xref: /openbmc/linux/net/sched/sch_fq.c (revision 93d90ad7)
1 /*
2  * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
3  *
4  *  Copyright (C) 2013 Eric Dumazet <edumazet@google.com>
5  *
6  *	This program is free software; you can redistribute it and/or
7  *	modify it under the terms of the GNU General Public License
8  *	as published by the Free Software Foundation; either version
9  *	2 of the License, or (at your option) any later version.
10  *
11  *  Meant to be mostly used for localy generated traffic :
12  *  Fast classification depends on skb->sk being set before reaching us.
13  *  If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
14  *  All packets belonging to a socket are considered as a 'flow'.
15  *
16  *  Flows are dynamically allocated and stored in a hash table of RB trees
17  *  They are also part of one Round Robin 'queues' (new or old flows)
18  *
19  *  Burst avoidance (aka pacing) capability :
20  *
21  *  Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
22  *  bunch of packets, and this packet scheduler adds delay between
23  *  packets to respect rate limitation.
24  *
25  *  enqueue() :
26  *   - lookup one RB tree (out of 1024 or more) to find the flow.
27  *     If non existent flow, create it, add it to the tree.
28  *     Add skb to the per flow list of skb (fifo).
29  *   - Use a special fifo for high prio packets
30  *
31  *  dequeue() : serves flows in Round Robin
32  *  Note : When a flow becomes empty, we do not immediately remove it from
33  *  rb trees, for performance reasons (its expected to send additional packets,
34  *  or SLAB cache will reuse socket for another flow)
35  */
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/jiffies.h>
41 #include <linux/string.h>
42 #include <linux/in.h>
43 #include <linux/errno.h>
44 #include <linux/init.h>
45 #include <linux/skbuff.h>
46 #include <linux/slab.h>
47 #include <linux/rbtree.h>
48 #include <linux/hash.h>
49 #include <linux/prefetch.h>
50 #include <linux/vmalloc.h>
51 #include <net/netlink.h>
52 #include <net/pkt_sched.h>
53 #include <net/sock.h>
54 #include <net/tcp_states.h>
55 
56 /*
57  * Per flow structure, dynamically allocated
58  */
59 struct fq_flow {
60 	struct sk_buff	*head;		/* list of skbs for this flow : first skb */
61 	union {
62 		struct sk_buff *tail;	/* last skb in the list */
63 		unsigned long  age;	/* jiffies when flow was emptied, for gc */
64 	};
65 	struct rb_node	fq_node; 	/* anchor in fq_root[] trees */
66 	struct sock	*sk;
67 	int		qlen;		/* number of packets in flow queue */
68 	int		credit;
69 	u32		socket_hash;	/* sk_hash */
70 	struct fq_flow *next;		/* next pointer in RR lists, or &detached */
71 
72 	struct rb_node  rate_node;	/* anchor in q->delayed tree */
73 	u64		time_next_packet;
74 };
75 
76 struct fq_flow_head {
77 	struct fq_flow *first;
78 	struct fq_flow *last;
79 };
80 
81 struct fq_sched_data {
82 	struct fq_flow_head new_flows;
83 
84 	struct fq_flow_head old_flows;
85 
86 	struct rb_root	delayed;	/* for rate limited flows */
87 	u64		time_next_delayed_flow;
88 
89 	struct fq_flow	internal;	/* for non classified or high prio packets */
90 	u32		quantum;
91 	u32		initial_quantum;
92 	u32		flow_refill_delay;
93 	u32		flow_max_rate;	/* optional max rate per flow */
94 	u32		flow_plimit;	/* max packets per flow */
95 	struct rb_root	*fq_root;
96 	u8		rate_enable;
97 	u8		fq_trees_log;
98 
99 	u32		flows;
100 	u32		inactive_flows;
101 	u32		throttled_flows;
102 
103 	u64		stat_gc_flows;
104 	u64		stat_internal_packets;
105 	u64		stat_tcp_retrans;
106 	u64		stat_throttled;
107 	u64		stat_flows_plimit;
108 	u64		stat_pkts_too_long;
109 	u64		stat_allocation_errors;
110 	struct qdisc_watchdog watchdog;
111 };
112 
113 /* special value to mark a detached flow (not on old/new list) */
114 static struct fq_flow detached, throttled;
115 
116 static void fq_flow_set_detached(struct fq_flow *f)
117 {
118 	f->next = &detached;
119 	f->age = jiffies;
120 }
121 
122 static bool fq_flow_is_detached(const struct fq_flow *f)
123 {
124 	return f->next == &detached;
125 }
126 
127 static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
128 {
129 	struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
130 
131 	while (*p) {
132 		struct fq_flow *aux;
133 
134 		parent = *p;
135 		aux = container_of(parent, struct fq_flow, rate_node);
136 		if (f->time_next_packet >= aux->time_next_packet)
137 			p = &parent->rb_right;
138 		else
139 			p = &parent->rb_left;
140 	}
141 	rb_link_node(&f->rate_node, parent, p);
142 	rb_insert_color(&f->rate_node, &q->delayed);
143 	q->throttled_flows++;
144 	q->stat_throttled++;
145 
146 	f->next = &throttled;
147 	if (q->time_next_delayed_flow > f->time_next_packet)
148 		q->time_next_delayed_flow = f->time_next_packet;
149 }
150 
151 
152 static struct kmem_cache *fq_flow_cachep __read_mostly;
153 
154 static void fq_flow_add_tail(struct fq_flow_head *head, struct fq_flow *flow)
155 {
156 	if (head->first)
157 		head->last->next = flow;
158 	else
159 		head->first = flow;
160 	head->last = flow;
161 	flow->next = NULL;
162 }
163 
164 /* limit number of collected flows per round */
165 #define FQ_GC_MAX 8
166 #define FQ_GC_AGE (3*HZ)
167 
168 static bool fq_gc_candidate(const struct fq_flow *f)
169 {
170 	return fq_flow_is_detached(f) &&
171 	       time_after(jiffies, f->age + FQ_GC_AGE);
172 }
173 
174 static void fq_gc(struct fq_sched_data *q,
175 		  struct rb_root *root,
176 		  struct sock *sk)
177 {
178 	struct fq_flow *f, *tofree[FQ_GC_MAX];
179 	struct rb_node **p, *parent;
180 	int fcnt = 0;
181 
182 	p = &root->rb_node;
183 	parent = NULL;
184 	while (*p) {
185 		parent = *p;
186 
187 		f = container_of(parent, struct fq_flow, fq_node);
188 		if (f->sk == sk)
189 			break;
190 
191 		if (fq_gc_candidate(f)) {
192 			tofree[fcnt++] = f;
193 			if (fcnt == FQ_GC_MAX)
194 				break;
195 		}
196 
197 		if (f->sk > sk)
198 			p = &parent->rb_right;
199 		else
200 			p = &parent->rb_left;
201 	}
202 
203 	q->flows -= fcnt;
204 	q->inactive_flows -= fcnt;
205 	q->stat_gc_flows += fcnt;
206 	while (fcnt) {
207 		struct fq_flow *f = tofree[--fcnt];
208 
209 		rb_erase(&f->fq_node, root);
210 		kmem_cache_free(fq_flow_cachep, f);
211 	}
212 }
213 
214 static struct fq_flow *fq_classify(struct sk_buff *skb, struct fq_sched_data *q)
215 {
216 	struct rb_node **p, *parent;
217 	struct sock *sk = skb->sk;
218 	struct rb_root *root;
219 	struct fq_flow *f;
220 
221 	/* warning: no starvation prevention... */
222 	if (unlikely((skb->priority & TC_PRIO_MAX) == TC_PRIO_CONTROL))
223 		return &q->internal;
224 
225 	if (unlikely(!sk)) {
226 		/* By forcing low order bit to 1, we make sure to not
227 		 * collide with a local flow (socket pointers are word aligned)
228 		 */
229 		sk = (struct sock *)(skb_get_hash(skb) | 1L);
230 	}
231 
232 	root = &q->fq_root[hash_32((u32)(long)sk, q->fq_trees_log)];
233 
234 	if (q->flows >= (2U << q->fq_trees_log) &&
235 	    q->inactive_flows > q->flows/2)
236 		fq_gc(q, root, sk);
237 
238 	p = &root->rb_node;
239 	parent = NULL;
240 	while (*p) {
241 		parent = *p;
242 
243 		f = container_of(parent, struct fq_flow, fq_node);
244 		if (f->sk == sk) {
245 			/* socket might have been reallocated, so check
246 			 * if its sk_hash is the same.
247 			 * It not, we need to refill credit with
248 			 * initial quantum
249 			 */
250 			if (unlikely(skb->sk &&
251 				     f->socket_hash != sk->sk_hash)) {
252 				f->credit = q->initial_quantum;
253 				f->socket_hash = sk->sk_hash;
254 				f->time_next_packet = 0ULL;
255 			}
256 			return f;
257 		}
258 		if (f->sk > sk)
259 			p = &parent->rb_right;
260 		else
261 			p = &parent->rb_left;
262 	}
263 
264 	f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
265 	if (unlikely(!f)) {
266 		q->stat_allocation_errors++;
267 		return &q->internal;
268 	}
269 	fq_flow_set_detached(f);
270 	f->sk = sk;
271 	if (skb->sk)
272 		f->socket_hash = sk->sk_hash;
273 	f->credit = q->initial_quantum;
274 
275 	rb_link_node(&f->fq_node, parent, p);
276 	rb_insert_color(&f->fq_node, root);
277 
278 	q->flows++;
279 	q->inactive_flows++;
280 	return f;
281 }
282 
283 
284 /* remove one skb from head of flow queue */
285 static struct sk_buff *fq_dequeue_head(struct Qdisc *sch, struct fq_flow *flow)
286 {
287 	struct sk_buff *skb = flow->head;
288 
289 	if (skb) {
290 		flow->head = skb->next;
291 		skb->next = NULL;
292 		flow->qlen--;
293 		qdisc_qstats_backlog_dec(sch, skb);
294 		sch->q.qlen--;
295 	}
296 	return skb;
297 }
298 
299 /* We might add in the future detection of retransmits
300  * For the time being, just return false
301  */
302 static bool skb_is_retransmit(struct sk_buff *skb)
303 {
304 	return false;
305 }
306 
307 /* add skb to flow queue
308  * flow queue is a linked list, kind of FIFO, except for TCP retransmits
309  * We special case tcp retransmits to be transmitted before other packets.
310  * We rely on fact that TCP retransmits are unlikely, so we do not waste
311  * a separate queue or a pointer.
312  * head->  [retrans pkt 1]
313  *         [retrans pkt 2]
314  *         [ normal pkt 1]
315  *         [ normal pkt 2]
316  *         [ normal pkt 3]
317  * tail->  [ normal pkt 4]
318  */
319 static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
320 {
321 	struct sk_buff *prev, *head = flow->head;
322 
323 	skb->next = NULL;
324 	if (!head) {
325 		flow->head = skb;
326 		flow->tail = skb;
327 		return;
328 	}
329 	if (likely(!skb_is_retransmit(skb))) {
330 		flow->tail->next = skb;
331 		flow->tail = skb;
332 		return;
333 	}
334 
335 	/* This skb is a tcp retransmit,
336 	 * find the last retrans packet in the queue
337 	 */
338 	prev = NULL;
339 	while (skb_is_retransmit(head)) {
340 		prev = head;
341 		head = head->next;
342 		if (!head)
343 			break;
344 	}
345 	if (!prev) { /* no rtx packet in queue, become the new head */
346 		skb->next = flow->head;
347 		flow->head = skb;
348 	} else {
349 		if (prev == flow->tail)
350 			flow->tail = skb;
351 		else
352 			skb->next = prev->next;
353 		prev->next = skb;
354 	}
355 }
356 
357 static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
358 {
359 	struct fq_sched_data *q = qdisc_priv(sch);
360 	struct fq_flow *f;
361 
362 	if (unlikely(sch->q.qlen >= sch->limit))
363 		return qdisc_drop(skb, sch);
364 
365 	f = fq_classify(skb, q);
366 	if (unlikely(f->qlen >= q->flow_plimit && f != &q->internal)) {
367 		q->stat_flows_plimit++;
368 		return qdisc_drop(skb, sch);
369 	}
370 
371 	f->qlen++;
372 	if (skb_is_retransmit(skb))
373 		q->stat_tcp_retrans++;
374 	qdisc_qstats_backlog_inc(sch, skb);
375 	if (fq_flow_is_detached(f)) {
376 		fq_flow_add_tail(&q->new_flows, f);
377 		if (time_after(jiffies, f->age + q->flow_refill_delay))
378 			f->credit = max_t(u32, f->credit, q->quantum);
379 		q->inactive_flows--;
380 	}
381 
382 	/* Note: this overwrites f->age */
383 	flow_queue_add(f, skb);
384 
385 	if (unlikely(f == &q->internal)) {
386 		q->stat_internal_packets++;
387 	}
388 	sch->q.qlen++;
389 
390 	return NET_XMIT_SUCCESS;
391 }
392 
393 static void fq_check_throttled(struct fq_sched_data *q, u64 now)
394 {
395 	struct rb_node *p;
396 
397 	if (q->time_next_delayed_flow > now)
398 		return;
399 
400 	q->time_next_delayed_flow = ~0ULL;
401 	while ((p = rb_first(&q->delayed)) != NULL) {
402 		struct fq_flow *f = container_of(p, struct fq_flow, rate_node);
403 
404 		if (f->time_next_packet > now) {
405 			q->time_next_delayed_flow = f->time_next_packet;
406 			break;
407 		}
408 		rb_erase(p, &q->delayed);
409 		q->throttled_flows--;
410 		fq_flow_add_tail(&q->old_flows, f);
411 	}
412 }
413 
414 static struct sk_buff *fq_dequeue(struct Qdisc *sch)
415 {
416 	struct fq_sched_data *q = qdisc_priv(sch);
417 	u64 now = ktime_get_ns();
418 	struct fq_flow_head *head;
419 	struct sk_buff *skb;
420 	struct fq_flow *f;
421 	u32 rate;
422 
423 	skb = fq_dequeue_head(sch, &q->internal);
424 	if (skb)
425 		goto out;
426 	fq_check_throttled(q, now);
427 begin:
428 	head = &q->new_flows;
429 	if (!head->first) {
430 		head = &q->old_flows;
431 		if (!head->first) {
432 			if (q->time_next_delayed_flow != ~0ULL)
433 				qdisc_watchdog_schedule_ns(&q->watchdog,
434 							   q->time_next_delayed_flow,
435 							   false);
436 			return NULL;
437 		}
438 	}
439 	f = head->first;
440 
441 	if (f->credit <= 0) {
442 		f->credit += q->quantum;
443 		head->first = f->next;
444 		fq_flow_add_tail(&q->old_flows, f);
445 		goto begin;
446 	}
447 
448 	if (unlikely(f->head && now < f->time_next_packet)) {
449 		head->first = f->next;
450 		fq_flow_set_throttled(q, f);
451 		goto begin;
452 	}
453 
454 	skb = fq_dequeue_head(sch, f);
455 	if (!skb) {
456 		head->first = f->next;
457 		/* force a pass through old_flows to prevent starvation */
458 		if ((head == &q->new_flows) && q->old_flows.first) {
459 			fq_flow_add_tail(&q->old_flows, f);
460 		} else {
461 			fq_flow_set_detached(f);
462 			q->inactive_flows++;
463 		}
464 		goto begin;
465 	}
466 	prefetch(&skb->end);
467 	f->time_next_packet = now;
468 	f->credit -= qdisc_pkt_len(skb);
469 
470 	if (f->credit > 0 || !q->rate_enable)
471 		goto out;
472 
473 	rate = q->flow_max_rate;
474 	if (skb->sk && skb->sk->sk_state != TCP_TIME_WAIT)
475 		rate = min(skb->sk->sk_pacing_rate, rate);
476 
477 	if (rate != ~0U) {
478 		u32 plen = max(qdisc_pkt_len(skb), q->quantum);
479 		u64 len = (u64)plen * NSEC_PER_SEC;
480 
481 		if (likely(rate))
482 			do_div(len, rate);
483 		/* Since socket rate can change later,
484 		 * clamp the delay to 1 second.
485 		 * Really, providers of too big packets should be fixed !
486 		 */
487 		if (unlikely(len > NSEC_PER_SEC)) {
488 			len = NSEC_PER_SEC;
489 			q->stat_pkts_too_long++;
490 		}
491 
492 		f->time_next_packet = now + len;
493 	}
494 out:
495 	qdisc_bstats_update(sch, skb);
496 	return skb;
497 }
498 
499 static void fq_reset(struct Qdisc *sch)
500 {
501 	struct fq_sched_data *q = qdisc_priv(sch);
502 	struct rb_root *root;
503 	struct sk_buff *skb;
504 	struct rb_node *p;
505 	struct fq_flow *f;
506 	unsigned int idx;
507 
508 	while ((skb = fq_dequeue_head(sch, &q->internal)) != NULL)
509 		kfree_skb(skb);
510 
511 	if (!q->fq_root)
512 		return;
513 
514 	for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
515 		root = &q->fq_root[idx];
516 		while ((p = rb_first(root)) != NULL) {
517 			f = container_of(p, struct fq_flow, fq_node);
518 			rb_erase(p, root);
519 
520 			while ((skb = fq_dequeue_head(sch, f)) != NULL)
521 				kfree_skb(skb);
522 
523 			kmem_cache_free(fq_flow_cachep, f);
524 		}
525 	}
526 	q->new_flows.first	= NULL;
527 	q->old_flows.first	= NULL;
528 	q->delayed		= RB_ROOT;
529 	q->flows		= 0;
530 	q->inactive_flows	= 0;
531 	q->throttled_flows	= 0;
532 }
533 
534 static void fq_rehash(struct fq_sched_data *q,
535 		      struct rb_root *old_array, u32 old_log,
536 		      struct rb_root *new_array, u32 new_log)
537 {
538 	struct rb_node *op, **np, *parent;
539 	struct rb_root *oroot, *nroot;
540 	struct fq_flow *of, *nf;
541 	int fcnt = 0;
542 	u32 idx;
543 
544 	for (idx = 0; idx < (1U << old_log); idx++) {
545 		oroot = &old_array[idx];
546 		while ((op = rb_first(oroot)) != NULL) {
547 			rb_erase(op, oroot);
548 			of = container_of(op, struct fq_flow, fq_node);
549 			if (fq_gc_candidate(of)) {
550 				fcnt++;
551 				kmem_cache_free(fq_flow_cachep, of);
552 				continue;
553 			}
554 			nroot = &new_array[hash_32((u32)(long)of->sk, new_log)];
555 
556 			np = &nroot->rb_node;
557 			parent = NULL;
558 			while (*np) {
559 				parent = *np;
560 
561 				nf = container_of(parent, struct fq_flow, fq_node);
562 				BUG_ON(nf->sk == of->sk);
563 
564 				if (nf->sk > of->sk)
565 					np = &parent->rb_right;
566 				else
567 					np = &parent->rb_left;
568 			}
569 
570 			rb_link_node(&of->fq_node, parent, np);
571 			rb_insert_color(&of->fq_node, nroot);
572 		}
573 	}
574 	q->flows -= fcnt;
575 	q->inactive_flows -= fcnt;
576 	q->stat_gc_flows += fcnt;
577 }
578 
579 static void *fq_alloc_node(size_t sz, int node)
580 {
581 	void *ptr;
582 
583 	ptr = kmalloc_node(sz, GFP_KERNEL | __GFP_REPEAT | __GFP_NOWARN, node);
584 	if (!ptr)
585 		ptr = vmalloc_node(sz, node);
586 	return ptr;
587 }
588 
589 static void fq_free(void *addr)
590 {
591 	kvfree(addr);
592 }
593 
594 static int fq_resize(struct Qdisc *sch, u32 log)
595 {
596 	struct fq_sched_data *q = qdisc_priv(sch);
597 	struct rb_root *array;
598 	void *old_fq_root;
599 	u32 idx;
600 
601 	if (q->fq_root && log == q->fq_trees_log)
602 		return 0;
603 
604 	/* If XPS was setup, we can allocate memory on right NUMA node */
605 	array = fq_alloc_node(sizeof(struct rb_root) << log,
606 			      netdev_queue_numa_node_read(sch->dev_queue));
607 	if (!array)
608 		return -ENOMEM;
609 
610 	for (idx = 0; idx < (1U << log); idx++)
611 		array[idx] = RB_ROOT;
612 
613 	sch_tree_lock(sch);
614 
615 	old_fq_root = q->fq_root;
616 	if (old_fq_root)
617 		fq_rehash(q, old_fq_root, q->fq_trees_log, array, log);
618 
619 	q->fq_root = array;
620 	q->fq_trees_log = log;
621 
622 	sch_tree_unlock(sch);
623 
624 	fq_free(old_fq_root);
625 
626 	return 0;
627 }
628 
629 static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
630 	[TCA_FQ_PLIMIT]			= { .type = NLA_U32 },
631 	[TCA_FQ_FLOW_PLIMIT]		= { .type = NLA_U32 },
632 	[TCA_FQ_QUANTUM]		= { .type = NLA_U32 },
633 	[TCA_FQ_INITIAL_QUANTUM]	= { .type = NLA_U32 },
634 	[TCA_FQ_RATE_ENABLE]		= { .type = NLA_U32 },
635 	[TCA_FQ_FLOW_DEFAULT_RATE]	= { .type = NLA_U32 },
636 	[TCA_FQ_FLOW_MAX_RATE]		= { .type = NLA_U32 },
637 	[TCA_FQ_BUCKETS_LOG]		= { .type = NLA_U32 },
638 	[TCA_FQ_FLOW_REFILL_DELAY]	= { .type = NLA_U32 },
639 };
640 
641 static int fq_change(struct Qdisc *sch, struct nlattr *opt)
642 {
643 	struct fq_sched_data *q = qdisc_priv(sch);
644 	struct nlattr *tb[TCA_FQ_MAX + 1];
645 	int err, drop_count = 0;
646 	u32 fq_log;
647 
648 	if (!opt)
649 		return -EINVAL;
650 
651 	err = nla_parse_nested(tb, TCA_FQ_MAX, opt, fq_policy);
652 	if (err < 0)
653 		return err;
654 
655 	sch_tree_lock(sch);
656 
657 	fq_log = q->fq_trees_log;
658 
659 	if (tb[TCA_FQ_BUCKETS_LOG]) {
660 		u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
661 
662 		if (nval >= 1 && nval <= ilog2(256*1024))
663 			fq_log = nval;
664 		else
665 			err = -EINVAL;
666 	}
667 	if (tb[TCA_FQ_PLIMIT])
668 		sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]);
669 
670 	if (tb[TCA_FQ_FLOW_PLIMIT])
671 		q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]);
672 
673 	if (tb[TCA_FQ_QUANTUM])
674 		q->quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
675 
676 	if (tb[TCA_FQ_INITIAL_QUANTUM])
677 		q->initial_quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]);
678 
679 	if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
680 		pr_warn_ratelimited("sch_fq: defrate %u ignored.\n",
681 				    nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]));
682 
683 	if (tb[TCA_FQ_FLOW_MAX_RATE])
684 		q->flow_max_rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
685 
686 	if (tb[TCA_FQ_RATE_ENABLE]) {
687 		u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
688 
689 		if (enable <= 1)
690 			q->rate_enable = enable;
691 		else
692 			err = -EINVAL;
693 	}
694 
695 	if (tb[TCA_FQ_FLOW_REFILL_DELAY]) {
696 		u32 usecs_delay = nla_get_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]) ;
697 
698 		q->flow_refill_delay = usecs_to_jiffies(usecs_delay);
699 	}
700 
701 	if (!err) {
702 		sch_tree_unlock(sch);
703 		err = fq_resize(sch, fq_log);
704 		sch_tree_lock(sch);
705 	}
706 	while (sch->q.qlen > sch->limit) {
707 		struct sk_buff *skb = fq_dequeue(sch);
708 
709 		if (!skb)
710 			break;
711 		kfree_skb(skb);
712 		drop_count++;
713 	}
714 	qdisc_tree_decrease_qlen(sch, drop_count);
715 
716 	sch_tree_unlock(sch);
717 	return err;
718 }
719 
720 static void fq_destroy(struct Qdisc *sch)
721 {
722 	struct fq_sched_data *q = qdisc_priv(sch);
723 
724 	fq_reset(sch);
725 	fq_free(q->fq_root);
726 	qdisc_watchdog_cancel(&q->watchdog);
727 }
728 
729 static int fq_init(struct Qdisc *sch, struct nlattr *opt)
730 {
731 	struct fq_sched_data *q = qdisc_priv(sch);
732 	int err;
733 
734 	sch->limit		= 10000;
735 	q->flow_plimit		= 100;
736 	q->quantum		= 2 * psched_mtu(qdisc_dev(sch));
737 	q->initial_quantum	= 10 * psched_mtu(qdisc_dev(sch));
738 	q->flow_refill_delay	= msecs_to_jiffies(40);
739 	q->flow_max_rate	= ~0U;
740 	q->rate_enable		= 1;
741 	q->new_flows.first	= NULL;
742 	q->old_flows.first	= NULL;
743 	q->delayed		= RB_ROOT;
744 	q->fq_root		= NULL;
745 	q->fq_trees_log		= ilog2(1024);
746 	qdisc_watchdog_init(&q->watchdog, sch);
747 
748 	if (opt)
749 		err = fq_change(sch, opt);
750 	else
751 		err = fq_resize(sch, q->fq_trees_log);
752 
753 	return err;
754 }
755 
756 static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
757 {
758 	struct fq_sched_data *q = qdisc_priv(sch);
759 	struct nlattr *opts;
760 
761 	opts = nla_nest_start(skb, TCA_OPTIONS);
762 	if (opts == NULL)
763 		goto nla_put_failure;
764 
765 	/* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */
766 
767 	if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) ||
768 	    nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) ||
769 	    nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) ||
770 	    nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) ||
771 	    nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) ||
772 	    nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE, q->flow_max_rate) ||
773 	    nla_put_u32(skb, TCA_FQ_FLOW_REFILL_DELAY,
774 			jiffies_to_usecs(q->flow_refill_delay)) ||
775 	    nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log))
776 		goto nla_put_failure;
777 
778 	return nla_nest_end(skb, opts);
779 
780 nla_put_failure:
781 	return -1;
782 }
783 
784 static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
785 {
786 	struct fq_sched_data *q = qdisc_priv(sch);
787 	u64 now = ktime_get_ns();
788 	struct tc_fq_qd_stats st = {
789 		.gc_flows		= q->stat_gc_flows,
790 		.highprio_packets	= q->stat_internal_packets,
791 		.tcp_retrans		= q->stat_tcp_retrans,
792 		.throttled		= q->stat_throttled,
793 		.flows_plimit		= q->stat_flows_plimit,
794 		.pkts_too_long		= q->stat_pkts_too_long,
795 		.allocation_errors	= q->stat_allocation_errors,
796 		.flows			= q->flows,
797 		.inactive_flows		= q->inactive_flows,
798 		.throttled_flows	= q->throttled_flows,
799 		.time_next_delayed_flow	= q->time_next_delayed_flow - now,
800 	};
801 
802 	return gnet_stats_copy_app(d, &st, sizeof(st));
803 }
804 
805 static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
806 	.id		=	"fq",
807 	.priv_size	=	sizeof(struct fq_sched_data),
808 
809 	.enqueue	=	fq_enqueue,
810 	.dequeue	=	fq_dequeue,
811 	.peek		=	qdisc_peek_dequeued,
812 	.init		=	fq_init,
813 	.reset		=	fq_reset,
814 	.destroy	=	fq_destroy,
815 	.change		=	fq_change,
816 	.dump		=	fq_dump,
817 	.dump_stats	=	fq_dump_stats,
818 	.owner		=	THIS_MODULE,
819 };
820 
821 static int __init fq_module_init(void)
822 {
823 	int ret;
824 
825 	fq_flow_cachep = kmem_cache_create("fq_flow_cache",
826 					   sizeof(struct fq_flow),
827 					   0, 0, NULL);
828 	if (!fq_flow_cachep)
829 		return -ENOMEM;
830 
831 	ret = register_qdisc(&fq_qdisc_ops);
832 	if (ret)
833 		kmem_cache_destroy(fq_flow_cachep);
834 	return ret;
835 }
836 
837 static void __exit fq_module_exit(void)
838 {
839 	unregister_qdisc(&fq_qdisc_ops);
840 	kmem_cache_destroy(fq_flow_cachep);
841 }
842 
843 module_init(fq_module_init)
844 module_exit(fq_module_exit)
845 MODULE_AUTHOR("Eric Dumazet");
846 MODULE_LICENSE("GPL");
847