device *dev,
1162 				     struct netdev_queue *dev_queue,
1163 				     void *_unused)
1164 {
1165 	struct Qdisc *qdisc;
1166 	const struct Qdisc_ops *ops = default_qdisc_ops;
1167 
1168 	if (dev->priv_flags & IFF_NO_QUEUE)
1169 		ops = &noqueue_qdisc_ops;
1170 	else if(dev->type == ARPHRD_CAN)
1171 		ops = &pfifo_fast_ops;
1172 
1173 	qdisc = qdisc_create_dflt(dev_queue, ops, TC_H_ROOT, NULL);
1174 	if (!qdisc)
1175 		return;
1176 
1177 	if (!netif_is_multiqueue(dev))
1178 		qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
1179 	rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc);
1180 }
1181 
attach_default_qdiscs(struct net_device * dev)1182 static void attach_default_qdiscs(struct net_device *dev)
1183 {
1184 	struct netdev_queue *txq;
1185 	struct Qdisc *qdisc;
1186 
1187 	txq = netdev_get_tx_queue(dev, 0);
1188 
1189 	if (!netif_is_multiqueue(dev) ||
1190 	    dev->priv_flags & IFF_NO_QUEUE) {
1191 		netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL);
1192 		qdisc = rtnl_dereference(txq->qdisc_sleeping);
1193 		rcu_assign_pointer(dev->qdisc, qdisc);
1194 		qdisc_refcount_inc(qdisc);
1195 	} else {
1196 		qdisc = qdisc_create_dflt(txq, &mq_qdisc_ops, TC_H_ROOT, NULL);
1197 		if (qdisc) {
1198 			rcu_assign_pointer(dev->qdisc, qdisc);
1199 			qdisc->ops->attach(qdisc);
1200 		}
1201 	}
1202 	qdisc = rtnl_dereference(dev->qdisc);
1203 
1204 	/* Detect default qdisc setup/init failed and fallback to "noqueue" */
1205 	if (qdisc == &noop_qdisc) {
1206 		netdev_warn(dev, "default qdisc (%s) fail, fallback to %s\n",
1207 			    default_qdisc_ops->id, noqueue_qdisc_ops.id);
1208 		netdev_for_each_tx_queue(dev, shutdown_scheduler_queue, &noop_qdisc);
1209 		dev->priv_flags |= IFF_NO_QUEUE;
1210 		netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL);
1211 		qdisc = rtnl_dereference(txq->qdisc_sleeping);
1212 		rcu_assign_pointer(dev->qdisc, qdisc);
1213 		qdisc_refcount_inc(qdisc);
1214 		dev->priv_flags ^= IFF_NO_QUEUE;
1215 	}
1216 
1217 #ifdef CONFIG_NET_SCHED
1218 	if (qdisc != &noop_qdisc)
1219 		qdisc_hash_add(qdisc, false);
1220 #endif
1221 }
1222 
transition_one_qdisc(struct net_device * dev,struct netdev_queue * dev_queue,void * _need_watchdog)1223 static void transition_one_qdisc(struct net_device *dev,
1224 				 struct netdev_queue *dev_queue,
1225 				 void *_need_watchdog)
1226 {
1227 	struct Qdisc *new_qdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1228 	int *need_watchdog_p = _need_watchdog;
1229 
1230 	if (!(new_qdisc->flags & TCQ_F_BUILTIN))
1231 		clear_bit(__QDISC_STATE_DEACTIVATED, &new_qdisc->state);
1232 
1233 	rcu_assign_pointer(dev_queue->qdisc, new_qdisc);
1234 	if (need_watchdog_p) {
1235 		WRITE_ONCE(dev_queue->trans_start, 0);
1236 		*need_watchdog_p = 1;
1237 	}
1238 }
1239 
dev_activate(struct net_device * dev)1240 void dev_activate(struct net_device *dev)
1241 {
1242 	int need_watchdog;
1243 
1244 	/* No queueing discipline is attached to device;
1245 	 * create default one for devices, which need queueing
1246 	 * and noqueue_qdisc for virtual interfaces
1247 	 */
1248 
1249 	if (rtnl_dereference(dev->qdisc) == &noop_qdisc)
1250 		attach_default_qdiscs(dev);
1251 
1252 	if (!netif_carrier_ok(dev))
1253 		/* Delay activation until next carrier-on event */
1254 		return;
1255 
1256 	need_watchdog = 0;
1257 	netdev_for_each_tx_queue(dev, transition_one_qdisc, &need_watchdog);
1258 	if (dev_ingress_queue(dev))
1259 		transition_one_qdisc(dev, dev_ingress_queue(dev), NULL);
1260 
1261 	if (need_watchdog) {
1262 		netif_trans_update(dev);
1263 		dev_watchdog_up(dev);
1264 	}
1265 }
1266 EXPORT_SYMBOL(dev_activate);
1267 
qdisc_deactivate(struct Qdisc * qdisc)1268 static void qdisc_deactivate(struct Qdisc *qdisc)
1269 {
1270 	if (qdisc->flags & TCQ_F_BUILTIN)
1271 		return;
1272 
1273 	set_bit(__QDISC_STATE_DEACTIVATED, &qdisc->state);
1274 }
1275 
dev_deactivate_queue(struct net_device * dev,struct netdev_queue * dev_queue,void * _qdisc_default)1276 static void dev_deactivate_queue(struct net_device *dev,
1277 				 struct netdev_queue *dev_queue,
1278 				 void *_qdisc_default)
1279 {
1280 	struct Qdisc *qdisc_default = _qdisc_default;
1281 	struct Qdisc *qdisc;
1282 
1283 	qdisc = rtnl_dereference(dev_queue->qdisc);
1284 	if (qdisc) {
1285 		qdisc_deactivate(qdisc);
1286 		rcu_assign_pointer(dev_queue->qdisc, qdisc_default);
1287 	}
1288 }
1289 
dev_reset_queue(struct net_device * dev,struct netdev_queue * dev_queue,void * _unused)1290 static void dev_reset_queue(struct net_device *dev,
1291 			    struct netdev_queue *dev_queue,
1292 			    void *_unused)
1293 {
1294 	struct Qdisc *qdisc;
1295 	bool nolock;
1296 
1297 	qdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1298 	if (!qdisc)
1299 		return;
1300 
1301 	nolock = qdisc->flags & TCQ_F_NOLOCK;
1302 
1303 	if (nolock)
1304 		spin_lock_bh(&qdisc->seqlock);
1305 	spin_lock_bh(qdisc_lock(qdisc));
1306 
1307 	qdisc_reset(qdisc);
1308 
1309 	spin_unlock_bh(qdisc_lock(qdisc));
1310 	if (nolock) {
1311 		clear_bit(__QDISC_STATE_MISSED, &qdisc->state);
1312 		clear_bit(__QDISC_STATE_DRAINING, &qdisc->state);
1313 		spin_unlock_bh(&qdisc->seqlock);
1314 	}
1315 }
1316 
some_qdisc_is_busy(struct net_device * dev)1317 static bool some_qdisc_is_busy(struct net_device *dev)
1318 {
1319 	unsigned int i;
1320 
1321 	for (i = 0; i < dev->num_tx_queues; i++) {
1322 		struct netdev_queue *dev_queue;
1323 		spinlock_t *root_lock;
1324 		struct Qdisc *q;
1325 		int val;
1326 
1327 		dev_queue = netdev_get_tx_queue(dev, i);
1328 		q = rtnl_dereference(dev_queue->qdisc_sleeping);
1329 
1330 		root_lock = qdisc_lock(q);
1331 		spin_lock_bh(root_lock);
1332 
1333 		val = (qdisc_is_running(q) ||
1334 		       test_bit(__QDISC_STATE_SCHED, &q->state));
1335 
1336 		spin_unlock_bh(root_lock);
1337 
1338 		if (val)
1339 			return true;
1340 	}
1341 	return false;
1342 }
1343 
1344 /**
1345  * 	dev_deactivate_many - deactivate transmissions on several devices
1346  * 	@head: list of devices to deactivate
1347  *
1348  *	This function returns only when all outstanding transmissions
1349  *	have completed, unless all devices are in dismantle phase.
1350  */
dev_deactivate_many(struct list_head * head)1351 void dev_deactivate_many(struct list_head *head)
1352 {
1353 	struct net_device *dev;
1354 
1355 	list_for_each_entry(dev, head, close_list) {
1356 		netdev_for_each_tx_queue(dev, dev_deactivate_queue,
1357 					 &noop_qdisc);
1358 		if (dev_ingress_queue(dev))
1359 			dev_deactivate_queue(dev, dev_ingress_queue(dev),
1360 					     &noop_qdisc);
1361 
1362 		dev_watchdog_down(dev);
1363 	}
1364 
1365 	/* Wait for outstanding qdisc-less dev_queue_xmit calls or
1366 	 * outstanding qdisc enqueuing calls.
1367 	 * This is avoided if all devices are in dismantle phase :
1368 	 * Caller will call synchronize_net() for us
1369 	 */
1370 	synchronize_net();
1371 
1372 	list_for_each_entry(dev, head, close_list) {
1373 		netdev_for_each_tx_queue(dev, dev_reset_queue, NULL);
1374 
1375 		if (dev_ingress_queue(dev))
1376 			dev_reset_queue(dev, dev_ingress_queue(dev), NULL);
1377 	}
1378 
1379 	/* Wait for outstanding qdisc_run calls. */
1380 	list_for_each_entry(dev, head, close_list) {
1381 		while (some_qdisc_is_busy(dev)) {
1382 			/* wait_event() would avoid this sleep-loop but would
1383 			 * require expensive checks in the fast paths of packet
1384 			 * processing which isn't worth it.
1385 			 */
1386 			schedule_timeout_uninterruptible(1);
1387 		}
1388 	}
1389 }
1390 
dev_deactivate(struct net_device * dev)1391 void dev_deactivate(struct net_device *dev)
1392 {
1393 	LIST_HEAD(single);
1394 
1395 	list_add(&dev->close_list, &single);
1396 	dev_deactivate_many(&single);
1397 	list_del(&single);
1398 }
1399 EXPORT_SYMBOL(dev_deactivate);
1400 
qdisc_change_tx_queue_len(struct net_device * dev,struct netdev_queue * dev_queue)1401 static int qdisc_change_tx_queue_len(struct net_device *dev,
1402 				     struct netdev_queue *dev_queue)
1403 {
1404 	struct Qdisc *qdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1405 	const struct Qdisc_ops *ops = qdisc->ops;
1406 
1407 	if (ops->change_tx_queue_len)
1408 		return ops->change_tx_queue_len(qdisc, dev->tx_queue_len);
1409 	return 0;
1410 }
1411 
dev_qdisc_change_real_num_tx(struct net_device * dev,unsigned int new_real_tx)1412 void dev_qdisc_change_real_num_tx(struct net_device *dev,
1413 				  unsigned int new_real_tx)
1414 {
1415 	struct Qdisc *qdisc = rtnl_dereference(dev->qdisc);
1416 
1417 	if (qdisc->ops->change_real_num_tx)
1418 		qdisc->ops->change_real_num_tx(qdisc, new_real_tx);
1419 }
1420 
mq_change_real_num_tx(struct Qdisc * sch,unsigned int new_real_tx)1421 void mq_change_real_num_tx(struct Qdisc *sch, unsigned int new_real_tx)
1422 {
1423 #ifdef CONFIG_NET_SCHED
1424 	struct net_device *dev = qdisc_dev(sch);
1425 	struct Qdisc *qdisc;
1426 	unsigned int i;
1427 
1428 	for (i = new_real_tx; i < dev->real_num_tx_queues; i++) {
1429 		qdisc = rtnl_dereference(netdev_get_tx_queue(dev, i)->qdisc_sleeping);
1430 		/* Only update the default qdiscs we created,
1431 		 * qdiscs with handles are always hashed.
1432 		 */
1433 		if (qdisc != &noop_qdisc && !qdisc->handle)
1434 			qdisc_hash_del(qdisc);
1435 	}
1436 	for (i = dev->real_num_tx_queues; i < new_real_tx; i++) {
1437 		qdisc = rtnl_dereference(netdev_get_tx_queue(dev, i)->qdisc_sleeping);
1438 		if (qdisc != &noop_qdisc && !qdisc->handle)
1439 			qdisc_hash_add(qdisc, false);
1440 	}
1441 #endif
1442 }
1443 EXPORT_SYMBOL(mq_change_real_num_tx);
1444 
dev_qdisc_change_tx_queue_len(struct net_device * dev)1445 int dev_qdisc_change_tx_queue_len(struct net_device *dev)
1446 {
1447 	bool up = dev->flags & IFF_UP;
1448 	unsigned int i;
1449 	int ret = 0;
1450 
1451 	if (up)
1452 		dev_deactivate(dev);
1453 
1454 	for (i = 0; i < dev->num_tx_queues; i++) {
1455 		ret = qdisc_change_tx_queue_len(dev, &dev->_tx[i]);
1456 
1457 		/* TODO: revert changes on a partial failure */
1458 		if (ret)
1459 			break;
1460 	}
1461 
1462 	if (up)
1463 		dev_activate(dev);
1464 	return ret;
1465 }
1466 
dev_init_scheduler_queue(struct net_device * dev,struct netdev_queue * dev_queue,void * _qdisc)1467 static void dev_init_scheduler_queue(struct net_device *dev,
1468 				     struct netdev_queue *dev_queue,
1469 				     void *_qdisc)
1470 {
1471 	struct Qdisc *qdisc = _qdisc;
1472 
1473 	rcu_assign_pointer(dev_queue->qdisc, qdisc);
1474 	rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc);
1475 }
1476 
dev_init_scheduler(struct net_device * dev)1477 void dev_init_scheduler(struct net_device *dev)
1478 {
1479 	rcu_assign_pointer(dev->qdisc, &noop_qdisc);
1480 	netdev_for_each_tx_queue(dev, dev_init_scheduler_queue, &noop_qdisc);
1481 	if (dev_ingress_queue(dev))
1482 		dev_init_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc);
1483 
1484 	timer_setup(&dev->watchdog_timer, dev_watchdog, 0);
1485 }
1486 
dev_shutdown(struct net_device * dev)1487 void dev_shutdown(struct net_device *dev)
1488 {
1489 	netdev_for_each_tx_queue(dev, shutdown_scheduler_queue, &noop_qdisc);
1490 	if (dev_ingress_queue(dev))
1491 		shutdown_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc);
1492 	qdisc_put(rtnl_dereference(dev->qdisc));
1493 	rcu_assign_pointer(dev->qdisc, &noop_qdisc);
1494 
1495 	WARN_ON(timer_pending(&dev->watchdog_timer));
1496 }
1497 
1498 /**
1499  * psched_ratecfg_precompute__() - Pre-compute values for reciprocal division
1500  * @rate:   Rate to compute reciprocal division values of
1501  * @mult:   Multiplier for reciprocal division
1502  * @shift:  Shift for reciprocal division
1503  *
1504  * The multiplier and shift for reciprocal division by rate are stored
1505  * in mult and shift.
1506  *
1507  * The deal here is to replace a divide by a reciprocal one
1508  * in fast path (a reciprocal divide is a multiply and a shift)
1509  *
1510  * Normal formula would be :
1511  *  time_in_ns = (NSEC_PER_SEC * len) / rate_bps
1512  *
1513  * We compute mult/shift to use instead :
1514  *  time_in_ns = (len * mult) >> shift;
1515  *
1516  * We try to get the highest possible mult value for accuracy,
1517  * but have to make sure no overflows will ever happen.
1518  *
1519  * reciprocal_value() is not used here it doesn't handle 64-bit values.
1520  */
psched_ratecfg_precompute__(u64 rate,u32 * mult,u8 * shift)1521 static void psched_ratecfg_precompute__(u64 rate, u32 *mult, u8 *shift)
1522 {
1523 	u64 factor = NSEC_PER_SEC;
1524 
1525 	*mult = 1;
1526 	*shift = 0;
1527 
1528 	if (rate <= 0)
1529 		return;
1530 
1531 	for (;;) {
1532 		*mult = div64_u64(factor, rate);
1533 		if (*mult & (1U << 31) || factor & (1ULL << 63))
1534 			break;
1535 		factor <<= 1;
1536 		(*shift)++;
1537 	}
1538 }
1539 
psched_ratecfg_precompute(struct psched_ratecfg * r,const struct tc_ratespec * conf,u64 rate64)1540 void psched_ratecfg_precompute(struct psched_ratecfg *r,
1541 			       const struct tc_ratespec *conf,
1542 			       u64 rate64)
1543 {
1544 	memset(r, 0, sizeof(*r));
1545 	r->overhead = conf->overhead;
1546 	r->mpu = conf->mpu;
1547 	r->rate_bytes_ps = max_t(u64, conf->rate, rate64);
1548 	r->linklayer = (conf->linklayer & TC_LINKLAYER_MASK);
1549 	psched_ratecfg_precompute__(r->rate_bytes_ps, &r->mult, &r->shift);
1550 }
1551 EXPORT_SYMBOL(psched_ratecfg_precompute);
1552 
psched_ppscfg_precompute(struct psched_pktrate * r,u64 pktrate64)1553 void psched_ppscfg_precompute(struct psched_pktrate *r, u64 pktrate64)
1554 {
1555 	r->rate_pkts_ps = pktrate64;
1556 	psched_ratecfg_precompute__(r->rate_pkts_ps, &r->mult, &r->shift);
1557 }
1558 EXPORT_SYMBOL(psched_ppscfg_precompute);
1559 
mini_qdisc_pair_swap(struct mini_Qdisc_pair * miniqp,struct tcf_proto * tp_head)1560 void mini_qdisc_pair_swap(struct mini_Qdisc_pair *miniqp,
1561 			  struct tcf_proto *tp_head)
1562 {
1563 	/* Protected with chain0->filter_chain_lock.
1564 	 * Can't access chain directly because tp_head can be NULL.
1565 	 */
1566 	struct mini_Qdisc *miniq_old =
1567 		rcu_dereference_protected(*miniqp->p_miniq, 1);
1568 	struct mini_Qdisc *miniq;
1569 
1570 	if (!tp_head) {
1571 		RCU_INIT_POINTER(*miniqp->p_miniq, NULL);
1572 	} else {
1573 		miniq = miniq_old != &miniqp->miniq1 ?
1574 			&miniqp->miniq1 : &miniqp->miniq2;
1575 
1576 		/* We need to make sure that readers won't see the miniq
1577 		 * we are about to modify. So ensure that at least one RCU
1578 		 * grace period has elapsed since the miniq was made
1579 		 * inactive.
1580 		 */
1581 		if (IS_ENABLED(CONFIG_PREEMPT_RT))
1582 			cond_synchronize_rcu(miniq->rcu_state);
1583 		else if (!poll_state_synchronize_rcu(miniq->rcu_state))
1584 			synchronize_rcu_expedited();
1585 
1586 		miniq->filter_list = tp_head;
1587 		rcu_assign_pointer(*miniqp->p_miniq, miniq);
1588 	}
1589 
1590 	if (miniq_old)
1591 		/* This is counterpart of the rcu sync above. We need to
1592 		 * block potential new user of miniq_old until all readers
1593 		 * are not seeing it.
1594 		 */
1595 		miniq_old->rcu_state = start_poll_synchronize_rcu();
1596 }
1597 EXPORT_SYMBOL(mini_qdisc_pair_swap);
1598 
mini_qdisc_pair_block_init(struct mini_Qdisc_pair * miniqp,struct tcf_block * block)1599 void mini_qdisc_pair_block_init(struct mini_Qdisc_pair *miniqp,
1600 				struct tcf_block *block)
1601 {
1602 	miniqp->miniq1.block = block;
1603 	miniqp->miniq2.block = block;
1604 }
1605 EXPORT_SYMBOL(mini_qdisc_pair_block_init);
1606 
mini_qdisc_pair_init(struct mini_Qdisc_pair * miniqp,struct Qdisc * qdisc,struct mini_Qdisc __rcu ** p_miniq)1607 void mini_qdisc_pair_init(struct mini_Qdisc_pair *miniqp, struct Qdisc *qdisc,
1608 			  struct mini_Qdisc __rcu **p_miniq)
1609 {
1610 	miniqp->miniq1.cpu_bstats = qdisc->cpu_bstats;
1611 	miniqp->miniq1.cpu_qstats = qdisc->cpu_qstats;
1612 	miniqp->miniq2.cpu_bstats = qdisc->cpu_bstats;
1613 	miniqp->miniq2.cpu_qstats = qdisc->cpu_qstats;
1614 	miniqp->miniq1.rcu_state = get_state_synchronize_rcu();
1615 	miniqp->miniq2.rcu_state = miniqp->miniq1.rcu_state;
1616 	miniqp->p_miniq = p_miniq;
1617 }
1618 EXPORT_SYMBOL(mini_qdisc_pair_init);
1619