xref: /openbmc/linux/net/sched/sch_fq_codel.c (revision 4f139972b489f8bc2c821aa25ac65018d92af3f7)
1 /*
2  * Fair Queue CoDel discipline
3  *
4  *	This program is free software; you can redistribute it and/or
5  *	modify it under the terms of the GNU General Public License
6  *	as published by the Free Software Foundation; either version
7  *	2 of the License, or (at your option) any later version.
8  *
9  *  Copyright (C) 2012,2015 Eric Dumazet <edumazet@google.com>
10  */
11 
12 #include <linux/module.h>
13 #include <linux/types.h>
14 #include <linux/kernel.h>
15 #include <linux/jiffies.h>
16 #include <linux/string.h>
17 #include <linux/in.h>
18 #include <linux/errno.h>
19 #include <linux/init.h>
20 #include <linux/skbuff.h>
21 #include <linux/jhash.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <net/netlink.h>
25 #include <net/pkt_sched.h>
26 #include <net/pkt_cls.h>
27 #include <net/codel.h>
28 #include <net/codel_impl.h>
29 #include <net/codel_qdisc.h>
30 
31 /*	Fair Queue CoDel.
32  *
33  * Principles :
34  * Packets are classified (internal classifier or external) on flows.
35  * This is a Stochastic model (as we use a hash, several flows
36  *			       might be hashed on same slot)
37  * Each flow has a CoDel managed queue.
38  * Flows are linked onto two (Round Robin) lists,
39  * so that new flows have priority on old ones.
40  *
41  * For a given flow, packets are not reordered (CoDel uses a FIFO)
42  * head drops only.
43  * ECN capability is on by default.
44  * Low memory footprint (64 bytes per flow)
45  */
46 
47 struct fq_codel_flow {
48 	struct sk_buff	  *head;
49 	struct sk_buff	  *tail;
50 	struct list_head  flowchain;
51 	int		  deficit;
52 	u32		  dropped; /* number of drops (or ECN marks) on this flow */
53 	struct codel_vars cvars;
54 }; /* please try to keep this structure <= 64 bytes */
55 
56 struct fq_codel_sched_data {
57 	struct tcf_proto __rcu *filter_list; /* optional external classifier */
58 	struct fq_codel_flow *flows;	/* Flows table [flows_cnt] */
59 	u32		*backlogs;	/* backlog table [flows_cnt] */
60 	u32		flows_cnt;	/* number of flows */
61 	u32		quantum;	/* psched_mtu(qdisc_dev(sch)); */
62 	u32		drop_batch_size;
63 	u32		memory_limit;
64 	struct codel_params cparams;
65 	struct codel_stats cstats;
66 	u32		memory_usage;
67 	u32		drop_overmemory;
68 	u32		drop_overlimit;
69 	u32		new_flow_count;
70 
71 	struct list_head new_flows;	/* list of new flows */
72 	struct list_head old_flows;	/* list of old flows */
73 };
74 
75 static unsigned int fq_codel_hash(const struct fq_codel_sched_data *q,
76 				  struct sk_buff *skb)
77 {
78 	return reciprocal_scale(skb_get_hash(skb), q->flows_cnt);
79 }
80 
81 static unsigned int fq_codel_classify(struct sk_buff *skb, struct Qdisc *sch,
82 				      int *qerr)
83 {
84 	struct fq_codel_sched_data *q = qdisc_priv(sch);
85 	struct tcf_proto *filter;
86 	struct tcf_result res;
87 	int result;
88 
89 	if (TC_H_MAJ(skb->priority) == sch->handle &&
90 	    TC_H_MIN(skb->priority) > 0 &&
91 	    TC_H_MIN(skb->priority) <= q->flows_cnt)
92 		return TC_H_MIN(skb->priority);
93 
94 	filter = rcu_dereference_bh(q->filter_list);
95 	if (!filter)
96 		return fq_codel_hash(q, skb) + 1;
97 
98 	*qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
99 	result = tc_classify(skb, filter, &res, false);
100 	if (result >= 0) {
101 #ifdef CONFIG_NET_CLS_ACT
102 		switch (result) {
103 		case TC_ACT_STOLEN:
104 		case TC_ACT_QUEUED:
105 			*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
106 		case TC_ACT_SHOT:
107 			return 0;
108 		}
109 #endif
110 		if (TC_H_MIN(res.classid) <= q->flows_cnt)
111 			return TC_H_MIN(res.classid);
112 	}
113 	return 0;
114 }
115 
116 /* helper functions : might be changed when/if skb use a standard list_head */
117 
118 /* remove one skb from head of slot queue */
119 static inline struct sk_buff *dequeue_head(struct fq_codel_flow *flow)
120 {
121 	struct sk_buff *skb = flow->head;
122 
123 	flow->head = skb->next;
124 	skb->next = NULL;
125 	return skb;
126 }
127 
128 /* add skb to flow queue (tail add) */
129 static inline void flow_queue_add(struct fq_codel_flow *flow,
130 				  struct sk_buff *skb)
131 {
132 	if (flow->head == NULL)
133 		flow->head = skb;
134 	else
135 		flow->tail->next = skb;
136 	flow->tail = skb;
137 	skb->next = NULL;
138 }
139 
140 static unsigned int fq_codel_drop(struct Qdisc *sch, unsigned int max_packets,
141 				  struct sk_buff **to_free)
142 {
143 	struct fq_codel_sched_data *q = qdisc_priv(sch);
144 	struct sk_buff *skb;
145 	unsigned int maxbacklog = 0, idx = 0, i, len;
146 	struct fq_codel_flow *flow;
147 	unsigned int threshold;
148 	unsigned int mem = 0;
149 
150 	/* Queue is full! Find the fat flow and drop packet(s) from it.
151 	 * This might sound expensive, but with 1024 flows, we scan
152 	 * 4KB of memory, and we dont need to handle a complex tree
153 	 * in fast path (packet queue/enqueue) with many cache misses.
154 	 * In stress mode, we'll try to drop 64 packets from the flow,
155 	 * amortizing this linear lookup to one cache line per drop.
156 	 */
157 	for (i = 0; i < q->flows_cnt; i++) {
158 		if (q->backlogs[i] > maxbacklog) {
159 			maxbacklog = q->backlogs[i];
160 			idx = i;
161 		}
162 	}
163 
164 	/* Our goal is to drop half of this fat flow backlog */
165 	threshold = maxbacklog >> 1;
166 
167 	flow = &q->flows[idx];
168 	len = 0;
169 	i = 0;
170 	do {
171 		skb = dequeue_head(flow);
172 		len += qdisc_pkt_len(skb);
173 		mem += get_codel_cb(skb)->mem_usage;
174 		__qdisc_drop(skb, to_free);
175 	} while (++i < max_packets && len < threshold);
176 
177 	flow->dropped += i;
178 	q->backlogs[idx] -= len;
179 	q->memory_usage -= mem;
180 	sch->qstats.drops += i;
181 	sch->qstats.backlog -= len;
182 	sch->q.qlen -= i;
183 	return idx;
184 }
185 
186 static int fq_codel_enqueue(struct sk_buff *skb, struct Qdisc *sch,
187 			    struct sk_buff **to_free)
188 {
189 	struct fq_codel_sched_data *q = qdisc_priv(sch);
190 	unsigned int idx, prev_backlog, prev_qlen;
191 	struct fq_codel_flow *flow;
192 	int uninitialized_var(ret);
193 	unsigned int pkt_len;
194 	bool memory_limited;
195 
196 	idx = fq_codel_classify(skb, sch, &ret);
197 	if (idx == 0) {
198 		if (ret & __NET_XMIT_BYPASS)
199 			qdisc_qstats_drop(sch);
200 		__qdisc_drop(skb, to_free);
201 		return ret;
202 	}
203 	idx--;
204 
205 	codel_set_enqueue_time(skb);
206 	flow = &q->flows[idx];
207 	flow_queue_add(flow, skb);
208 	q->backlogs[idx] += qdisc_pkt_len(skb);
209 	qdisc_qstats_backlog_inc(sch, skb);
210 
211 	if (list_empty(&flow->flowchain)) {
212 		list_add_tail(&flow->flowchain, &q->new_flows);
213 		q->new_flow_count++;
214 		flow->deficit = q->quantum;
215 		flow->dropped = 0;
216 	}
217 	get_codel_cb(skb)->mem_usage = skb->truesize;
218 	q->memory_usage += get_codel_cb(skb)->mem_usage;
219 	memory_limited = q->memory_usage > q->memory_limit;
220 	if (++sch->q.qlen <= sch->limit && !memory_limited)
221 		return NET_XMIT_SUCCESS;
222 
223 	prev_backlog = sch->qstats.backlog;
224 	prev_qlen = sch->q.qlen;
225 
226 	/* save this packet length as it might be dropped by fq_codel_drop() */
227 	pkt_len = qdisc_pkt_len(skb);
228 	/* fq_codel_drop() is quite expensive, as it performs a linear search
229 	 * in q->backlogs[] to find a fat flow.
230 	 * So instead of dropping a single packet, drop half of its backlog
231 	 * with a 64 packets limit to not add a too big cpu spike here.
232 	 */
233 	ret = fq_codel_drop(sch, q->drop_batch_size, to_free);
234 
235 	prev_qlen -= sch->q.qlen;
236 	prev_backlog -= sch->qstats.backlog;
237 	q->drop_overlimit += prev_qlen;
238 	if (memory_limited)
239 		q->drop_overmemory += prev_qlen;
240 
241 	/* As we dropped packet(s), better let upper stack know this.
242 	 * If we dropped a packet for this flow, return NET_XMIT_CN,
243 	 * but in this case, our parents wont increase their backlogs.
244 	 */
245 	if (ret == idx) {
246 		qdisc_tree_reduce_backlog(sch, prev_qlen - 1,
247 					  prev_backlog - pkt_len);
248 		return NET_XMIT_CN;
249 	}
250 	qdisc_tree_reduce_backlog(sch, prev_qlen, prev_backlog);
251 	return NET_XMIT_SUCCESS;
252 }
253 
254 /* This is the specific function called from codel_dequeue()
255  * to dequeue a packet from queue. Note: backlog is handled in
256  * codel, we dont need to reduce it here.
257  */
258 static struct sk_buff *dequeue_func(struct codel_vars *vars, void *ctx)
259 {
260 	struct Qdisc *sch = ctx;
261 	struct fq_codel_sched_data *q = qdisc_priv(sch);
262 	struct fq_codel_flow *flow;
263 	struct sk_buff *skb = NULL;
264 
265 	flow = container_of(vars, struct fq_codel_flow, cvars);
266 	if (flow->head) {
267 		skb = dequeue_head(flow);
268 		q->backlogs[flow - q->flows] -= qdisc_pkt_len(skb);
269 		q->memory_usage -= get_codel_cb(skb)->mem_usage;
270 		sch->q.qlen--;
271 		sch->qstats.backlog -= qdisc_pkt_len(skb);
272 	}
273 	return skb;
274 }
275 
276 static void drop_func(struct sk_buff *skb, void *ctx)
277 {
278 	struct Qdisc *sch = ctx;
279 
280 	kfree_skb(skb);
281 	qdisc_qstats_drop(sch);
282 }
283 
284 static struct sk_buff *fq_codel_dequeue(struct Qdisc *sch)
285 {
286 	struct fq_codel_sched_data *q = qdisc_priv(sch);
287 	struct sk_buff *skb;
288 	struct fq_codel_flow *flow;
289 	struct list_head *head;
290 	u32 prev_drop_count, prev_ecn_mark;
291 
292 begin:
293 	head = &q->new_flows;
294 	if (list_empty(head)) {
295 		head = &q->old_flows;
296 		if (list_empty(head))
297 			return NULL;
298 	}
299 	flow = list_first_entry(head, struct fq_codel_flow, flowchain);
300 
301 	if (flow->deficit <= 0) {
302 		flow->deficit += q->quantum;
303 		list_move_tail(&flow->flowchain, &q->old_flows);
304 		goto begin;
305 	}
306 
307 	prev_drop_count = q->cstats.drop_count;
308 	prev_ecn_mark = q->cstats.ecn_mark;
309 
310 	skb = codel_dequeue(sch, &sch->qstats.backlog, &q->cparams,
311 			    &flow->cvars, &q->cstats, qdisc_pkt_len,
312 			    codel_get_enqueue_time, drop_func, dequeue_func);
313 
314 	flow->dropped += q->cstats.drop_count - prev_drop_count;
315 	flow->dropped += q->cstats.ecn_mark - prev_ecn_mark;
316 
317 	if (!skb) {
318 		/* force a pass through old_flows to prevent starvation */
319 		if ((head == &q->new_flows) && !list_empty(&q->old_flows))
320 			list_move_tail(&flow->flowchain, &q->old_flows);
321 		else
322 			list_del_init(&flow->flowchain);
323 		goto begin;
324 	}
325 	qdisc_bstats_update(sch, skb);
326 	flow->deficit -= qdisc_pkt_len(skb);
327 	/* We cant call qdisc_tree_reduce_backlog() if our qlen is 0,
328 	 * or HTB crashes. Defer it for next round.
329 	 */
330 	if (q->cstats.drop_count && sch->q.qlen) {
331 		qdisc_tree_reduce_backlog(sch, q->cstats.drop_count,
332 					  q->cstats.drop_len);
333 		q->cstats.drop_count = 0;
334 		q->cstats.drop_len = 0;
335 	}
336 	return skb;
337 }
338 
339 static void fq_codel_flow_purge(struct fq_codel_flow *flow)
340 {
341 	rtnl_kfree_skbs(flow->head, flow->tail);
342 	flow->head = NULL;
343 }
344 
345 static void fq_codel_reset(struct Qdisc *sch)
346 {
347 	struct fq_codel_sched_data *q = qdisc_priv(sch);
348 	int i;
349 
350 	INIT_LIST_HEAD(&q->new_flows);
351 	INIT_LIST_HEAD(&q->old_flows);
352 	for (i = 0; i < q->flows_cnt; i++) {
353 		struct fq_codel_flow *flow = q->flows + i;
354 
355 		fq_codel_flow_purge(flow);
356 		INIT_LIST_HEAD(&flow->flowchain);
357 		codel_vars_init(&flow->cvars);
358 	}
359 	memset(q->backlogs, 0, q->flows_cnt * sizeof(u32));
360 	sch->q.qlen = 0;
361 	sch->qstats.backlog = 0;
362 	q->memory_usage = 0;
363 }
364 
365 static const struct nla_policy fq_codel_policy[TCA_FQ_CODEL_MAX + 1] = {
366 	[TCA_FQ_CODEL_TARGET]	= { .type = NLA_U32 },
367 	[TCA_FQ_CODEL_LIMIT]	= { .type = NLA_U32 },
368 	[TCA_FQ_CODEL_INTERVAL]	= { .type = NLA_U32 },
369 	[TCA_FQ_CODEL_ECN]	= { .type = NLA_U32 },
370 	[TCA_FQ_CODEL_FLOWS]	= { .type = NLA_U32 },
371 	[TCA_FQ_CODEL_QUANTUM]	= { .type = NLA_U32 },
372 	[TCA_FQ_CODEL_CE_THRESHOLD] = { .type = NLA_U32 },
373 	[TCA_FQ_CODEL_DROP_BATCH_SIZE] = { .type = NLA_U32 },
374 	[TCA_FQ_CODEL_MEMORY_LIMIT] = { .type = NLA_U32 },
375 };
376 
377 static int fq_codel_change(struct Qdisc *sch, struct nlattr *opt)
378 {
379 	struct fq_codel_sched_data *q = qdisc_priv(sch);
380 	struct nlattr *tb[TCA_FQ_CODEL_MAX + 1];
381 	int err;
382 
383 	if (!opt)
384 		return -EINVAL;
385 
386 	err = nla_parse_nested(tb, TCA_FQ_CODEL_MAX, opt, fq_codel_policy);
387 	if (err < 0)
388 		return err;
389 	if (tb[TCA_FQ_CODEL_FLOWS]) {
390 		if (q->flows)
391 			return -EINVAL;
392 		q->flows_cnt = nla_get_u32(tb[TCA_FQ_CODEL_FLOWS]);
393 		if (!q->flows_cnt ||
394 		    q->flows_cnt > 65536)
395 			return -EINVAL;
396 	}
397 	sch_tree_lock(sch);
398 
399 	if (tb[TCA_FQ_CODEL_TARGET]) {
400 		u64 target = nla_get_u32(tb[TCA_FQ_CODEL_TARGET]);
401 
402 		q->cparams.target = (target * NSEC_PER_USEC) >> CODEL_SHIFT;
403 	}
404 
405 	if (tb[TCA_FQ_CODEL_CE_THRESHOLD]) {
406 		u64 val = nla_get_u32(tb[TCA_FQ_CODEL_CE_THRESHOLD]);
407 
408 		q->cparams.ce_threshold = (val * NSEC_PER_USEC) >> CODEL_SHIFT;
409 	}
410 
411 	if (tb[TCA_FQ_CODEL_INTERVAL]) {
412 		u64 interval = nla_get_u32(tb[TCA_FQ_CODEL_INTERVAL]);
413 
414 		q->cparams.interval = (interval * NSEC_PER_USEC) >> CODEL_SHIFT;
415 	}
416 
417 	if (tb[TCA_FQ_CODEL_LIMIT])
418 		sch->limit = nla_get_u32(tb[TCA_FQ_CODEL_LIMIT]);
419 
420 	if (tb[TCA_FQ_CODEL_ECN])
421 		q->cparams.ecn = !!nla_get_u32(tb[TCA_FQ_CODEL_ECN]);
422 
423 	if (tb[TCA_FQ_CODEL_QUANTUM])
424 		q->quantum = max(256U, nla_get_u32(tb[TCA_FQ_CODEL_QUANTUM]));
425 
426 	if (tb[TCA_FQ_CODEL_DROP_BATCH_SIZE])
427 		q->drop_batch_size = min(1U, nla_get_u32(tb[TCA_FQ_CODEL_DROP_BATCH_SIZE]));
428 
429 	if (tb[TCA_FQ_CODEL_MEMORY_LIMIT])
430 		q->memory_limit = min(1U << 31, nla_get_u32(tb[TCA_FQ_CODEL_MEMORY_LIMIT]));
431 
432 	while (sch->q.qlen > sch->limit ||
433 	       q->memory_usage > q->memory_limit) {
434 		struct sk_buff *skb = fq_codel_dequeue(sch);
435 
436 		q->cstats.drop_len += qdisc_pkt_len(skb);
437 		rtnl_kfree_skbs(skb, skb);
438 		q->cstats.drop_count++;
439 	}
440 	qdisc_tree_reduce_backlog(sch, q->cstats.drop_count, q->cstats.drop_len);
441 	q->cstats.drop_count = 0;
442 	q->cstats.drop_len = 0;
443 
444 	sch_tree_unlock(sch);
445 	return 0;
446 }
447 
448 static void *fq_codel_zalloc(size_t sz)
449 {
450 	void *ptr = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN);
451 
452 	if (!ptr)
453 		ptr = vzalloc(sz);
454 	return ptr;
455 }
456 
457 static void fq_codel_free(void *addr)
458 {
459 	kvfree(addr);
460 }
461 
462 static void fq_codel_destroy(struct Qdisc *sch)
463 {
464 	struct fq_codel_sched_data *q = qdisc_priv(sch);
465 
466 	tcf_destroy_chain(&q->filter_list);
467 	fq_codel_free(q->backlogs);
468 	fq_codel_free(q->flows);
469 }
470 
471 static int fq_codel_init(struct Qdisc *sch, struct nlattr *opt)
472 {
473 	struct fq_codel_sched_data *q = qdisc_priv(sch);
474 	int i;
475 
476 	sch->limit = 10*1024;
477 	q->flows_cnt = 1024;
478 	q->memory_limit = 32 << 20; /* 32 MBytes */
479 	q->drop_batch_size = 64;
480 	q->quantum = psched_mtu(qdisc_dev(sch));
481 	INIT_LIST_HEAD(&q->new_flows);
482 	INIT_LIST_HEAD(&q->old_flows);
483 	codel_params_init(&q->cparams);
484 	codel_stats_init(&q->cstats);
485 	q->cparams.ecn = true;
486 	q->cparams.mtu = psched_mtu(qdisc_dev(sch));
487 
488 	if (opt) {
489 		int err = fq_codel_change(sch, opt);
490 		if (err)
491 			return err;
492 	}
493 
494 	if (!q->flows) {
495 		q->flows = fq_codel_zalloc(q->flows_cnt *
496 					   sizeof(struct fq_codel_flow));
497 		if (!q->flows)
498 			return -ENOMEM;
499 		q->backlogs = fq_codel_zalloc(q->flows_cnt * sizeof(u32));
500 		if (!q->backlogs) {
501 			fq_codel_free(q->flows);
502 			return -ENOMEM;
503 		}
504 		for (i = 0; i < q->flows_cnt; i++) {
505 			struct fq_codel_flow *flow = q->flows + i;
506 
507 			INIT_LIST_HEAD(&flow->flowchain);
508 			codel_vars_init(&flow->cvars);
509 		}
510 	}
511 	if (sch->limit >= 1)
512 		sch->flags |= TCQ_F_CAN_BYPASS;
513 	else
514 		sch->flags &= ~TCQ_F_CAN_BYPASS;
515 	return 0;
516 }
517 
518 static int fq_codel_dump(struct Qdisc *sch, struct sk_buff *skb)
519 {
520 	struct fq_codel_sched_data *q = qdisc_priv(sch);
521 	struct nlattr *opts;
522 
523 	opts = nla_nest_start(skb, TCA_OPTIONS);
524 	if (opts == NULL)
525 		goto nla_put_failure;
526 
527 	if (nla_put_u32(skb, TCA_FQ_CODEL_TARGET,
528 			codel_time_to_us(q->cparams.target)) ||
529 	    nla_put_u32(skb, TCA_FQ_CODEL_LIMIT,
530 			sch->limit) ||
531 	    nla_put_u32(skb, TCA_FQ_CODEL_INTERVAL,
532 			codel_time_to_us(q->cparams.interval)) ||
533 	    nla_put_u32(skb, TCA_FQ_CODEL_ECN,
534 			q->cparams.ecn) ||
535 	    nla_put_u32(skb, TCA_FQ_CODEL_QUANTUM,
536 			q->quantum) ||
537 	    nla_put_u32(skb, TCA_FQ_CODEL_DROP_BATCH_SIZE,
538 			q->drop_batch_size) ||
539 	    nla_put_u32(skb, TCA_FQ_CODEL_MEMORY_LIMIT,
540 			q->memory_limit) ||
541 	    nla_put_u32(skb, TCA_FQ_CODEL_FLOWS,
542 			q->flows_cnt))
543 		goto nla_put_failure;
544 
545 	if (q->cparams.ce_threshold != CODEL_DISABLED_THRESHOLD &&
546 	    nla_put_u32(skb, TCA_FQ_CODEL_CE_THRESHOLD,
547 			codel_time_to_us(q->cparams.ce_threshold)))
548 		goto nla_put_failure;
549 
550 	return nla_nest_end(skb, opts);
551 
552 nla_put_failure:
553 	return -1;
554 }
555 
556 static int fq_codel_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
557 {
558 	struct fq_codel_sched_data *q = qdisc_priv(sch);
559 	struct tc_fq_codel_xstats st = {
560 		.type				= TCA_FQ_CODEL_XSTATS_QDISC,
561 	};
562 	struct list_head *pos;
563 
564 	st.qdisc_stats.maxpacket = q->cstats.maxpacket;
565 	st.qdisc_stats.drop_overlimit = q->drop_overlimit;
566 	st.qdisc_stats.ecn_mark = q->cstats.ecn_mark;
567 	st.qdisc_stats.new_flow_count = q->new_flow_count;
568 	st.qdisc_stats.ce_mark = q->cstats.ce_mark;
569 	st.qdisc_stats.memory_usage  = q->memory_usage;
570 	st.qdisc_stats.drop_overmemory = q->drop_overmemory;
571 
572 	sch_tree_lock(sch);
573 	list_for_each(pos, &q->new_flows)
574 		st.qdisc_stats.new_flows_len++;
575 
576 	list_for_each(pos, &q->old_flows)
577 		st.qdisc_stats.old_flows_len++;
578 	sch_tree_unlock(sch);
579 
580 	return gnet_stats_copy_app(d, &st, sizeof(st));
581 }
582 
583 static struct Qdisc *fq_codel_leaf(struct Qdisc *sch, unsigned long arg)
584 {
585 	return NULL;
586 }
587 
588 static unsigned long fq_codel_get(struct Qdisc *sch, u32 classid)
589 {
590 	return 0;
591 }
592 
593 static unsigned long fq_codel_bind(struct Qdisc *sch, unsigned long parent,
594 			      u32 classid)
595 {
596 	/* we cannot bypass queue discipline anymore */
597 	sch->flags &= ~TCQ_F_CAN_BYPASS;
598 	return 0;
599 }
600 
601 static void fq_codel_put(struct Qdisc *q, unsigned long cl)
602 {
603 }
604 
605 static struct tcf_proto __rcu **fq_codel_find_tcf(struct Qdisc *sch,
606 						  unsigned long cl)
607 {
608 	struct fq_codel_sched_data *q = qdisc_priv(sch);
609 
610 	if (cl)
611 		return NULL;
612 	return &q->filter_list;
613 }
614 
615 static int fq_codel_dump_class(struct Qdisc *sch, unsigned long cl,
616 			  struct sk_buff *skb, struct tcmsg *tcm)
617 {
618 	tcm->tcm_handle |= TC_H_MIN(cl);
619 	return 0;
620 }
621 
622 static int fq_codel_dump_class_stats(struct Qdisc *sch, unsigned long cl,
623 				     struct gnet_dump *d)
624 {
625 	struct fq_codel_sched_data *q = qdisc_priv(sch);
626 	u32 idx = cl - 1;
627 	struct gnet_stats_queue qs = { 0 };
628 	struct tc_fq_codel_xstats xstats;
629 
630 	if (idx < q->flows_cnt) {
631 		const struct fq_codel_flow *flow = &q->flows[idx];
632 		const struct sk_buff *skb;
633 
634 		memset(&xstats, 0, sizeof(xstats));
635 		xstats.type = TCA_FQ_CODEL_XSTATS_CLASS;
636 		xstats.class_stats.deficit = flow->deficit;
637 		xstats.class_stats.ldelay =
638 			codel_time_to_us(flow->cvars.ldelay);
639 		xstats.class_stats.count = flow->cvars.count;
640 		xstats.class_stats.lastcount = flow->cvars.lastcount;
641 		xstats.class_stats.dropping = flow->cvars.dropping;
642 		if (flow->cvars.dropping) {
643 			codel_tdiff_t delta = flow->cvars.drop_next -
644 					      codel_get_time();
645 
646 			xstats.class_stats.drop_next = (delta >= 0) ?
647 				codel_time_to_us(delta) :
648 				-codel_time_to_us(-delta);
649 		}
650 		if (flow->head) {
651 			sch_tree_lock(sch);
652 			skb = flow->head;
653 			while (skb) {
654 				qs.qlen++;
655 				skb = skb->next;
656 			}
657 			sch_tree_unlock(sch);
658 		}
659 		qs.backlog = q->backlogs[idx];
660 		qs.drops = flow->dropped;
661 	}
662 	if (gnet_stats_copy_queue(d, NULL, &qs, qs.qlen) < 0)
663 		return -1;
664 	if (idx < q->flows_cnt)
665 		return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
666 	return 0;
667 }
668 
669 static void fq_codel_walk(struct Qdisc *sch, struct qdisc_walker *arg)
670 {
671 	struct fq_codel_sched_data *q = qdisc_priv(sch);
672 	unsigned int i;
673 
674 	if (arg->stop)
675 		return;
676 
677 	for (i = 0; i < q->flows_cnt; i++) {
678 		if (list_empty(&q->flows[i].flowchain) ||
679 		    arg->count < arg->skip) {
680 			arg->count++;
681 			continue;
682 		}
683 		if (arg->fn(sch, i + 1, arg) < 0) {
684 			arg->stop = 1;
685 			break;
686 		}
687 		arg->count++;
688 	}
689 }
690 
691 static const struct Qdisc_class_ops fq_codel_class_ops = {
692 	.leaf		=	fq_codel_leaf,
693 	.get		=	fq_codel_get,
694 	.put		=	fq_codel_put,
695 	.tcf_chain	=	fq_codel_find_tcf,
696 	.bind_tcf	=	fq_codel_bind,
697 	.unbind_tcf	=	fq_codel_put,
698 	.dump		=	fq_codel_dump_class,
699 	.dump_stats	=	fq_codel_dump_class_stats,
700 	.walk		=	fq_codel_walk,
701 };
702 
703 static struct Qdisc_ops fq_codel_qdisc_ops __read_mostly = {
704 	.cl_ops		=	&fq_codel_class_ops,
705 	.id		=	"fq_codel",
706 	.priv_size	=	sizeof(struct fq_codel_sched_data),
707 	.enqueue	=	fq_codel_enqueue,
708 	.dequeue	=	fq_codel_dequeue,
709 	.peek		=	qdisc_peek_dequeued,
710 	.init		=	fq_codel_init,
711 	.reset		=	fq_codel_reset,
712 	.destroy	=	fq_codel_destroy,
713 	.change		=	fq_codel_change,
714 	.dump		=	fq_codel_dump,
715 	.dump_stats =	fq_codel_dump_stats,
716 	.owner		=	THIS_MODULE,
717 };
718 
719 static int __init fq_codel_module_init(void)
720 {
721 	return register_qdisc(&fq_codel_qdisc_ops);
722 }
723 
724 static void __exit fq_codel_module_exit(void)
725 {
726 	unregister_qdisc(&fq_codel_qdisc_ops);
727 }
728 
729 module_init(fq_codel_module_init)
730 module_exit(fq_codel_module_exit)
731 MODULE_AUTHOR("Eric Dumazet");
732 MODULE_LICENSE("GPL");
733