xref: /openbmc/linux/net/sched/sch_fq.c (revision 74ba9207e1adf1966c57450340534ae9742d00af)
1 /*
2  * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
3  *
4  *  Copyright (C) 2013-2015 Eric Dumazet <edumazet@google.com>
5  *
6  *	This program is free software; you can redistribute it and/or
7  *	modify it under the terms of the GNU General Public License
8  *	as published by the Free Software Foundation; either version
9  *	2 of the License, or (at your option) any later version.
10  *
11  *  Meant to be mostly used for locally generated traffic :
12  *  Fast classification depends on skb->sk being set before reaching us.
13  *  If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
14  *  All packets belonging to a socket are considered as a 'flow'.
15  *
16  *  Flows are dynamically allocated and stored in a hash table of RB trees
17  *  They are also part of one Round Robin 'queues' (new or old flows)
18  *
19  *  Burst avoidance (aka pacing) capability :
20  *
21  *  Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
22  *  bunch of packets, and this packet scheduler adds delay between
23  *  packets to respect rate limitation.
24  *
25  *  enqueue() :
26  *   - lookup one RB tree (out of 1024 or more) to find the flow.
27  *     If non existent flow, create it, add it to the tree.
28  *     Add skb to the per flow list of skb (fifo).
29  *   - Use a special fifo for high prio packets
30  *
31  *  dequeue() : serves flows in Round Robin
32  *  Note : When a flow becomes empty, we do not immediately remove it from
33  *  rb trees, for performance reasons (its expected to send additional packets,
34  *  or SLAB cache will reuse socket for another flow)
35  */
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/jiffies.h>
41 #include <linux/string.h>
42 #include <linux/in.h>
43 #include <linux/errno.h>
44 #include <linux/init.h>
45 #include <linux/skbuff.h>
46 #include <linux/slab.h>
47 #include <linux/rbtree.h>
48 #include <linux/hash.h>
49 #include <linux/prefetch.h>
50 #include <linux/vmalloc.h>
51 #include <net/netlink.h>
52 #include <net/pkt_sched.h>
53 #include <net/sock.h>
54 #include <net/tcp_states.h>
55 #include <net/tcp.h>
56 
57 struct fq_skb_cb {
58 	u64	        time_to_send;
59 };
60 
61 static inline struct fq_skb_cb *fq_skb_cb(struct sk_buff *skb)
62 {
63 	qdisc_cb_private_validate(skb, sizeof(struct fq_skb_cb));
64 	return (struct fq_skb_cb *)qdisc_skb_cb(skb)->data;
65 }
66 
67 /*
68  * Per flow structure, dynamically allocated.
69  * If packets have monotically increasing time_to_send, they are placed in O(1)
70  * in linear list (head,tail), otherwise are placed in a rbtree (t_root).
71  */
72 struct fq_flow {
73 	struct rb_root	t_root;
74 	struct sk_buff	*head;		/* list of skbs for this flow : first skb */
75 	union {
76 		struct sk_buff *tail;	/* last skb in the list */
77 		unsigned long  age;	/* jiffies when flow was emptied, for gc */
78 	};
79 	struct rb_node	fq_node;	/* anchor in fq_root[] trees */
80 	struct sock	*sk;
81 	int		qlen;		/* number of packets in flow queue */
82 	int		credit;
83 	u32		socket_hash;	/* sk_hash */
84 	struct fq_flow *next;		/* next pointer in RR lists, or &detached */
85 
86 	struct rb_node  rate_node;	/* anchor in q->delayed tree */
87 	u64		time_next_packet;
88 };
89 
90 struct fq_flow_head {
91 	struct fq_flow *first;
92 	struct fq_flow *last;
93 };
94 
95 struct fq_sched_data {
96 	struct fq_flow_head new_flows;
97 
98 	struct fq_flow_head old_flows;
99 
100 	struct rb_root	delayed;	/* for rate limited flows */
101 	u64		time_next_delayed_flow;
102 	unsigned long	unthrottle_latency_ns;
103 
104 	struct fq_flow	internal;	/* for non classified or high prio packets */
105 	u32		quantum;
106 	u32		initial_quantum;
107 	u32		flow_refill_delay;
108 	u32		flow_plimit;	/* max packets per flow */
109 	unsigned long	flow_max_rate;	/* optional max rate per flow */
110 	u64		ce_threshold;
111 	u32		orphan_mask;	/* mask for orphaned skb */
112 	u32		low_rate_threshold;
113 	struct rb_root	*fq_root;
114 	u8		rate_enable;
115 	u8		fq_trees_log;
116 
117 	u32		flows;
118 	u32		inactive_flows;
119 	u32		throttled_flows;
120 
121 	u64		stat_gc_flows;
122 	u64		stat_internal_packets;
123 	u64		stat_throttled;
124 	u64		stat_ce_mark;
125 	u64		stat_flows_plimit;
126 	u64		stat_pkts_too_long;
127 	u64		stat_allocation_errors;
128 	struct qdisc_watchdog watchdog;
129 };
130 
131 /* special value to mark a detached flow (not on old/new list) */
132 static struct fq_flow detached, throttled;
133 
134 static void fq_flow_set_detached(struct fq_flow *f)
135 {
136 	f->next = &detached;
137 	f->age = jiffies;
138 }
139 
140 static bool fq_flow_is_detached(const struct fq_flow *f)
141 {
142 	return f->next == &detached;
143 }
144 
145 static bool fq_flow_is_throttled(const struct fq_flow *f)
146 {
147 	return f->next == &throttled;
148 }
149 
150 static void fq_flow_add_tail(struct fq_flow_head *head, struct fq_flow *flow)
151 {
152 	if (head->first)
153 		head->last->next = flow;
154 	else
155 		head->first = flow;
156 	head->last = flow;
157 	flow->next = NULL;
158 }
159 
160 static void fq_flow_unset_throttled(struct fq_sched_data *q, struct fq_flow *f)
161 {
162 	rb_erase(&f->rate_node, &q->delayed);
163 	q->throttled_flows--;
164 	fq_flow_add_tail(&q->old_flows, f);
165 }
166 
167 static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
168 {
169 	struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
170 
171 	while (*p) {
172 		struct fq_flow *aux;
173 
174 		parent = *p;
175 		aux = rb_entry(parent, struct fq_flow, rate_node);
176 		if (f->time_next_packet >= aux->time_next_packet)
177 			p = &parent->rb_right;
178 		else
179 			p = &parent->rb_left;
180 	}
181 	rb_link_node(&f->rate_node, parent, p);
182 	rb_insert_color(&f->rate_node, &q->delayed);
183 	q->throttled_flows++;
184 	q->stat_throttled++;
185 
186 	f->next = &throttled;
187 	if (q->time_next_delayed_flow > f->time_next_packet)
188 		q->time_next_delayed_flow = f->time_next_packet;
189 }
190 
191 
192 static struct kmem_cache *fq_flow_cachep __read_mostly;
193 
194 
195 /* limit number of collected flows per round */
196 #define FQ_GC_MAX 8
197 #define FQ_GC_AGE (3*HZ)
198 
199 static bool fq_gc_candidate(const struct fq_flow *f)
200 {
201 	return fq_flow_is_detached(f) &&
202 	       time_after(jiffies, f->age + FQ_GC_AGE);
203 }
204 
205 static void fq_gc(struct fq_sched_data *q,
206 		  struct rb_root *root,
207 		  struct sock *sk)
208 {
209 	struct fq_flow *f, *tofree[FQ_GC_MAX];
210 	struct rb_node **p, *parent;
211 	int fcnt = 0;
212 
213 	p = &root->rb_node;
214 	parent = NULL;
215 	while (*p) {
216 		parent = *p;
217 
218 		f = rb_entry(parent, struct fq_flow, fq_node);
219 		if (f->sk == sk)
220 			break;
221 
222 		if (fq_gc_candidate(f)) {
223 			tofree[fcnt++] = f;
224 			if (fcnt == FQ_GC_MAX)
225 				break;
226 		}
227 
228 		if (f->sk > sk)
229 			p = &parent->rb_right;
230 		else
231 			p = &parent->rb_left;
232 	}
233 
234 	q->flows -= fcnt;
235 	q->inactive_flows -= fcnt;
236 	q->stat_gc_flows += fcnt;
237 	while (fcnt) {
238 		struct fq_flow *f = tofree[--fcnt];
239 
240 		rb_erase(&f->fq_node, root);
241 		kmem_cache_free(fq_flow_cachep, f);
242 	}
243 }
244 
245 static struct fq_flow *fq_classify(struct sk_buff *skb, struct fq_sched_data *q)
246 {
247 	struct rb_node **p, *parent;
248 	struct sock *sk = skb->sk;
249 	struct rb_root *root;
250 	struct fq_flow *f;
251 
252 	/* warning: no starvation prevention... */
253 	if (unlikely((skb->priority & TC_PRIO_MAX) == TC_PRIO_CONTROL))
254 		return &q->internal;
255 
256 	/* SYNACK messages are attached to a TCP_NEW_SYN_RECV request socket
257 	 * or a listener (SYNCOOKIE mode)
258 	 * 1) request sockets are not full blown,
259 	 *    they do not contain sk_pacing_rate
260 	 * 2) They are not part of a 'flow' yet
261 	 * 3) We do not want to rate limit them (eg SYNFLOOD attack),
262 	 *    especially if the listener set SO_MAX_PACING_RATE
263 	 * 4) We pretend they are orphaned
264 	 */
265 	if (!sk || sk_listener(sk)) {
266 		unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
267 
268 		/* By forcing low order bit to 1, we make sure to not
269 		 * collide with a local flow (socket pointers are word aligned)
270 		 */
271 		sk = (struct sock *)((hash << 1) | 1UL);
272 		skb_orphan(skb);
273 	} else if (sk->sk_state == TCP_CLOSE) {
274 		unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
275 		/*
276 		 * Sockets in TCP_CLOSE are non connected.
277 		 * Typical use case is UDP sockets, they can send packets
278 		 * with sendto() to many different destinations.
279 		 * We probably could use a generic bit advertising
280 		 * non connected sockets, instead of sk_state == TCP_CLOSE,
281 		 * if we care enough.
282 		 */
283 		sk = (struct sock *)((hash << 1) | 1UL);
284 	}
285 
286 	root = &q->fq_root[hash_ptr(sk, q->fq_trees_log)];
287 
288 	if (q->flows >= (2U << q->fq_trees_log) &&
289 	    q->inactive_flows > q->flows/2)
290 		fq_gc(q, root, sk);
291 
292 	p = &root->rb_node;
293 	parent = NULL;
294 	while (*p) {
295 		parent = *p;
296 
297 		f = rb_entry(parent, struct fq_flow, fq_node);
298 		if (f->sk == sk) {
299 			/* socket might have been reallocated, so check
300 			 * if its sk_hash is the same.
301 			 * It not, we need to refill credit with
302 			 * initial quantum
303 			 */
304 			if (unlikely(skb->sk == sk &&
305 				     f->socket_hash != sk->sk_hash)) {
306 				f->credit = q->initial_quantum;
307 				f->socket_hash = sk->sk_hash;
308 				if (fq_flow_is_throttled(f))
309 					fq_flow_unset_throttled(q, f);
310 				f->time_next_packet = 0ULL;
311 			}
312 			return f;
313 		}
314 		if (f->sk > sk)
315 			p = &parent->rb_right;
316 		else
317 			p = &parent->rb_left;
318 	}
319 
320 	f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
321 	if (unlikely(!f)) {
322 		q->stat_allocation_errors++;
323 		return &q->internal;
324 	}
325 	/* f->t_root is already zeroed after kmem_cache_zalloc() */
326 
327 	fq_flow_set_detached(f);
328 	f->sk = sk;
329 	if (skb->sk == sk)
330 		f->socket_hash = sk->sk_hash;
331 	f->credit = q->initial_quantum;
332 
333 	rb_link_node(&f->fq_node, parent, p);
334 	rb_insert_color(&f->fq_node, root);
335 
336 	q->flows++;
337 	q->inactive_flows++;
338 	return f;
339 }
340 
341 static struct sk_buff *fq_peek(struct fq_flow *flow)
342 {
343 	struct sk_buff *skb = skb_rb_first(&flow->t_root);
344 	struct sk_buff *head = flow->head;
345 
346 	if (!skb)
347 		return head;
348 
349 	if (!head)
350 		return skb;
351 
352 	if (fq_skb_cb(skb)->time_to_send < fq_skb_cb(head)->time_to_send)
353 		return skb;
354 	return head;
355 }
356 
357 static void fq_erase_head(struct Qdisc *sch, struct fq_flow *flow,
358 			  struct sk_buff *skb)
359 {
360 	if (skb == flow->head) {
361 		flow->head = skb->next;
362 	} else {
363 		rb_erase(&skb->rbnode, &flow->t_root);
364 		skb->dev = qdisc_dev(sch);
365 	}
366 }
367 
368 /* remove one skb from head of flow queue */
369 static struct sk_buff *fq_dequeue_head(struct Qdisc *sch, struct fq_flow *flow)
370 {
371 	struct sk_buff *skb = fq_peek(flow);
372 
373 	if (skb) {
374 		fq_erase_head(sch, flow, skb);
375 		skb_mark_not_on_list(skb);
376 		flow->qlen--;
377 		qdisc_qstats_backlog_dec(sch, skb);
378 		sch->q.qlen--;
379 	}
380 	return skb;
381 }
382 
383 static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
384 {
385 	struct rb_node **p, *parent;
386 	struct sk_buff *head, *aux;
387 
388 	fq_skb_cb(skb)->time_to_send = skb->tstamp ?: ktime_get_ns();
389 
390 	head = flow->head;
391 	if (!head ||
392 	    fq_skb_cb(skb)->time_to_send >= fq_skb_cb(flow->tail)->time_to_send) {
393 		if (!head)
394 			flow->head = skb;
395 		else
396 			flow->tail->next = skb;
397 		flow->tail = skb;
398 		skb->next = NULL;
399 		return;
400 	}
401 
402 	p = &flow->t_root.rb_node;
403 	parent = NULL;
404 
405 	while (*p) {
406 		parent = *p;
407 		aux = rb_to_skb(parent);
408 		if (fq_skb_cb(skb)->time_to_send >= fq_skb_cb(aux)->time_to_send)
409 			p = &parent->rb_right;
410 		else
411 			p = &parent->rb_left;
412 	}
413 	rb_link_node(&skb->rbnode, parent, p);
414 	rb_insert_color(&skb->rbnode, &flow->t_root);
415 }
416 
417 static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
418 		      struct sk_buff **to_free)
419 {
420 	struct fq_sched_data *q = qdisc_priv(sch);
421 	struct fq_flow *f;
422 
423 	if (unlikely(sch->q.qlen >= sch->limit))
424 		return qdisc_drop(skb, sch, to_free);
425 
426 	f = fq_classify(skb, q);
427 	if (unlikely(f->qlen >= q->flow_plimit && f != &q->internal)) {
428 		q->stat_flows_plimit++;
429 		return qdisc_drop(skb, sch, to_free);
430 	}
431 
432 	f->qlen++;
433 	qdisc_qstats_backlog_inc(sch, skb);
434 	if (fq_flow_is_detached(f)) {
435 		struct sock *sk = skb->sk;
436 
437 		fq_flow_add_tail(&q->new_flows, f);
438 		if (time_after(jiffies, f->age + q->flow_refill_delay))
439 			f->credit = max_t(u32, f->credit, q->quantum);
440 		if (sk && q->rate_enable) {
441 			if (unlikely(smp_load_acquire(&sk->sk_pacing_status) !=
442 				     SK_PACING_FQ))
443 				smp_store_release(&sk->sk_pacing_status,
444 						  SK_PACING_FQ);
445 		}
446 		q->inactive_flows--;
447 	}
448 
449 	/* Note: this overwrites f->age */
450 	flow_queue_add(f, skb);
451 
452 	if (unlikely(f == &q->internal)) {
453 		q->stat_internal_packets++;
454 	}
455 	sch->q.qlen++;
456 
457 	return NET_XMIT_SUCCESS;
458 }
459 
460 static void fq_check_throttled(struct fq_sched_data *q, u64 now)
461 {
462 	unsigned long sample;
463 	struct rb_node *p;
464 
465 	if (q->time_next_delayed_flow > now)
466 		return;
467 
468 	/* Update unthrottle latency EWMA.
469 	 * This is cheap and can help diagnosing timer/latency problems.
470 	 */
471 	sample = (unsigned long)(now - q->time_next_delayed_flow);
472 	q->unthrottle_latency_ns -= q->unthrottle_latency_ns >> 3;
473 	q->unthrottle_latency_ns += sample >> 3;
474 
475 	q->time_next_delayed_flow = ~0ULL;
476 	while ((p = rb_first(&q->delayed)) != NULL) {
477 		struct fq_flow *f = rb_entry(p, struct fq_flow, rate_node);
478 
479 		if (f->time_next_packet > now) {
480 			q->time_next_delayed_flow = f->time_next_packet;
481 			break;
482 		}
483 		fq_flow_unset_throttled(q, f);
484 	}
485 }
486 
487 static struct sk_buff *fq_dequeue(struct Qdisc *sch)
488 {
489 	struct fq_sched_data *q = qdisc_priv(sch);
490 	struct fq_flow_head *head;
491 	struct sk_buff *skb;
492 	struct fq_flow *f;
493 	unsigned long rate;
494 	u32 plen;
495 	u64 now;
496 
497 	if (!sch->q.qlen)
498 		return NULL;
499 
500 	skb = fq_dequeue_head(sch, &q->internal);
501 	if (skb)
502 		goto out;
503 
504 	now = ktime_get_ns();
505 	fq_check_throttled(q, now);
506 begin:
507 	head = &q->new_flows;
508 	if (!head->first) {
509 		head = &q->old_flows;
510 		if (!head->first) {
511 			if (q->time_next_delayed_flow != ~0ULL)
512 				qdisc_watchdog_schedule_ns(&q->watchdog,
513 							   q->time_next_delayed_flow);
514 			return NULL;
515 		}
516 	}
517 	f = head->first;
518 
519 	if (f->credit <= 0) {
520 		f->credit += q->quantum;
521 		head->first = f->next;
522 		fq_flow_add_tail(&q->old_flows, f);
523 		goto begin;
524 	}
525 
526 	skb = fq_peek(f);
527 	if (skb) {
528 		u64 time_next_packet = max_t(u64, fq_skb_cb(skb)->time_to_send,
529 					     f->time_next_packet);
530 
531 		if (now < time_next_packet) {
532 			head->first = f->next;
533 			f->time_next_packet = time_next_packet;
534 			fq_flow_set_throttled(q, f);
535 			goto begin;
536 		}
537 		if (time_next_packet &&
538 		    (s64)(now - time_next_packet - q->ce_threshold) > 0) {
539 			INET_ECN_set_ce(skb);
540 			q->stat_ce_mark++;
541 		}
542 	}
543 
544 	skb = fq_dequeue_head(sch, f);
545 	if (!skb) {
546 		head->first = f->next;
547 		/* force a pass through old_flows to prevent starvation */
548 		if ((head == &q->new_flows) && q->old_flows.first) {
549 			fq_flow_add_tail(&q->old_flows, f);
550 		} else {
551 			fq_flow_set_detached(f);
552 			q->inactive_flows++;
553 		}
554 		goto begin;
555 	}
556 	prefetch(&skb->end);
557 	plen = qdisc_pkt_len(skb);
558 	f->credit -= plen;
559 
560 	if (!q->rate_enable)
561 		goto out;
562 
563 	rate = q->flow_max_rate;
564 
565 	/* If EDT time was provided for this skb, we need to
566 	 * update f->time_next_packet only if this qdisc enforces
567 	 * a flow max rate.
568 	 */
569 	if (!skb->tstamp) {
570 		if (skb->sk)
571 			rate = min(skb->sk->sk_pacing_rate, rate);
572 
573 		if (rate <= q->low_rate_threshold) {
574 			f->credit = 0;
575 		} else {
576 			plen = max(plen, q->quantum);
577 			if (f->credit > 0)
578 				goto out;
579 		}
580 	}
581 	if (rate != ~0UL) {
582 		u64 len = (u64)plen * NSEC_PER_SEC;
583 
584 		if (likely(rate))
585 			len = div64_ul(len, rate);
586 		/* Since socket rate can change later,
587 		 * clamp the delay to 1 second.
588 		 * Really, providers of too big packets should be fixed !
589 		 */
590 		if (unlikely(len > NSEC_PER_SEC)) {
591 			len = NSEC_PER_SEC;
592 			q->stat_pkts_too_long++;
593 		}
594 		/* Account for schedule/timers drifts.
595 		 * f->time_next_packet was set when prior packet was sent,
596 		 * and current time (@now) can be too late by tens of us.
597 		 */
598 		if (f->time_next_packet)
599 			len -= min(len/2, now - f->time_next_packet);
600 		f->time_next_packet = now + len;
601 	}
602 out:
603 	qdisc_bstats_update(sch, skb);
604 	return skb;
605 }
606 
607 static void fq_flow_purge(struct fq_flow *flow)
608 {
609 	struct rb_node *p = rb_first(&flow->t_root);
610 
611 	while (p) {
612 		struct sk_buff *skb = rb_to_skb(p);
613 
614 		p = rb_next(p);
615 		rb_erase(&skb->rbnode, &flow->t_root);
616 		rtnl_kfree_skbs(skb, skb);
617 	}
618 	rtnl_kfree_skbs(flow->head, flow->tail);
619 	flow->head = NULL;
620 	flow->qlen = 0;
621 }
622 
623 static void fq_reset(struct Qdisc *sch)
624 {
625 	struct fq_sched_data *q = qdisc_priv(sch);
626 	struct rb_root *root;
627 	struct rb_node *p;
628 	struct fq_flow *f;
629 	unsigned int idx;
630 
631 	sch->q.qlen = 0;
632 	sch->qstats.backlog = 0;
633 
634 	fq_flow_purge(&q->internal);
635 
636 	if (!q->fq_root)
637 		return;
638 
639 	for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
640 		root = &q->fq_root[idx];
641 		while ((p = rb_first(root)) != NULL) {
642 			f = rb_entry(p, struct fq_flow, fq_node);
643 			rb_erase(p, root);
644 
645 			fq_flow_purge(f);
646 
647 			kmem_cache_free(fq_flow_cachep, f);
648 		}
649 	}
650 	q->new_flows.first	= NULL;
651 	q->old_flows.first	= NULL;
652 	q->delayed		= RB_ROOT;
653 	q->flows		= 0;
654 	q->inactive_flows	= 0;
655 	q->throttled_flows	= 0;
656 }
657 
658 static void fq_rehash(struct fq_sched_data *q,
659 		      struct rb_root *old_array, u32 old_log,
660 		      struct rb_root *new_array, u32 new_log)
661 {
662 	struct rb_node *op, **np, *parent;
663 	struct rb_root *oroot, *nroot;
664 	struct fq_flow *of, *nf;
665 	int fcnt = 0;
666 	u32 idx;
667 
668 	for (idx = 0; idx < (1U << old_log); idx++) {
669 		oroot = &old_array[idx];
670 		while ((op = rb_first(oroot)) != NULL) {
671 			rb_erase(op, oroot);
672 			of = rb_entry(op, struct fq_flow, fq_node);
673 			if (fq_gc_candidate(of)) {
674 				fcnt++;
675 				kmem_cache_free(fq_flow_cachep, of);
676 				continue;
677 			}
678 			nroot = &new_array[hash_ptr(of->sk, new_log)];
679 
680 			np = &nroot->rb_node;
681 			parent = NULL;
682 			while (*np) {
683 				parent = *np;
684 
685 				nf = rb_entry(parent, struct fq_flow, fq_node);
686 				BUG_ON(nf->sk == of->sk);
687 
688 				if (nf->sk > of->sk)
689 					np = &parent->rb_right;
690 				else
691 					np = &parent->rb_left;
692 			}
693 
694 			rb_link_node(&of->fq_node, parent, np);
695 			rb_insert_color(&of->fq_node, nroot);
696 		}
697 	}
698 	q->flows -= fcnt;
699 	q->inactive_flows -= fcnt;
700 	q->stat_gc_flows += fcnt;
701 }
702 
703 static void fq_free(void *addr)
704 {
705 	kvfree(addr);
706 }
707 
708 static int fq_resize(struct Qdisc *sch, u32 log)
709 {
710 	struct fq_sched_data *q = qdisc_priv(sch);
711 	struct rb_root *array;
712 	void *old_fq_root;
713 	u32 idx;
714 
715 	if (q->fq_root && log == q->fq_trees_log)
716 		return 0;
717 
718 	/* If XPS was setup, we can allocate memory on right NUMA node */
719 	array = kvmalloc_node(sizeof(struct rb_root) << log, GFP_KERNEL | __GFP_RETRY_MAYFAIL,
720 			      netdev_queue_numa_node_read(sch->dev_queue));
721 	if (!array)
722 		return -ENOMEM;
723 
724 	for (idx = 0; idx < (1U << log); idx++)
725 		array[idx] = RB_ROOT;
726 
727 	sch_tree_lock(sch);
728 
729 	old_fq_root = q->fq_root;
730 	if (old_fq_root)
731 		fq_rehash(q, old_fq_root, q->fq_trees_log, array, log);
732 
733 	q->fq_root = array;
734 	q->fq_trees_log = log;
735 
736 	sch_tree_unlock(sch);
737 
738 	fq_free(old_fq_root);
739 
740 	return 0;
741 }
742 
743 static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
744 	[TCA_FQ_PLIMIT]			= { .type = NLA_U32 },
745 	[TCA_FQ_FLOW_PLIMIT]		= { .type = NLA_U32 },
746 	[TCA_FQ_QUANTUM]		= { .type = NLA_U32 },
747 	[TCA_FQ_INITIAL_QUANTUM]	= { .type = NLA_U32 },
748 	[TCA_FQ_RATE_ENABLE]		= { .type = NLA_U32 },
749 	[TCA_FQ_FLOW_DEFAULT_RATE]	= { .type = NLA_U32 },
750 	[TCA_FQ_FLOW_MAX_RATE]		= { .type = NLA_U32 },
751 	[TCA_FQ_BUCKETS_LOG]		= { .type = NLA_U32 },
752 	[TCA_FQ_FLOW_REFILL_DELAY]	= { .type = NLA_U32 },
753 	[TCA_FQ_LOW_RATE_THRESHOLD]	= { .type = NLA_U32 },
754 	[TCA_FQ_CE_THRESHOLD]		= { .type = NLA_U32 },
755 };
756 
757 static int fq_change(struct Qdisc *sch, struct nlattr *opt,
758 		     struct netlink_ext_ack *extack)
759 {
760 	struct fq_sched_data *q = qdisc_priv(sch);
761 	struct nlattr *tb[TCA_FQ_MAX + 1];
762 	int err, drop_count = 0;
763 	unsigned drop_len = 0;
764 	u32 fq_log;
765 
766 	if (!opt)
767 		return -EINVAL;
768 
769 	err = nla_parse_nested_deprecated(tb, TCA_FQ_MAX, opt, fq_policy,
770 					  NULL);
771 	if (err < 0)
772 		return err;
773 
774 	sch_tree_lock(sch);
775 
776 	fq_log = q->fq_trees_log;
777 
778 	if (tb[TCA_FQ_BUCKETS_LOG]) {
779 		u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
780 
781 		if (nval >= 1 && nval <= ilog2(256*1024))
782 			fq_log = nval;
783 		else
784 			err = -EINVAL;
785 	}
786 	if (tb[TCA_FQ_PLIMIT])
787 		sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]);
788 
789 	if (tb[TCA_FQ_FLOW_PLIMIT])
790 		q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]);
791 
792 	if (tb[TCA_FQ_QUANTUM]) {
793 		u32 quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
794 
795 		if (quantum > 0)
796 			q->quantum = quantum;
797 		else
798 			err = -EINVAL;
799 	}
800 
801 	if (tb[TCA_FQ_INITIAL_QUANTUM])
802 		q->initial_quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]);
803 
804 	if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
805 		pr_warn_ratelimited("sch_fq: defrate %u ignored.\n",
806 				    nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]));
807 
808 	if (tb[TCA_FQ_FLOW_MAX_RATE]) {
809 		u32 rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
810 
811 		q->flow_max_rate = (rate == ~0U) ? ~0UL : rate;
812 	}
813 	if (tb[TCA_FQ_LOW_RATE_THRESHOLD])
814 		q->low_rate_threshold =
815 			nla_get_u32(tb[TCA_FQ_LOW_RATE_THRESHOLD]);
816 
817 	if (tb[TCA_FQ_RATE_ENABLE]) {
818 		u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
819 
820 		if (enable <= 1)
821 			q->rate_enable = enable;
822 		else
823 			err = -EINVAL;
824 	}
825 
826 	if (tb[TCA_FQ_FLOW_REFILL_DELAY]) {
827 		u32 usecs_delay = nla_get_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]) ;
828 
829 		q->flow_refill_delay = usecs_to_jiffies(usecs_delay);
830 	}
831 
832 	if (tb[TCA_FQ_ORPHAN_MASK])
833 		q->orphan_mask = nla_get_u32(tb[TCA_FQ_ORPHAN_MASK]);
834 
835 	if (tb[TCA_FQ_CE_THRESHOLD])
836 		q->ce_threshold = (u64)NSEC_PER_USEC *
837 				  nla_get_u32(tb[TCA_FQ_CE_THRESHOLD]);
838 
839 	if (!err) {
840 		sch_tree_unlock(sch);
841 		err = fq_resize(sch, fq_log);
842 		sch_tree_lock(sch);
843 	}
844 	while (sch->q.qlen > sch->limit) {
845 		struct sk_buff *skb = fq_dequeue(sch);
846 
847 		if (!skb)
848 			break;
849 		drop_len += qdisc_pkt_len(skb);
850 		rtnl_kfree_skbs(skb, skb);
851 		drop_count++;
852 	}
853 	qdisc_tree_reduce_backlog(sch, drop_count, drop_len);
854 
855 	sch_tree_unlock(sch);
856 	return err;
857 }
858 
859 static void fq_destroy(struct Qdisc *sch)
860 {
861 	struct fq_sched_data *q = qdisc_priv(sch);
862 
863 	fq_reset(sch);
864 	fq_free(q->fq_root);
865 	qdisc_watchdog_cancel(&q->watchdog);
866 }
867 
868 static int fq_init(struct Qdisc *sch, struct nlattr *opt,
869 		   struct netlink_ext_ack *extack)
870 {
871 	struct fq_sched_data *q = qdisc_priv(sch);
872 	int err;
873 
874 	sch->limit		= 10000;
875 	q->flow_plimit		= 100;
876 	q->quantum		= 2 * psched_mtu(qdisc_dev(sch));
877 	q->initial_quantum	= 10 * psched_mtu(qdisc_dev(sch));
878 	q->flow_refill_delay	= msecs_to_jiffies(40);
879 	q->flow_max_rate	= ~0UL;
880 	q->time_next_delayed_flow = ~0ULL;
881 	q->rate_enable		= 1;
882 	q->new_flows.first	= NULL;
883 	q->old_flows.first	= NULL;
884 	q->delayed		= RB_ROOT;
885 	q->fq_root		= NULL;
886 	q->fq_trees_log		= ilog2(1024);
887 	q->orphan_mask		= 1024 - 1;
888 	q->low_rate_threshold	= 550000 / 8;
889 
890 	/* Default ce_threshold of 4294 seconds */
891 	q->ce_threshold		= (u64)NSEC_PER_USEC * ~0U;
892 
893 	qdisc_watchdog_init_clockid(&q->watchdog, sch, CLOCK_MONOTONIC);
894 
895 	if (opt)
896 		err = fq_change(sch, opt, extack);
897 	else
898 		err = fq_resize(sch, q->fq_trees_log);
899 
900 	return err;
901 }
902 
903 static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
904 {
905 	struct fq_sched_data *q = qdisc_priv(sch);
906 	u64 ce_threshold = q->ce_threshold;
907 	struct nlattr *opts;
908 
909 	opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
910 	if (opts == NULL)
911 		goto nla_put_failure;
912 
913 	/* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */
914 
915 	do_div(ce_threshold, NSEC_PER_USEC);
916 
917 	if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) ||
918 	    nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) ||
919 	    nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) ||
920 	    nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) ||
921 	    nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) ||
922 	    nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE,
923 			min_t(unsigned long, q->flow_max_rate, ~0U)) ||
924 	    nla_put_u32(skb, TCA_FQ_FLOW_REFILL_DELAY,
925 			jiffies_to_usecs(q->flow_refill_delay)) ||
926 	    nla_put_u32(skb, TCA_FQ_ORPHAN_MASK, q->orphan_mask) ||
927 	    nla_put_u32(skb, TCA_FQ_LOW_RATE_THRESHOLD,
928 			q->low_rate_threshold) ||
929 	    nla_put_u32(skb, TCA_FQ_CE_THRESHOLD, (u32)ce_threshold) ||
930 	    nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log))
931 		goto nla_put_failure;
932 
933 	return nla_nest_end(skb, opts);
934 
935 nla_put_failure:
936 	return -1;
937 }
938 
939 static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
940 {
941 	struct fq_sched_data *q = qdisc_priv(sch);
942 	struct tc_fq_qd_stats st;
943 
944 	sch_tree_lock(sch);
945 
946 	st.gc_flows		  = q->stat_gc_flows;
947 	st.highprio_packets	  = q->stat_internal_packets;
948 	st.tcp_retrans		  = 0;
949 	st.throttled		  = q->stat_throttled;
950 	st.flows_plimit		  = q->stat_flows_plimit;
951 	st.pkts_too_long	  = q->stat_pkts_too_long;
952 	st.allocation_errors	  = q->stat_allocation_errors;
953 	st.time_next_delayed_flow = q->time_next_delayed_flow - ktime_get_ns();
954 	st.flows		  = q->flows;
955 	st.inactive_flows	  = q->inactive_flows;
956 	st.throttled_flows	  = q->throttled_flows;
957 	st.unthrottle_latency_ns  = min_t(unsigned long,
958 					  q->unthrottle_latency_ns, ~0U);
959 	st.ce_mark		  = q->stat_ce_mark;
960 	sch_tree_unlock(sch);
961 
962 	return gnet_stats_copy_app(d, &st, sizeof(st));
963 }
964 
965 static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
966 	.id		=	"fq",
967 	.priv_size	=	sizeof(struct fq_sched_data),
968 
969 	.enqueue	=	fq_enqueue,
970 	.dequeue	=	fq_dequeue,
971 	.peek		=	qdisc_peek_dequeued,
972 	.init		=	fq_init,
973 	.reset		=	fq_reset,
974 	.destroy	=	fq_destroy,
975 	.change		=	fq_change,
976 	.dump		=	fq_dump,
977 	.dump_stats	=	fq_dump_stats,
978 	.owner		=	THIS_MODULE,
979 };
980 
981 static int __init fq_module_init(void)
982 {
983 	int ret;
984 
985 	fq_flow_cachep = kmem_cache_create("fq_flow_cache",
986 					   sizeof(struct fq_flow),
987 					   0, 0, NULL);
988 	if (!fq_flow_cachep)
989 		return -ENOMEM;
990 
991 	ret = register_qdisc(&fq_qdisc_ops);
992 	if (ret)
993 		kmem_cache_destroy(fq_flow_cachep);
994 	return ret;
995 }
996 
997 static void __exit fq_module_exit(void)
998 {
999 	unregister_qdisc(&fq_qdisc_ops);
1000 	kmem_cache_destroy(fq_flow_cachep);
1001 }
1002 
1003 module_init(fq_module_init)
1004 module_exit(fq_module_exit)
1005 MODULE_AUTHOR("Eric Dumazet");
1006 MODULE_LICENSE("GPL");
1007