1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * net/sched/sch_generic.c Generic packet scheduler routines.
4 *
5 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
6 * Jamal Hadi Salim, <hadi@cyberus.ca> 990601
7 * - Ingress support
8 */
9
10 #include <linux/bitops.h>
11 #include <linux/module.h>
12 #include <linux/types.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/string.h>
16 #include <linux/errno.h>
17 #include <linux/netdevice.h>
18 #include <linux/skbuff.h>
19 #include <linux/rtnetlink.h>
20 #include <linux/init.h>
21 #include <linux/rcupdate.h>
22 #include <linux/list.h>
23 #include <linux/slab.h>
24 #include <linux/if_vlan.h>
25 #include <linux/skb_array.h>
26 #include <linux/if_macvlan.h>
27 #include <net/sch_generic.h>
28 #include <net/pkt_sched.h>
29 #include <net/dst.h>
30 #include <trace/events/qdisc.h>
31 #include <trace/events/net.h>
32 #include <net/xfrm.h>
33
34 /* Qdisc to use by default */
35 const struct Qdisc_ops *default_qdisc_ops = &pfifo_fast_ops;
36 EXPORT_SYMBOL(default_qdisc_ops);
37
qdisc_maybe_clear_missed(struct Qdisc * q,const struct netdev_queue * txq)38 static void qdisc_maybe_clear_missed(struct Qdisc *q,
39 const struct netdev_queue *txq)
40 {
41 clear_bit(__QDISC_STATE_MISSED, &q->state);
42
43 /* Make sure the below netif_xmit_frozen_or_stopped()
44 * checking happens after clearing STATE_MISSED.
45 */
46 smp_mb__after_atomic();
47
48 /* Checking netif_xmit_frozen_or_stopped() again to
49 * make sure STATE_MISSED is set if the STATE_MISSED
50 * set by netif_tx_wake_queue()'s rescheduling of
51 * net_tx_action() is cleared by the above clear_bit().
52 */
53 if (!netif_xmit_frozen_or_stopped(txq))
54 set_bit(__QDISC_STATE_MISSED, &q->state);
55 else
56 set_bit(__QDISC_STATE_DRAINING, &q->state);
57 }
58
59 /* Main transmission queue. */
60
61 /* Modifications to data participating in scheduling must be protected with
62 * qdisc_lock(qdisc) spinlock.
63 *
64 * The idea is the following:
65 * - enqueue, dequeue are serialized via qdisc root lock
66 * - ingress filtering is also serialized via qdisc root lock
67 * - updates to tree and tree walking are only done under the rtnl mutex.
68 */
69
70 #define SKB_XOFF_MAGIC ((struct sk_buff *)1UL)
71
__skb_dequeue_bad_txq(struct Qdisc * q)72 static inline struct sk_buff *__skb_dequeue_bad_txq(struct Qdisc *q)
73 {
74 const struct netdev_queue *txq = q->dev_queue;
75 spinlock_t *lock = NULL;
76 struct sk_buff *skb;
77
78 if (q->flags & TCQ_F_NOLOCK) {
79 lock = qdisc_lock(q);
80 spin_lock(lock);
81 }
82
83 skb = skb_peek(&q->skb_bad_txq);
84 if (skb) {
85 /* check the reason of requeuing without tx lock first */
86 txq = skb_get_tx_queue(txq->dev, skb);
87 if (!netif_xmit_frozen_or_stopped(txq)) {
88 skb = __skb_dequeue(&q->skb_bad_txq);
89 if (qdisc_is_percpu_stats(q)) {
90 qdisc_qstats_cpu_backlog_dec(q, skb);
91 qdisc_qstats_cpu_qlen_dec(q);
92 } else {
93 qdisc_qstats_backlog_dec(q, skb);
94 q->q.qlen--;
95 }
96 } else {
97 skb = SKB_XOFF_MAGIC;
98 qdisc_maybe_clear_missed(q, txq);
99 }
100 }
101
102 if (lock)
103 spin_unlock(lock);
104
105 return skb;
106 }
107
qdisc_dequeue_skb_bad_txq(struct Qdisc * q)108 static inline struct sk_buff *qdisc_dequeue_skb_bad_txq(struct Qdisc *q)
109 {
110 struct sk_buff *skb = skb_peek(&q->skb_bad_txq);
111
112 if (unlikely(skb))
113 skb = __skb_dequeue_bad_txq(q);
114
115 return skb;
116 }
117
qdisc_enqueue_skb_bad_txq(struct Qdisc * q,struct sk_buff * skb)118 static inline void qdisc_enqueue_skb_bad_txq(struct Qdisc *q,
119 struct sk_buff *skb)
120 {
121 spinlock_t *lock = NULL;
122
123 if (q->flags & TCQ_F_NOLOCK) {
124 lock = qdisc_lock(q);
125 spin_lock(lock);
126 }
127
128 __skb_queue_tail(&q->skb_bad_txq, skb);
129
130 if (qdisc_is_percpu_stats(q)) {
131 qdisc_qstats_cpu_backlog_inc(q, skb);
132 qdisc_qstats_cpu_qlen_inc(q);
133 } else {
134 qdisc_qstats_backlog_inc(q, skb);
135 q->q.qlen++;
136 }
137
138 if (lock)
139 spin_unlock(lock);
140 }
141
dev_requeue_skb(struct sk_buff * skb,struct Qdisc * q)142 static inline void dev_requeue_skb(struct sk_buff *skb, struct Qdisc *q)
143 {
144 spinlock_t *lock = NULL;
145
146 if (q->flags & TCQ_F_NOLOCK) {
147 lock = qdisc_lock(q);
148 spin_lock(lock);
149 }
150
151 while (skb) {
152 struct sk_buff *next = skb->next;
153
154 __skb_queue_tail(&q->gso_skb, skb);
155
156 /* it's still part of the queue */
157 if (qdisc_is_percpu_stats(q)) {
158 qdisc_qstats_cpu_requeues_inc(q);
159 qdisc_qstats_cpu_backlog_inc(q, skb);
160 qdisc_qstats_cpu_qlen_inc(q);
161 } else {
162 q->qstats.requeues++;
163 qdisc_qstats_backlog_inc(q, skb);
164 q->q.qlen++;
165 }
166
167 skb = next;
168 }
169
170 if (lock) {
171 spin_unlock(lock);
172 set_bit(__QDISC_STATE_MISSED, &q->state);
173 } else {
174 __netif_schedule(q);
175 }
176 }
177
try_bulk_dequeue_skb(struct Qdisc * q,struct sk_buff * skb,const struct netdev_queue * txq,int * packets)178 static void try_bulk_dequeue_skb(struct Qdisc *q,
179 struct sk_buff *skb,
180 const struct netdev_queue *txq,
181 int *packets)
182 {
183 int bytelimit = qdisc_avail_bulklimit(txq) - skb->len;
184
185 while (bytelimit > 0) {
186 struct sk_buff *nskb = q->dequeue(q);
187
188 if (!nskb)
189 break;
190
191 bytelimit -= nskb->len; /* covers GSO len */
192 skb->next = nskb;
193 skb = nskb;
194 (*packets)++; /* GSO counts as one pkt */
195 }
196 skb_mark_not_on_list(skb);
197 }
198
199 /* This variant of try_bulk_dequeue_skb() makes sure
200 * all skbs in the chain are for the same txq
201 */
try_bulk_dequeue_skb_slow(struct Qdisc * q,struct sk_buff * skb,int * packets)202 static void try_bulk_dequeue_skb_slow(struct Qdisc *q,
203 struct sk_buff *skb,
204 int *packets)
205 {
206 int mapping = skb_get_queue_mapping(skb);
207 struct sk_buff *nskb;
208 int cnt = 0;
209
210 do {
211 nskb = q->dequeue(q);
212 if (!nskb)
213 break;
214 if (unlikely(skb_get_queue_mapping(nskb) != mapping)) {
215 qdisc_enqueue_skb_bad_txq(q, nskb);
216 break;
217 }
218 skb->next = nskb;
219 skb = nskb;
220 } while (++cnt < 8);
221 (*packets) += cnt;
222 skb_mark_not_on_list(skb);
223 }
224
225 /* Note that dequeue_skb can possibly return a SKB list (via skb->next).
226 * A requeued skb (via q->gso_skb) can also be a SKB list.
227 */
dequeue_skb(struct Qdisc * q,bool * validate,int * packets)228 static struct sk_buff *dequeue_skb(struct Qdisc *q, bool *validate,
229 int *packets)
230 {
231 const struct netdev_queue *txq = q->dev_queue;
232 struct sk_buff *skb = NULL;
233
234 *packets = 1;
235 if (unlikely(!skb_queue_empty(&q->gso_skb))) {
236 spinlock_t *lock = NULL;
237
238 if (q->flags & TCQ_F_NOLOCK) {
239 lock = qdisc_lock(q);
240 spin_lock(lock);
241 }
242
243 skb = skb_peek(&q->gso_skb);
244
245 /* skb may be null if another cpu pulls gso_skb off in between
246 * empty check and lock.
247 */
248 if (!skb) {
249 if (lock)
250 spin_unlock(lock);
251 goto validate;
252 }
253
254 /* skb in gso_skb were already validated */
255 *validate = false;
256 if (xfrm_offload(skb))
257 *validate = true;
258 /* check the reason of requeuing without tx lock first */
259 txq = skb_get_tx_queue(txq->dev, skb);
260 if (!netif_xmit_frozen_or_stopped(txq)) {
261 skb = __skb_dequeue(&q->gso_skb);
262 if (qdisc_is_percpu_stats(q)) {
263 qdisc_qstats_cpu_backlog_dec(q, skb);
264 qdisc_qstats_cpu_qlen_dec(q);
265 } else {
266 qdisc_qstats_backlog_dec(q, skb);
267 q->q.qlen--;
268 }
269 } else {
270 skb = NULL;
271 qdisc_maybe_clear_missed(q, txq);
272 }
273 if (lock)
274 spin_unlock(lock);
275 goto trace;
276 }
277 validate:
278 *validate = true;
279
280 if ((q->flags & TCQ_F_ONETXQUEUE) &&
281 netif_xmit_frozen_or_stopped(txq)) {
282 qdisc_maybe_clear_missed(q, txq);
283 return skb;
284 }
285
286 skb = qdisc_dequeue_skb_bad_txq(q);
287 if (unlikely(skb)) {
288 if (skb == SKB_XOFF_MAGIC)
289 return NULL;
290 goto bulk;
291 }
292 skb = q->dequeue(q);
293 if (skb) {
294 bulk:
295 if (qdisc_may_bulk(q))
296 try_bulk_dequeue_skb(q, skb, txq, packets);
297 else
298 try_bulk_dequeue_skb_slow(q, skb, packets);
299 }
300 trace:
301 trace_qdisc_dequeue(q, txq, *packets, skb);
302 return skb;
303 }
304
305 /*
306 * Transmit possibly several skbs, and handle the return status as
307 * required. Owning qdisc running bit guarantees that only one CPU
308 * can execute this function.
309 *
310 * Returns to the caller:
311 * false - hardware queue frozen backoff
312 * true - feel free to send more pkts
313 */
sch_direct_xmit(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq,spinlock_t * root_lock,bool validate)314 bool sch_direct_xmit(struct sk_buff *skb, struct Qdisc *q,
315 struct net_device *dev, struct netdev_queue *txq,
316 spinlock_t *root_lock, bool validate)
317 {
318 int ret = NETDEV_TX_BUSY;
319 bool again = false;
320
321 /* And release qdisc */
322 if (root_lock)
323 spin_unlock(root_lock);
324
325 /* Note that we validate skb (GSO, checksum, ...) outside of locks */
326 if (validate)
327 skb = validate_xmit_skb_list(skb, dev, &again);
328
329 #ifdef CONFIG_XFRM_OFFLOAD
330 if (unlikely(again)) {
331 if (root_lock)
332 spin_lock(root_lock);
333
334 dev_requeue_skb(skb, q);
335 return false;
336 }
337 #endif
338
339 if (likely(skb)) {
340 HARD_TX_LOCK(dev, txq, smp_processor_id());
341 if (!netif_xmit_frozen_or_stopped(txq))
342 skb = dev_hard_start_xmit(skb, dev, txq, &ret);
343 else
344 qdisc_maybe_clear_missed(q, txq);
345
346 HARD_TX_UNLOCK(dev, txq);
347 } else {
348 if (root_lock)
349 spin_lock(root_lock);
350 return true;
351 }
352
353 if (root_lock)
354 spin_lock(root_lock);
355
356 if (!dev_xmit_complete(ret)) {
357 /* Driver returned NETDEV_TX_BUSY - requeue skb */
358 if (unlikely(ret != NETDEV_TX_BUSY))
359 net_warn_ratelimited("BUG %s code %d qlen %d\n",
360 dev->name, ret, q->q.qlen);
361
362 dev_requeue_skb(skb, q);
363 return false;
364 }
365
366 return true;
367 }
368
369 /*
370 * NOTE: Called under qdisc_lock(q) with locally disabled BH.
371 *
372 * running seqcount guarantees only one CPU can process
373 * this qdisc at a time. qdisc_lock(q) serializes queue accesses for
374 * this queue.
375 *
376 * netif_tx_lock serializes accesses to device driver.
377 *
378 * qdisc_lock(q) and netif_tx_lock are mutually exclusive,
379 * if one is grabbed, another must be free.
380 *
381 * Note, that this procedure can be called by a watchdog timer
382 *
383 * Returns to the caller:
384 * 0 - queue is empty or throttled.
385 * >0 - queue is not empty.
386 *
387 */
qdisc_restart(struct Qdisc * q,int * packets)388 static inline bool qdisc_restart(struct Qdisc *q, int *packets)
389 {
390 spinlock_t *root_lock = NULL;
391 struct netdev_queue *txq;
392 struct net_device *dev;
393 struct sk_buff *skb;
394 bool validate;
395
396 /* Dequeue packet */
397 skb = dequeue_skb(q, &validate, packets);
398 if (unlikely(!skb))
399 return false;
400
401 if (!(q->flags & TCQ_F_NOLOCK))
402 root_lock = qdisc_lock(q);
403
404 dev = qdisc_dev(q);
405 txq = skb_get_tx_queue(dev, skb);
406
407 return sch_direct_xmit(skb, q, dev, txq, root_lock, validate);
408 }
409
__qdisc_run(struct Qdisc * q)410 void __qdisc_run(struct Qdisc *q)
411 {
412 int quota = READ_ONCE(dev_tx_weight);
413 int packets;
414
415 while (qdisc_restart(q, &packets)) {
416 quota -= packets;
417 if (quota <= 0) {
418 if (q->flags & TCQ_F_NOLOCK)
419 set_bit(__QDISC_STATE_MISSED, &q->state);
420 else
421 __netif_schedule(q);
422
423 break;
424 }
425 }
426 }
427
dev_trans_start(struct net_device * dev)428 unsigned long dev_trans_start(struct net_device *dev)
429 {
430 unsigned long res = READ_ONCE(netdev_get_tx_queue(dev, 0)->trans_start);
431 unsigned long val;
432 unsigned int i;
433
434 for (i = 1; i < dev->num_tx_queues; i++) {
435 val = READ_ONCE(netdev_get_tx_queue(dev, i)->trans_start);
436 if (val && time_after(val, res))
437 res = val;
438 }
439
440 return res;
441 }
442 EXPORT_SYMBOL(dev_trans_start);
443
netif_freeze_queues(struct net_device * dev)444 static void netif_freeze_queues(struct net_device *dev)
445 {
446 unsigned int i;
447 int cpu;
448
449 cpu = smp_processor_id();
450 for (i = 0; i < dev->num_tx_queues; i++) {
451 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
452
453 /* We are the only thread of execution doing a
454 * freeze, but we have to grab the _xmit_lock in
455 * order to synchronize with threads which are in
456 * the ->hard_start_xmit() handler and already
457 * checked the frozen bit.
458 */
459 __netif_tx_lock(txq, cpu);
460 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
461 __netif_tx_unlock(txq);
462 }
463 }
464
netif_tx_lock(struct net_device * dev)465 void netif_tx_lock(struct net_device *dev)
466 {
467 spin_lock(&dev->tx_global_lock);
468 netif_freeze_queues(dev);
469 }
470 EXPORT_SYMBOL(netif_tx_lock);
471
netif_unfreeze_queues(struct net_device * dev)472 static void netif_unfreeze_queues(struct net_device *dev)
473 {
474 unsigned int i;
475
476 for (i = 0; i < dev->num_tx_queues; i++) {
477 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
478
479 /* No need to grab the _xmit_lock here. If the
480 * queue is not stopped for another reason, we
481 * force a schedule.
482 */
483 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
484 netif_schedule_queue(txq);
485 }
486 }
487
netif_tx_unlock(struct net_device * dev)488 void netif_tx_unlock(struct net_device *dev)
489 {
490 netif_unfreeze_queues(dev);
491 spin_unlock(&dev->tx_global_lock);
492 }
493 EXPORT_SYMBOL(netif_tx_unlock);
494
dev_watchdog(struct timer_list * t)495 static void dev_watchdog(struct timer_list *t)
496 {
497 struct net_device *dev = from_timer(dev, t, watchdog_timer);
498 bool release = true;
499
500 spin_lock(&dev->tx_global_lock);
501 if (!qdisc_tx_is_noop(dev)) {
502 if (netif_device_present(dev) &&
503 netif_running(dev) &&
504 netif_carrier_ok(dev)) {
505 unsigned int timedout_ms = 0;
506 unsigned int i;
507 unsigned long trans_start;
508 unsigned long oldest_start = jiffies;
509
510 for (i = 0; i < dev->num_tx_queues; i++) {
511 struct netdev_queue *txq;
512
513 txq = netdev_get_tx_queue(dev, i);
514 if (!netif_xmit_stopped(txq))
515 continue;
516
517 /* Paired with WRITE_ONCE() + smp_mb...() in
518 * netdev_tx_sent_queue() and netif_tx_stop_queue().
519 */
520 smp_mb();
521 trans_start = READ_ONCE(txq->trans_start);
522
523 if (time_after(jiffies, trans_start + dev->watchdog_timeo)) {
524 timedout_ms = jiffies_to_msecs(jiffies - trans_start);
525 atomic_long_inc(&txq->trans_timeout);
526 break;
527 }
528 if (time_after(oldest_start, trans_start))
529 oldest_start = trans_start;
530 }
531
532 if (unlikely(timedout_ms)) {
533 trace_net_dev_xmit_timeout(dev, i);
534 netdev_crit(dev, "NETDEV WATCHDOG: CPU: %d: transmit queue %u timed out %u ms\n",
535 raw_smp_processor_id(),
536 i, timedout_ms);
537 netif_freeze_queues(dev);
538 dev->netdev_ops->ndo_tx_timeout(dev, i);
539 netif_unfreeze_queues(dev);
540 }
541 if (!mod_timer(&dev->watchdog_timer,
542 round_jiffies(oldest_start +
543 dev->watchdog_timeo)))
544 release = false;
545 }
546 }
547 spin_unlock(&dev->tx_global_lock);
548
549 if (release)
550 netdev_put(dev, &dev->watchdog_dev_tracker);
551 }
552
__netdev_watchdog_up(struct net_device * dev)553 void __netdev_watchdog_up(struct net_device *dev)
554 {
555 if (dev->netdev_ops->ndo_tx_timeout) {
556 if (dev->watchdog_timeo <= 0)
557 dev->watchdog_timeo = 5*HZ;
558 if (!mod_timer(&dev->watchdog_timer,
559 round_jiffies(jiffies + dev->watchdog_timeo)))
560 netdev_hold(dev, &dev->watchdog_dev_tracker,
561 GFP_ATOMIC);
562 }
563 }
564 EXPORT_SYMBOL_GPL(__netdev_watchdog_up);
565
dev_watchdog_up(struct net_device * dev)566 static void dev_watchdog_up(struct net_device *dev)
567 {
568 __netdev_watchdog_up(dev);
569 }
570
dev_watchdog_down(struct net_device * dev)571 static void dev_watchdog_down(struct net_device *dev)
572 {
573 netif_tx_lock_bh(dev);
574 if (del_timer(&dev->watchdog_timer))
575 netdev_put(dev, &dev->watchdog_dev_tracker);
576 netif_tx_unlock_bh(dev);
577 }
578
579 /**
580 * netif_carrier_on - set carrier
581 * @dev: network device
582 *
583 * Device has detected acquisition of carrier.
584 */
netif_carrier_on(struct net_device * dev)585 void netif_carrier_on(struct net_device *dev)
586 {
587 if (test_and_clear_bit(__LINK_STATE_NOCARRIER, &dev->state)) {
588 if (dev->reg_state == NETREG_UNINITIALIZED)
589 return;
590 atomic_inc(&dev->carrier_up_count);
591 linkwatch_fire_event(dev);
592 if (netif_running(dev))
593 __netdev_watchdog_up(dev);
594 }
595 }
596 EXPORT_SYMBOL(netif_carrier_on);
597
598 /**
599 * netif_carrier_off - clear carrier
600 * @dev: network device
601 *
602 * Device has detected loss of carrier.
603 */
netif_carrier_off(struct net_device * dev)604 void netif_carrier_off(struct net_device *dev)
605 {
606 if (!test_and_set_bit(__LINK_STATE_NOCARRIER, &dev->state)) {
607 if (dev->reg_state == NETREG_UNINITIALIZED)
608 return;
609 atomic_inc(&dev->carrier_down_count);
610 linkwatch_fire_event(dev);
611 }
612 }
613 EXPORT_SYMBOL(netif_carrier_off);
614
615 /**
616 * netif_carrier_event - report carrier state event
617 * @dev: network device
618 *
619 * Device has detected a carrier event but the carrier state wasn't changed.
620 * Use in drivers when querying carrier state asynchronously, to avoid missing
621 * events (link flaps) if link recovers before it's queried.
622 */
netif_carrier_event(struct net_device * dev)623 void netif_carrier_event(struct net_device *dev)
624 {
625 if (dev->reg_state == NETREG_UNINITIALIZED)
626 return;
627 atomic_inc(&dev->carrier_up_count);
628 atomic_inc(&dev->carrier_down_count);
629 linkwatch_fire_event(dev);
630 }
631 EXPORT_SYMBOL_GPL(netif_carrier_event);
632
633 /* "NOOP" scheduler: the best scheduler, recommended for all interfaces
634 under all circumstances. It is difficult to invent anything faster or
635 cheaper.
636 */
637
noop_enqueue(struct sk_buff * skb,struct Qdisc * qdisc,struct sk_buff ** to_free)638 static int noop_enqueue(struct sk_buff *skb, struct Qdisc *qdisc,
639 struct sk_buff **to_free)
640 {
641 __qdisc_drop(skb, to_free);
642 return NET_XMIT_CN;
643 }
644
noop_dequeue(struct Qdisc * qdisc)645 static struct sk_buff *noop_dequeue(struct Qdisc *qdisc)
646 {
647 return NULL;
648 }
649
650 struct Qdisc_ops noop_qdisc_ops __read_mostly = {
651 .id = "noop",
652 .priv_size = 0,
653 .enqueue = noop_enqueue,
654 .dequeue = noop_dequeue,
655 .peek = noop_dequeue,
656 .owner = THIS_MODULE,
657 };
658
659 static struct netdev_queue noop_netdev_queue = {
660 RCU_POINTER_INITIALIZER(qdisc, &noop_qdisc),
661 RCU_POINTER_INITIALIZER(qdisc_sleeping, &noop_qdisc),
662 };
663
664 struct Qdisc noop_qdisc = {
665 .enqueue = noop_enqueue,
666 .dequeue = noop_dequeue,
667 .flags = TCQ_F_BUILTIN,
668 .ops = &noop_qdisc_ops,
669 .q.lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.q.lock),
670 .dev_queue = &noop_netdev_queue,
671 .busylock = __SPIN_LOCK_UNLOCKED(noop_qdisc.busylock),
672 .gso_skb = {
673 .next = (struct sk_buff *)&noop_qdisc.gso_skb,
674 .prev = (struct sk_buff *)&noop_qdisc.gso_skb,
675 .qlen = 0,
676 .lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.gso_skb.lock),
677 },
678 .skb_bad_txq = {
679 .next = (struct sk_buff *)&noop_qdisc.skb_bad_txq,
680 .prev = (struct sk_buff *)&noop_qdisc.skb_bad_txq,
681 .qlen = 0,
682 .lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.skb_bad_txq.lock),
683 },
684 };
685 EXPORT_SYMBOL(noop_qdisc);
686
noqueue_init(struct Qdisc * qdisc,struct nlattr * opt,struct netlink_ext_ack * extack)687 static int noqueue_init(struct Qdisc *qdisc, struct nlattr *opt,
688 struct netlink_ext_ack *extack)
689 {
690 /* register_qdisc() assigns a default of noop_enqueue if unset,
691 * but __dev_queue_xmit() treats noqueue only as such
692 * if this is NULL - so clear it here. */
693 qdisc->enqueue = NULL;
694 return 0;
695 }
696
697 struct Qdisc_ops noqueue_qdisc_ops __read_mostly = {
698 .id = "noqueue",
699 .priv_size = 0,
700 .init = noqueue_init,
701 .enqueue = noop_enqueue,
702 .dequeue = noop_dequeue,
703 .peek = noop_dequeue,
704 .owner = THIS_MODULE,
705 };
706
707 static const u8 prio2band[TC_PRIO_MAX + 1] = {
708 1, 2, 2, 2, 1, 2, 0, 0 , 1, 1, 1, 1, 1, 1, 1, 1
709 };
710
711 /* 3-band FIFO queue: old style, but should be a bit faster than
712 generic prio+fifo combination.
713 */
714
715 #define PFIFO_FAST_BANDS 3
716
717 /*
718 * Private data for a pfifo_fast scheduler containing:
719 * - rings for priority bands
720 */
721 struct pfifo_fast_priv {
722 struct skb_array q[PFIFO_FAST_BANDS];
723 };
724
band2list(struct pfifo_fast_priv * priv,int band)725 static inline struct skb_array *band2list(struct pfifo_fast_priv *priv,
726 int band)
727 {
728 return &priv->q[band];
729 }
730
pfifo_fast_enqueue(struct sk_buff * skb,struct Qdisc * qdisc,struct sk_buff ** to_free)731 static int pfifo_fast_enqueue(struct sk_buff *skb, struct Qdisc *qdisc,
732 struct sk_buff **to_free)
733 {
734 int band = prio2band[skb->priority & TC_PRIO_MAX];
735 struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
736 struct skb_array *q = band2list(priv, band);
737 unsigned int pkt_len = qdisc_pkt_len(skb);
738 int err;
739
740 err = skb_array_produce(q, skb);
741
742 if (unlikely(err)) {
743 if (qdisc_is_percpu_stats(qdisc))
744 return qdisc_drop_cpu(skb, qdisc, to_free);
745 else
746 return qdisc_drop(skb, qdisc, to_free);
747 }
748
749 qdisc_update_stats_at_enqueue(qdisc, pkt_len);
750 return NET_XMIT_SUCCESS;
751 }
752
pfifo_fast_dequeue(struct Qdisc * qdisc)753 static struct sk_buff *pfifo_fast_dequeue(struct Qdisc *qdisc)
754 {
755 struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
756 struct sk_buff *skb = NULL;
757 bool need_retry = true;
758 int band;
759
760 retry:
761 for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) {
762 struct skb_array *q = band2list(priv, band);
763
764 if (__skb_array_empty(q))
765 continue;
766
767 skb = __skb_array_consume(q);
768 }
769 if (likely(skb)) {
770 qdisc_update_stats_at_dequeue(qdisc, skb);
771 } else if (need_retry &&
772 READ_ONCE(qdisc->state) & QDISC_STATE_NON_EMPTY) {
773 /* Delay clearing the STATE_MISSED here to reduce
774 * the overhead of the second spin_trylock() in
775 * qdisc_run_begin() and __netif_schedule() calling
776 * in qdisc_run_end().
777 */
778 clear_bit(__QDISC_STATE_MISSED, &qdisc->state);
779 clear_bit(__QDISC_STATE_DRAINING, &qdisc->state);
780
781 /* Make sure dequeuing happens after clearing
782 * STATE_MISSED.
783 */
784 smp_mb__after_atomic();
785
786 need_retry = false;
787
788 goto retry;
789 }
790
791 return skb;
792 }
793
pfifo_fast_peek(struct Qdisc * qdisc)794 static struct sk_buff *pfifo_fast_peek(struct Qdisc *qdisc)
795 {
796 struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
797 struct sk_buff *skb = NULL;
798 int band;
799
800 for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) {
801 struct skb_array *q = band2list(priv, band);
802
803 skb = __skb_array_peek(q);
804 }
805
806 return skb;
807 }
808
pfifo_fast_reset(struct Qdisc * qdisc)809 static void pfifo_fast_reset(struct Qdisc *qdisc)
810 {
811 int i, band;
812 struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
813
814 for (band = 0; band < PFIFO_FAST_BANDS; band++) {
815 struct skb_array *q = band2list(priv, band);
816 struct sk_buff *skb;
817
818 /* NULL ring is possible if destroy path is due to a failed
819 * skb_array_init() in pfifo_fast_init() case.
820 */
821 if (!q->ring.queue)
822 continue;
823
824 while ((skb = __skb_array_consume(q)) != NULL)
825 kfree_skb(skb);
826 }
827
828 if (qdisc_is_percpu_stats(qdisc)) {
829 for_each_possible_cpu(i) {
830 struct gnet_stats_queue *q;
831
832 q = per_cpu_ptr(qdisc->cpu_qstats, i);
833 q->backlog = 0;
834 q->qlen = 0;
835 }
836 }
837 }
838
pfifo_fast_dump(struct Qdisc * qdisc,struct sk_buff * skb)839 static int pfifo_fast_dump(struct Qdisc *qdisc, struct sk_buff *skb)
840 {
841 struct tc_prio_qopt opt = { .bands = PFIFO_FAST_BANDS };
842
843 memcpy(&opt.priomap, prio2band, TC_PRIO_MAX + 1);
844 if (nla_put(skb, TCA_OPTIONS, sizeof(opt), &opt))
845 goto nla_put_failure;
846 return skb->len;
847
848 nla_put_failure:
849 return -1;
850 }
851
pfifo_fast_init(struct Qdisc * qdisc,struct nlattr * opt,struct netlink_ext_ack * extack)852 static int pfifo_fast_init(struct Qdisc *qdisc, struct nlattr *opt,
853 struct netlink_ext_ack *extack)
854 {
855 unsigned int qlen = qdisc_dev(qdisc)->tx_queue_len;
856 struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
857 int prio;
858
859 /* guard against zero length rings */
860 if (!qlen)
861 return -EINVAL;
862
863 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) {
864 struct skb_array *q = band2list(priv, prio);
865 int err;
866
867 err = skb_array_init(q, qlen, GFP_KERNEL);
868 if (err)
869 return -ENOMEM;
870 }
871
872 /* Can by-pass the queue discipline */
873 qdisc->flags |= TCQ_F_CAN_BYPASS;
874 return 0;
875 }
876
pfifo_fast_destroy(struct Qdisc * sch)877 static void pfifo_fast_destroy(struct Qdisc *sch)
878 {
879 struct pfifo_fast_priv *priv = qdisc_priv(sch);
880 int prio;
881
882 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) {
883 struct skb_array *q = band2list(priv, prio);
884
885 /* NULL ring is possible if destroy path is due to a failed
886 * skb_array_init() in pfifo_fast_init() case.
887 */
888 if (!q->ring.queue)
889 continue;
890 /* Destroy ring but no need to kfree_skb because a call to
891 * pfifo_fast_reset() has already done that work.
892 */
893 ptr_ring_cleanup(&q->ring, NULL);
894 }
895 }
896
pfifo_fast_change_tx_queue_len(struct Qdisc * sch,unsigned int new_len)897 static int pfifo_fast_change_tx_queue_len(struct Qdisc *sch,
898 unsigned int new_len)
899 {
900 struct pfifo_fast_priv *priv = qdisc_priv(sch);
901 struct skb_array *bands[PFIFO_FAST_BANDS];
902 int prio;
903
904 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) {
905 struct skb_array *q = band2list(priv, prio);
906
907 bands[prio] = q;
908 }
909
910 return skb_array_resize_multiple(bands, PFIFO_FAST_BANDS, new_len,
911 GFP_KERNEL);
912 }
913
914 struct Qdisc_ops pfifo_fast_ops __read_mostly = {
915 .id = "pfifo_fast",
916 .priv_size = sizeof(struct pfifo_fast_priv),
917 .enqueue = pfifo_fast_enqueue,
918 .dequeue = pfifo_fast_dequeue,
919 .peek = pfifo_fast_peek,
920 .init = pfifo_fast_init,
921 .destroy = pfifo_fast_destroy,
922 .reset = pfifo_fast_reset,
923 .dump = pfifo_fast_dump,
924 .change_tx_queue_len = pfifo_fast_change_tx_queue_len,
925 .owner = THIS_MODULE,
926 .static_flags = TCQ_F_NOLOCK | TCQ_F_CPUSTATS,
927 };
928 EXPORT_SYMBOL(pfifo_fast_ops);
929
930 static struct lock_class_key qdisc_tx_busylock;
931
qdisc_alloc(struct netdev_queue * dev_queue,const struct Qdisc_ops * ops,struct netlink_ext_ack * extack)932 struct Qdisc *qdisc_alloc(struct netdev_queue *dev_queue,
933 const struct Qdisc_ops *ops,
934 struct netlink_ext_ack *extack)
935 {
936 struct Qdisc *sch;
937 unsigned int size = sizeof(*sch) + ops->priv_size;
938 int err = -ENOBUFS;
939 struct net_device *dev;
940
941 if (!dev_queue) {
942 NL_SET_ERR_MSG(extack, "No device queue given");
943 err = -EINVAL;
944 goto errout;
945 }
946
947 dev = dev_queue->dev;
948 sch = kzalloc_node(size, GFP_KERNEL, netdev_queue_numa_node_read(dev_queue));
949
950 if (!sch)
951 goto errout;
952 __skb_queue_head_init(&sch->gso_skb);
953 __skb_queue_head_init(&sch->skb_bad_txq);
954 gnet_stats_basic_sync_init(&sch->bstats);
955 lockdep_register_key(&sch->root_lock_key);
956 spin_lock_init(&sch->q.lock);
957 lockdep_set_class(&sch->q.lock, &sch->root_lock_key);
958
959 if (ops->static_flags & TCQ_F_CPUSTATS) {
960 sch->cpu_bstats =
961 netdev_alloc_pcpu_stats(struct gnet_stats_basic_sync);
962 if (!sch->cpu_bstats)
963 goto errout1;
964
965 sch->cpu_qstats = alloc_percpu(struct gnet_stats_queue);
966 if (!sch->cpu_qstats) {
967 free_percpu(sch->cpu_bstats);
968 goto errout1;
969 }
970 }
971
972 spin_lock_init(&sch->busylock);
973 lockdep_set_class(&sch->busylock,
974 dev->qdisc_tx_busylock ?: &qdisc_tx_busylock);
975
976 /* seqlock has the same scope of busylock, for NOLOCK qdisc */
977 spin_lock_init(&sch->seqlock);
978 lockdep_set_class(&sch->seqlock,
979 dev->qdisc_tx_busylock ?: &qdisc_tx_busylock);
980
981 sch->ops = ops;
982 sch->flags = ops->static_flags;
983 sch->enqueue = ops->enqueue;
984 sch->dequeue = ops->dequeue;
985 sch->dev_queue = dev_queue;
986 netdev_hold(dev, &sch->dev_tracker, GFP_KERNEL);
987 refcount_set(&sch->refcnt, 1);
988
989 return sch;
990 errout1:
991 lockdep_unregister_key(&sch->root_lock_key);
992 kfree(sch);
993 errout:
994 return ERR_PTR(err);
995 }
996
qdisc_create_dflt(struct netdev_queue * dev_queue,const struct Qdisc_ops * ops,unsigned int parentid,struct netlink_ext_ack * extack)997 struct Qdisc *qdisc_create_dflt(struct netdev_queue *dev_queue,
998 const struct Qdisc_ops *ops,
999 unsigned int parentid,
1000 struct netlink_ext_ack *extack)
1001 {
1002 struct Qdisc *sch;
1003
1004 if (!try_module_get(ops->owner)) {
1005 NL_SET_ERR_MSG(extack, "Failed to increase module reference counter");
1006 return NULL;
1007 }
1008
1009 sch = qdisc_alloc(dev_queue, ops, extack);
1010 if (IS_ERR(sch)) {
1011 module_put(ops->owner);
1012 return NULL;
1013 }
1014 sch->parent = parentid;
1015
1016 if (!ops->init || ops->init(sch, NULL, extack) == 0) {
1017 trace_qdisc_create(ops, dev_queue->dev, parentid);
1018 return sch;
1019 }
1020
1021 qdisc_put(sch);
1022 return NULL;
1023 }
1024 EXPORT_SYMBOL(qdisc_create_dflt);
1025
1026 /* Under qdisc_lock(qdisc) and BH! */
1027
qdisc_reset(struct Qdisc * qdisc)1028 void qdisc_reset(struct Qdisc *qdisc)
1029 {
1030 const struct Qdisc_ops *ops = qdisc->ops;
1031
1032 trace_qdisc_reset(qdisc);
1033
1034 if (ops->reset)
1035 ops->reset(qdisc);
1036
1037 __skb_queue_purge(&qdisc->gso_skb);
1038 __skb_queue_purge(&qdisc->skb_bad_txq);
1039
1040 qdisc->q.qlen = 0;
1041 qdisc->qstats.backlog = 0;
1042 }
1043 EXPORT_SYMBOL(qdisc_reset);
1044
qdisc_free(struct Qdisc * qdisc)1045 void qdisc_free(struct Qdisc *qdisc)
1046 {
1047 if (qdisc_is_percpu_stats(qdisc)) {
1048 free_percpu(qdisc->cpu_bstats);
1049 free_percpu(qdisc->cpu_qstats);
1050 }
1051
1052 kfree(qdisc);
1053 }
1054
qdisc_free_cb(struct rcu_head * head)1055 static void qdisc_free_cb(struct rcu_head *head)
1056 {
1057 struct Qdisc *q = container_of(head, struct Qdisc, rcu);
1058
1059 qdisc_free(q);
1060 }
1061
__qdisc_destroy(struct Qdisc * qdisc)1062 static void __qdisc_destroy(struct Qdisc *qdisc)
1063 {
1064 const struct Qdisc_ops *ops = qdisc->ops;
1065
1066 #ifdef CONFIG_NET_SCHED
1067 qdisc_hash_del(qdisc);
1068
1069 qdisc_put_stab(rtnl_dereference(qdisc->stab));
1070 #endif
1071 gen_kill_estimator(&qdisc->rate_est);
1072
1073 qdisc_reset(qdisc);
1074
1075 if (ops->destroy)
1076 ops->destroy(qdisc);
1077
1078 lockdep_unregister_key(&qdisc->root_lock_key);
1079 module_put(ops->owner);
1080 netdev_put(qdisc_dev(qdisc), &qdisc->dev_tracker);
1081
1082 trace_qdisc_destroy(qdisc);
1083
1084 call_rcu(&qdisc->rcu, qdisc_free_cb);
1085 }
1086
qdisc_destroy(struct Qdisc * qdisc)1087 void qdisc_destroy(struct Qdisc *qdisc)
1088 {
1089 if (qdisc->flags & TCQ_F_BUILTIN)
1090 return;
1091
1092 __qdisc_destroy(qdisc);
1093 }
1094
qdisc_put(struct Qdisc * qdisc)1095 void qdisc_put(struct Qdisc *qdisc)
1096 {
1097 if (!qdisc)
1098 return;
1099
1100 if (qdisc->flags & TCQ_F_BUILTIN ||
1101 !refcount_dec_and_test(&qdisc->refcnt))
1102 return;
1103
1104 __qdisc_destroy(qdisc);
1105 }
1106 EXPORT_SYMBOL(qdisc_put);
1107
1108 /* Version of qdisc_put() that is called with rtnl mutex unlocked.
1109 * Intended to be used as optimization, this function only takes rtnl lock if
1110 * qdisc reference counter reached zero.
1111 */
1112
qdisc_put_unlocked(struct Qdisc * qdisc)1113 void qdisc_put_unlocked(struct Qdisc *qdisc)
1114 {
1115 if (qdisc->flags & TCQ_F_BUILTIN ||
1116 !refcount_dec_and_rtnl_lock(&qdisc->refcnt))
1117 return;
1118
1119 __qdisc_destroy(qdisc);
1120 rtnl_unlock();
1121 }
1122 EXPORT_SYMBOL(qdisc_put_unlocked);
1123
1124 /* Attach toplevel qdisc to device queue. */
dev_graft_qdisc(struct netdev_queue * dev_queue,struct Qdisc * qdisc)1125 struct Qdisc *dev_graft_qdisc(struct netdev_queue *dev_queue,
1126 struct Qdisc *qdisc)
1127 {
1128 struct Qdisc *oqdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1129 spinlock_t *root_lock;
1130
1131 root_lock = qdisc_lock(oqdisc);
1132 spin_lock_bh(root_lock);
1133
1134 /* ... and graft new one */
1135 if (qdisc == NULL)
1136 qdisc = &noop_qdisc;
1137 rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc);
1138 rcu_assign_pointer(dev_queue->qdisc, &noop_qdisc);
1139
1140 spin_unlock_bh(root_lock);
1141
1142 return oqdisc;
1143 }
1144 EXPORT_SYMBOL(dev_graft_qdisc);
1145
shutdown_scheduler_queue(struct net_device * dev,struct netdev_queue * dev_queue,void * _qdisc_default)1146 static void shutdown_scheduler_queue(struct net_device *dev,
1147 struct netdev_queue *dev_queue,
1148 void *_qdisc_default)
1149 {
1150 struct Qdisc *qdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1151 struct Qdisc *qdisc_default = _qdisc_default;
1152
1153 if (qdisc) {
1154 rcu_assign_pointer(dev_queue->qdisc, qdisc_default);
1155 rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc_default);
1156
1157 qdisc_put(qdisc);
1158 }
1159 }
1160
attach_one_default_qdisc(struct net_device * dev,struct netdev_queue * dev_queue,void * _unused)1161 static void attach_one_default_qdisc(struct net_device *dev,
1162 struct netdev_queue *dev_queue,
1163 void *_unused)
1164 {
1165 struct Qdisc *qdisc;
1166 const struct Qdisc_ops *ops = default_qdisc_ops;
1167
1168 if (dev->priv_flags & IFF_NO_QUEUE)
1169 ops = &noqueue_qdisc_ops;
1170 else if(dev->type == ARPHRD_CAN)
1171 ops = &pfifo_fast_ops;
1172
1173 qdisc = qdisc_create_dflt(dev_queue, ops, TC_H_ROOT, NULL);
1174 if (!qdisc)
1175 return;
1176
1177 if (!netif_is_multiqueue(dev))
1178 qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
1179 rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc);
1180 }
1181
attach_default_qdiscs(struct net_device * dev)1182 static void attach_default_qdiscs(struct net_device *dev)
1183 {
1184 struct netdev_queue *txq;
1185 struct Qdisc *qdisc;
1186
1187 txq = netdev_get_tx_queue(dev, 0);
1188
1189 if (!netif_is_multiqueue(dev) ||
1190 dev->priv_flags & IFF_NO_QUEUE) {
1191 netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL);
1192 qdisc = rtnl_dereference(txq->qdisc_sleeping);
1193 rcu_assign_pointer(dev->qdisc, qdisc);
1194 qdisc_refcount_inc(qdisc);
1195 } else {
1196 qdisc = qdisc_create_dflt(txq, &mq_qdisc_ops, TC_H_ROOT, NULL);
1197 if (qdisc) {
1198 rcu_assign_pointer(dev->qdisc, qdisc);
1199 qdisc->ops->attach(qdisc);
1200 }
1201 }
1202 qdisc = rtnl_dereference(dev->qdisc);
1203
1204 /* Detect default qdisc setup/init failed and fallback to "noqueue" */
1205 if (qdisc == &noop_qdisc) {
1206 netdev_warn(dev, "default qdisc (%s) fail, fallback to %s\n",
1207 default_qdisc_ops->id, noqueue_qdisc_ops.id);
1208 netdev_for_each_tx_queue(dev, shutdown_scheduler_queue, &noop_qdisc);
1209 dev->priv_flags |= IFF_NO_QUEUE;
1210 netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL);
1211 qdisc = rtnl_dereference(txq->qdisc_sleeping);
1212 rcu_assign_pointer(dev->qdisc, qdisc);
1213 qdisc_refcount_inc(qdisc);
1214 dev->priv_flags ^= IFF_NO_QUEUE;
1215 }
1216
1217 #ifdef CONFIG_NET_SCHED
1218 if (qdisc != &noop_qdisc)
1219 qdisc_hash_add(qdisc, false);
1220 #endif
1221 }
1222
transition_one_qdisc(struct net_device * dev,struct netdev_queue * dev_queue,void * _need_watchdog)1223 static void transition_one_qdisc(struct net_device *dev,
1224 struct netdev_queue *dev_queue,
1225 void *_need_watchdog)
1226 {
1227 struct Qdisc *new_qdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1228 int *need_watchdog_p = _need_watchdog;
1229
1230 if (!(new_qdisc->flags & TCQ_F_BUILTIN))
1231 clear_bit(__QDISC_STATE_DEACTIVATED, &new_qdisc->state);
1232
1233 rcu_assign_pointer(dev_queue->qdisc, new_qdisc);
1234 if (need_watchdog_p) {
1235 WRITE_ONCE(dev_queue->trans_start, 0);
1236 *need_watchdog_p = 1;
1237 }
1238 }
1239
dev_activate(struct net_device * dev)1240 void dev_activate(struct net_device *dev)
1241 {
1242 int need_watchdog;
1243
1244 /* No queueing discipline is attached to device;
1245 * create default one for devices, which need queueing
1246 * and noqueue_qdisc for virtual interfaces
1247 */
1248
1249 if (rtnl_dereference(dev->qdisc) == &noop_qdisc)
1250 attach_default_qdiscs(dev);
1251
1252 if (!netif_carrier_ok(dev))
1253 /* Delay activation until next carrier-on event */
1254 return;
1255
1256 need_watchdog = 0;
1257 netdev_for_each_tx_queue(dev, transition_one_qdisc, &need_watchdog);
1258 if (dev_ingress_queue(dev))
1259 transition_one_qdisc(dev, dev_ingress_queue(dev), NULL);
1260
1261 if (need_watchdog) {
1262 netif_trans_update(dev);
1263 dev_watchdog_up(dev);
1264 }
1265 }
1266 EXPORT_SYMBOL(dev_activate);
1267
qdisc_deactivate(struct Qdisc * qdisc)1268 static void qdisc_deactivate(struct Qdisc *qdisc)
1269 {
1270 if (qdisc->flags & TCQ_F_BUILTIN)
1271 return;
1272
1273 set_bit(__QDISC_STATE_DEACTIVATED, &qdisc->state);
1274 }
1275
dev_deactivate_queue(struct net_device * dev,struct netdev_queue * dev_queue,void * _qdisc_default)1276 static void dev_deactivate_queue(struct net_device *dev,
1277 struct netdev_queue *dev_queue,
1278 void *_qdisc_default)
1279 {
1280 struct Qdisc *qdisc_default = _qdisc_default;
1281 struct Qdisc *qdisc;
1282
1283 qdisc = rtnl_dereference(dev_queue->qdisc);
1284 if (qdisc) {
1285 qdisc_deactivate(qdisc);
1286 rcu_assign_pointer(dev_queue->qdisc, qdisc_default);
1287 }
1288 }
1289
dev_reset_queue(struct net_device * dev,struct netdev_queue * dev_queue,void * _unused)1290 static void dev_reset_queue(struct net_device *dev,
1291 struct netdev_queue *dev_queue,
1292 void *_unused)
1293 {
1294 struct Qdisc *qdisc;
1295 bool nolock;
1296
1297 qdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1298 if (!qdisc)
1299 return;
1300
1301 nolock = qdisc->flags & TCQ_F_NOLOCK;
1302
1303 if (nolock)
1304 spin_lock_bh(&qdisc->seqlock);
1305 spin_lock_bh(qdisc_lock(qdisc));
1306
1307 qdisc_reset(qdisc);
1308
1309 spin_unlock_bh(qdisc_lock(qdisc));
1310 if (nolock) {
1311 clear_bit(__QDISC_STATE_MISSED, &qdisc->state);
1312 clear_bit(__QDISC_STATE_DRAINING, &qdisc->state);
1313 spin_unlock_bh(&qdisc->seqlock);
1314 }
1315 }
1316
some_qdisc_is_busy(struct net_device * dev)1317 static bool some_qdisc_is_busy(struct net_device *dev)
1318 {
1319 unsigned int i;
1320
1321 for (i = 0; i < dev->num_tx_queues; i++) {
1322 struct netdev_queue *dev_queue;
1323 spinlock_t *root_lock;
1324 struct Qdisc *q;
1325 int val;
1326
1327 dev_queue = netdev_get_tx_queue(dev, i);
1328 q = rtnl_dereference(dev_queue->qdisc_sleeping);
1329
1330 root_lock = qdisc_lock(q);
1331 spin_lock_bh(root_lock);
1332
1333 val = (qdisc_is_running(q) ||
1334 test_bit(__QDISC_STATE_SCHED, &q->state));
1335
1336 spin_unlock_bh(root_lock);
1337
1338 if (val)
1339 return true;
1340 }
1341 return false;
1342 }
1343
1344 /**
1345 * dev_deactivate_many - deactivate transmissions on several devices
1346 * @head: list of devices to deactivate
1347 *
1348 * This function returns only when all outstanding transmissions
1349 * have completed, unless all devices are in dismantle phase.
1350 */
dev_deactivate_many(struct list_head * head)1351 void dev_deactivate_many(struct list_head *head)
1352 {
1353 struct net_device *dev;
1354
1355 list_for_each_entry(dev, head, close_list) {
1356 netdev_for_each_tx_queue(dev, dev_deactivate_queue,
1357 &noop_qdisc);
1358 if (dev_ingress_queue(dev))
1359 dev_deactivate_queue(dev, dev_ingress_queue(dev),
1360 &noop_qdisc);
1361
1362 dev_watchdog_down(dev);
1363 }
1364
1365 /* Wait for outstanding qdisc-less dev_queue_xmit calls or
1366 * outstanding qdisc enqueuing calls.
1367 * This is avoided if all devices are in dismantle phase :
1368 * Caller will call synchronize_net() for us
1369 */
1370 synchronize_net();
1371
1372 list_for_each_entry(dev, head, close_list) {
1373 netdev_for_each_tx_queue(dev, dev_reset_queue, NULL);
1374
1375 if (dev_ingress_queue(dev))
1376 dev_reset_queue(dev, dev_ingress_queue(dev), NULL);
1377 }
1378
1379 /* Wait for outstanding qdisc_run calls. */
1380 list_for_each_entry(dev, head, close_list) {
1381 while (some_qdisc_is_busy(dev)) {
1382 /* wait_event() would avoid this sleep-loop but would
1383 * require expensive checks in the fast paths of packet
1384 * processing which isn't worth it.
1385 */
1386 schedule_timeout_uninterruptible(1);
1387 }
1388 }
1389 }
1390
dev_deactivate(struct net_device * dev)1391 void dev_deactivate(struct net_device *dev)
1392 {
1393 LIST_HEAD(single);
1394
1395 list_add(&dev->close_list, &single);
1396 dev_deactivate_many(&single);
1397 list_del(&single);
1398 }
1399 EXPORT_SYMBOL(dev_deactivate);
1400
qdisc_change_tx_queue_len(struct net_device * dev,struct netdev_queue * dev_queue)1401 static int qdisc_change_tx_queue_len(struct net_device *dev,
1402 struct netdev_queue *dev_queue)
1403 {
1404 struct Qdisc *qdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1405 const struct Qdisc_ops *ops = qdisc->ops;
1406
1407 if (ops->change_tx_queue_len)
1408 return ops->change_tx_queue_len(qdisc, dev->tx_queue_len);
1409 return 0;
1410 }
1411
dev_qdisc_change_real_num_tx(struct net_device * dev,unsigned int new_real_tx)1412 void dev_qdisc_change_real_num_tx(struct net_device *dev,
1413 unsigned int new_real_tx)
1414 {
1415 struct Qdisc *qdisc = rtnl_dereference(dev->qdisc);
1416
1417 if (qdisc->ops->change_real_num_tx)
1418 qdisc->ops->change_real_num_tx(qdisc, new_real_tx);
1419 }
1420
mq_change_real_num_tx(struct Qdisc * sch,unsigned int new_real_tx)1421 void mq_change_real_num_tx(struct Qdisc *sch, unsigned int new_real_tx)
1422 {
1423 #ifdef CONFIG_NET_SCHED
1424 struct net_device *dev = qdisc_dev(sch);
1425 struct Qdisc *qdisc;
1426 unsigned int i;
1427
1428 for (i = new_real_tx; i < dev->real_num_tx_queues; i++) {
1429 qdisc = rtnl_dereference(netdev_get_tx_queue(dev, i)->qdisc_sleeping);
1430 /* Only update the default qdiscs we created,
1431 * qdiscs with handles are always hashed.
1432 */
1433 if (qdisc != &noop_qdisc && !qdisc->handle)
1434 qdisc_hash_del(qdisc);
1435 }
1436 for (i = dev->real_num_tx_queues; i < new_real_tx; i++) {
1437 qdisc = rtnl_dereference(netdev_get_tx_queue(dev, i)->qdisc_sleeping);
1438 if (qdisc != &noop_qdisc && !qdisc->handle)
1439 qdisc_hash_add(qdisc, false);
1440 }
1441 #endif
1442 }
1443 EXPORT_SYMBOL(mq_change_real_num_tx);
1444
dev_qdisc_change_tx_queue_len(struct net_device * dev)1445 int dev_qdisc_change_tx_queue_len(struct net_device *dev)
1446 {
1447 bool up = dev->flags & IFF_UP;
1448 unsigned int i;
1449 int ret = 0;
1450
1451 if (up)
1452 dev_deactivate(dev);
1453
1454 for (i = 0; i < dev->num_tx_queues; i++) {
1455 ret = qdisc_change_tx_queue_len(dev, &dev->_tx[i]);
1456
1457 /* TODO: revert changes on a partial failure */
1458 if (ret)
1459 break;
1460 }
1461
1462 if (up)
1463 dev_activate(dev);
1464 return ret;
1465 }
1466
dev_init_scheduler_queue(struct net_device * dev,struct netdev_queue * dev_queue,void * _qdisc)1467 static void dev_init_scheduler_queue(struct net_device *dev,
1468 struct netdev_queue *dev_queue,
1469 void *_qdisc)
1470 {
1471 struct Qdisc *qdisc = _qdisc;
1472
1473 rcu_assign_pointer(dev_queue->qdisc, qdisc);
1474 rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc);
1475 }
1476
dev_init_scheduler(struct net_device * dev)1477 void dev_init_scheduler(struct net_device *dev)
1478 {
1479 rcu_assign_pointer(dev->qdisc, &noop_qdisc);
1480 netdev_for_each_tx_queue(dev, dev_init_scheduler_queue, &noop_qdisc);
1481 if (dev_ingress_queue(dev))
1482 dev_init_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc);
1483
1484 timer_setup(&dev->watchdog_timer, dev_watchdog, 0);
1485 }
1486
dev_shutdown(struct net_device * dev)1487 void dev_shutdown(struct net_device *dev)
1488 {
1489 netdev_for_each_tx_queue(dev, shutdown_scheduler_queue, &noop_qdisc);
1490 if (dev_ingress_queue(dev))
1491 shutdown_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc);
1492 qdisc_put(rtnl_dereference(dev->qdisc));
1493 rcu_assign_pointer(dev->qdisc, &noop_qdisc);
1494
1495 WARN_ON(timer_pending(&dev->watchdog_timer));
1496 }
1497
1498 /**
1499 * psched_ratecfg_precompute__() - Pre-compute values for reciprocal division
1500 * @rate: Rate to compute reciprocal division values of
1501 * @mult: Multiplier for reciprocal division
1502 * @shift: Shift for reciprocal division
1503 *
1504 * The multiplier and shift for reciprocal division by rate are stored
1505 * in mult and shift.
1506 *
1507 * The deal here is to replace a divide by a reciprocal one
1508 * in fast path (a reciprocal divide is a multiply and a shift)
1509 *
1510 * Normal formula would be :
1511 * time_in_ns = (NSEC_PER_SEC * len) / rate_bps
1512 *
1513 * We compute mult/shift to use instead :
1514 * time_in_ns = (len * mult) >> shift;
1515 *
1516 * We try to get the highest possible mult value for accuracy,
1517 * but have to make sure no overflows will ever happen.
1518 *
1519 * reciprocal_value() is not used here it doesn't handle 64-bit values.
1520 */
psched_ratecfg_precompute__(u64 rate,u32 * mult,u8 * shift)1521 static void psched_ratecfg_precompute__(u64 rate, u32 *mult, u8 *shift)
1522 {
1523 u64 factor = NSEC_PER_SEC;
1524
1525 *mult = 1;
1526 *shift = 0;
1527
1528 if (rate <= 0)
1529 return;
1530
1531 for (;;) {
1532 *mult = div64_u64(factor, rate);
1533 if (*mult & (1U << 31) || factor & (1ULL << 63))
1534 break;
1535 factor <<= 1;
1536 (*shift)++;
1537 }
1538 }
1539
psched_ratecfg_precompute(struct psched_ratecfg * r,const struct tc_ratespec * conf,u64 rate64)1540 void psched_ratecfg_precompute(struct psched_ratecfg *r,
1541 const struct tc_ratespec *conf,
1542 u64 rate64)
1543 {
1544 memset(r, 0, sizeof(*r));
1545 r->overhead = conf->overhead;
1546 r->mpu = conf->mpu;
1547 r->rate_bytes_ps = max_t(u64, conf->rate, rate64);
1548 r->linklayer = (conf->linklayer & TC_LINKLAYER_MASK);
1549 psched_ratecfg_precompute__(r->rate_bytes_ps, &r->mult, &r->shift);
1550 }
1551 EXPORT_SYMBOL(psched_ratecfg_precompute);
1552
psched_ppscfg_precompute(struct psched_pktrate * r,u64 pktrate64)1553 void psched_ppscfg_precompute(struct psched_pktrate *r, u64 pktrate64)
1554 {
1555 r->rate_pkts_ps = pktrate64;
1556 psched_ratecfg_precompute__(r->rate_pkts_ps, &r->mult, &r->shift);
1557 }
1558 EXPORT_SYMBOL(psched_ppscfg_precompute);
1559
mini_qdisc_pair_swap(struct mini_Qdisc_pair * miniqp,struct tcf_proto * tp_head)1560 void mini_qdisc_pair_swap(struct mini_Qdisc_pair *miniqp,
1561 struct tcf_proto *tp_head)
1562 {
1563 /* Protected with chain0->filter_chain_lock.
1564 * Can't access chain directly because tp_head can be NULL.
1565 */
1566 struct mini_Qdisc *miniq_old =
1567 rcu_dereference_protected(*miniqp->p_miniq, 1);
1568 struct mini_Qdisc *miniq;
1569
1570 if (!tp_head) {
1571 RCU_INIT_POINTER(*miniqp->p_miniq, NULL);
1572 } else {
1573 miniq = miniq_old != &miniqp->miniq1 ?
1574 &miniqp->miniq1 : &miniqp->miniq2;
1575
1576 /* We need to make sure that readers won't see the miniq
1577 * we are about to modify. So ensure that at least one RCU
1578 * grace period has elapsed since the miniq was made
1579 * inactive.
1580 */
1581 if (IS_ENABLED(CONFIG_PREEMPT_RT))
1582 cond_synchronize_rcu(miniq->rcu_state);
1583 else if (!poll_state_synchronize_rcu(miniq->rcu_state))
1584 synchronize_rcu_expedited();
1585
1586 miniq->filter_list = tp_head;
1587 rcu_assign_pointer(*miniqp->p_miniq, miniq);
1588 }
1589
1590 if (miniq_old)
1591 /* This is counterpart of the rcu sync above. We need to
1592 * block potential new user of miniq_old until all readers
1593 * are not seeing it.
1594 */
1595 miniq_old->rcu_state = start_poll_synchronize_rcu();
1596 }
1597 EXPORT_SYMBOL(mini_qdisc_pair_swap);
1598
mini_qdisc_pair_block_init(struct mini_Qdisc_pair * miniqp,struct tcf_block * block)1599 void mini_qdisc_pair_block_init(struct mini_Qdisc_pair *miniqp,
1600 struct tcf_block *block)
1601 {
1602 miniqp->miniq1.block = block;
1603 miniqp->miniq2.block = block;
1604 }
1605 EXPORT_SYMBOL(mini_qdisc_pair_block_init);
1606
mini_qdisc_pair_init(struct mini_Qdisc_pair * miniqp,struct Qdisc * qdisc,struct mini_Qdisc __rcu ** p_miniq)1607 void mini_qdisc_pair_init(struct mini_Qdisc_pair *miniqp, struct Qdisc *qdisc,
1608 struct mini_Qdisc __rcu **p_miniq)
1609 {
1610 miniqp->miniq1.cpu_bstats = qdisc->cpu_bstats;
1611 miniqp->miniq1.cpu_qstats = qdisc->cpu_qstats;
1612 miniqp->miniq2.cpu_bstats = qdisc->cpu_bstats;
1613 miniqp->miniq2.cpu_qstats = qdisc->cpu_qstats;
1614 miniqp->miniq1.rcu_state = get_state_synchronize_rcu();
1615 miniqp->miniq2.rcu_state = miniqp->miniq1.rcu_state;
1616 miniqp->p_miniq = p_miniq;
1617 }
1618 EXPORT_SYMBOL(mini_qdisc_pair_init);
1619