xref: /openbmc/linux/net/sched/sch_fq.c (revision 5bd8e16d)
1 /*
2  * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
3  *
4  *  Copyright (C) 2013 Eric Dumazet <edumazet@google.com>
5  *
6  *	This program is free software; you can redistribute it and/or
7  *	modify it under the terms of the GNU General Public License
8  *	as published by the Free Software Foundation; either version
9  *	2 of the License, or (at your option) any later version.
10  *
11  *  Meant to be mostly used for localy generated traffic :
12  *  Fast classification depends on skb->sk being set before reaching us.
13  *  If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
14  *  All packets belonging to a socket are considered as a 'flow'.
15  *
16  *  Flows are dynamically allocated and stored in a hash table of RB trees
17  *  They are also part of one Round Robin 'queues' (new or old flows)
18  *
19  *  Burst avoidance (aka pacing) capability :
20  *
21  *  Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
22  *  bunch of packets, and this packet scheduler adds delay between
23  *  packets to respect rate limitation.
24  *
25  *  enqueue() :
26  *   - lookup one RB tree (out of 1024 or more) to find the flow.
27  *     If non existent flow, create it, add it to the tree.
28  *     Add skb to the per flow list of skb (fifo).
29  *   - Use a special fifo for high prio packets
30  *
31  *  dequeue() : serves flows in Round Robin
32  *  Note : When a flow becomes empty, we do not immediately remove it from
33  *  rb trees, for performance reasons (its expected to send additional packets,
34  *  or SLAB cache will reuse socket for another flow)
35  */
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/jiffies.h>
41 #include <linux/string.h>
42 #include <linux/in.h>
43 #include <linux/errno.h>
44 #include <linux/init.h>
45 #include <linux/skbuff.h>
46 #include <linux/slab.h>
47 #include <linux/rbtree.h>
48 #include <linux/hash.h>
49 #include <linux/prefetch.h>
50 #include <net/netlink.h>
51 #include <net/pkt_sched.h>
52 #include <net/sock.h>
53 #include <net/tcp_states.h>
54 
55 /*
56  * Per flow structure, dynamically allocated
57  */
58 struct fq_flow {
59 	struct sk_buff	*head;		/* list of skbs for this flow : first skb */
60 	union {
61 		struct sk_buff *tail;	/* last skb in the list */
62 		unsigned long  age;	/* jiffies when flow was emptied, for gc */
63 	};
64 	struct rb_node	fq_node; 	/* anchor in fq_root[] trees */
65 	struct sock	*sk;
66 	int		qlen;		/* number of packets in flow queue */
67 	int		credit;
68 	u32		socket_hash;	/* sk_hash */
69 	struct fq_flow *next;		/* next pointer in RR lists, or &detached */
70 
71 	struct rb_node  rate_node;	/* anchor in q->delayed tree */
72 	u64		time_next_packet;
73 };
74 
75 struct fq_flow_head {
76 	struct fq_flow *first;
77 	struct fq_flow *last;
78 };
79 
80 struct fq_sched_data {
81 	struct fq_flow_head new_flows;
82 
83 	struct fq_flow_head old_flows;
84 
85 	struct rb_root	delayed;	/* for rate limited flows */
86 	u64		time_next_delayed_flow;
87 
88 	struct fq_flow	internal;	/* for non classified or high prio packets */
89 	u32		quantum;
90 	u32		initial_quantum;
91 	u32		flow_default_rate;/* rate per flow : bytes per second */
92 	u32		flow_max_rate;	/* optional max rate per flow */
93 	u32		flow_plimit;	/* max packets per flow */
94 	struct rb_root	*fq_root;
95 	u8		rate_enable;
96 	u8		fq_trees_log;
97 
98 	u32		flows;
99 	u32		inactive_flows;
100 	u32		throttled_flows;
101 
102 	u64		stat_gc_flows;
103 	u64		stat_internal_packets;
104 	u64		stat_tcp_retrans;
105 	u64		stat_throttled;
106 	u64		stat_flows_plimit;
107 	u64		stat_pkts_too_long;
108 	u64		stat_allocation_errors;
109 	struct qdisc_watchdog watchdog;
110 };
111 
112 /* special value to mark a detached flow (not on old/new list) */
113 static struct fq_flow detached, throttled;
114 
115 static void fq_flow_set_detached(struct fq_flow *f)
116 {
117 	f->next = &detached;
118 }
119 
120 static bool fq_flow_is_detached(const struct fq_flow *f)
121 {
122 	return f->next == &detached;
123 }
124 
125 static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
126 {
127 	struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
128 
129 	while (*p) {
130 		struct fq_flow *aux;
131 
132 		parent = *p;
133 		aux = container_of(parent, struct fq_flow, rate_node);
134 		if (f->time_next_packet >= aux->time_next_packet)
135 			p = &parent->rb_right;
136 		else
137 			p = &parent->rb_left;
138 	}
139 	rb_link_node(&f->rate_node, parent, p);
140 	rb_insert_color(&f->rate_node, &q->delayed);
141 	q->throttled_flows++;
142 	q->stat_throttled++;
143 
144 	f->next = &throttled;
145 	if (q->time_next_delayed_flow > f->time_next_packet)
146 		q->time_next_delayed_flow = f->time_next_packet;
147 }
148 
149 
150 static struct kmem_cache *fq_flow_cachep __read_mostly;
151 
152 static void fq_flow_add_tail(struct fq_flow_head *head, struct fq_flow *flow)
153 {
154 	if (head->first)
155 		head->last->next = flow;
156 	else
157 		head->first = flow;
158 	head->last = flow;
159 	flow->next = NULL;
160 }
161 
162 /* limit number of collected flows per round */
163 #define FQ_GC_MAX 8
164 #define FQ_GC_AGE (3*HZ)
165 
166 static bool fq_gc_candidate(const struct fq_flow *f)
167 {
168 	return fq_flow_is_detached(f) &&
169 	       time_after(jiffies, f->age + FQ_GC_AGE);
170 }
171 
172 static void fq_gc(struct fq_sched_data *q,
173 		  struct rb_root *root,
174 		  struct sock *sk)
175 {
176 	struct fq_flow *f, *tofree[FQ_GC_MAX];
177 	struct rb_node **p, *parent;
178 	int fcnt = 0;
179 
180 	p = &root->rb_node;
181 	parent = NULL;
182 	while (*p) {
183 		parent = *p;
184 
185 		f = container_of(parent, struct fq_flow, fq_node);
186 		if (f->sk == sk)
187 			break;
188 
189 		if (fq_gc_candidate(f)) {
190 			tofree[fcnt++] = f;
191 			if (fcnt == FQ_GC_MAX)
192 				break;
193 		}
194 
195 		if (f->sk > sk)
196 			p = &parent->rb_right;
197 		else
198 			p = &parent->rb_left;
199 	}
200 
201 	q->flows -= fcnt;
202 	q->inactive_flows -= fcnt;
203 	q->stat_gc_flows += fcnt;
204 	while (fcnt) {
205 		struct fq_flow *f = tofree[--fcnt];
206 
207 		rb_erase(&f->fq_node, root);
208 		kmem_cache_free(fq_flow_cachep, f);
209 	}
210 }
211 
212 static const u8 prio2band[TC_PRIO_MAX + 1] = {
213 	1, 2, 2, 2, 1, 2, 0, 0 , 1, 1, 1, 1, 1, 1, 1, 1
214 };
215 
216 static struct fq_flow *fq_classify(struct sk_buff *skb, struct fq_sched_data *q)
217 {
218 	struct rb_node **p, *parent;
219 	struct sock *sk = skb->sk;
220 	struct rb_root *root;
221 	struct fq_flow *f;
222 	int band;
223 
224 	/* warning: no starvation prevention... */
225 	band = prio2band[skb->priority & TC_PRIO_MAX];
226 	if (unlikely(band == 0))
227 		return &q->internal;
228 
229 	if (unlikely(!sk)) {
230 		/* By forcing low order bit to 1, we make sure to not
231 		 * collide with a local flow (socket pointers are word aligned)
232 		 */
233 		sk = (struct sock *)(skb_get_rxhash(skb) | 1L);
234 	}
235 
236 	root = &q->fq_root[hash_32((u32)(long)sk, q->fq_trees_log)];
237 
238 	if (q->flows >= (2U << q->fq_trees_log) &&
239 	    q->inactive_flows > q->flows/2)
240 		fq_gc(q, root, sk);
241 
242 	p = &root->rb_node;
243 	parent = NULL;
244 	while (*p) {
245 		parent = *p;
246 
247 		f = container_of(parent, struct fq_flow, fq_node);
248 		if (f->sk == sk) {
249 			/* socket might have been reallocated, so check
250 			 * if its sk_hash is the same.
251 			 * It not, we need to refill credit with
252 			 * initial quantum
253 			 */
254 			if (unlikely(skb->sk &&
255 				     f->socket_hash != sk->sk_hash)) {
256 				f->credit = q->initial_quantum;
257 				f->socket_hash = sk->sk_hash;
258 			}
259 			return f;
260 		}
261 		if (f->sk > sk)
262 			p = &parent->rb_right;
263 		else
264 			p = &parent->rb_left;
265 	}
266 
267 	f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
268 	if (unlikely(!f)) {
269 		q->stat_allocation_errors++;
270 		return &q->internal;
271 	}
272 	fq_flow_set_detached(f);
273 	f->sk = sk;
274 	if (skb->sk)
275 		f->socket_hash = sk->sk_hash;
276 	f->credit = q->initial_quantum;
277 
278 	rb_link_node(&f->fq_node, parent, p);
279 	rb_insert_color(&f->fq_node, root);
280 
281 	q->flows++;
282 	q->inactive_flows++;
283 	return f;
284 }
285 
286 
287 /* remove one skb from head of flow queue */
288 static struct sk_buff *fq_dequeue_head(struct fq_flow *flow)
289 {
290 	struct sk_buff *skb = flow->head;
291 
292 	if (skb) {
293 		flow->head = skb->next;
294 		skb->next = NULL;
295 		flow->qlen--;
296 	}
297 	return skb;
298 }
299 
300 /* We might add in the future detection of retransmits
301  * For the time being, just return false
302  */
303 static bool skb_is_retransmit(struct sk_buff *skb)
304 {
305 	return false;
306 }
307 
308 /* add skb to flow queue
309  * flow queue is a linked list, kind of FIFO, except for TCP retransmits
310  * We special case tcp retransmits to be transmitted before other packets.
311  * We rely on fact that TCP retransmits are unlikely, so we do not waste
312  * a separate queue or a pointer.
313  * head->  [retrans pkt 1]
314  *         [retrans pkt 2]
315  *         [ normal pkt 1]
316  *         [ normal pkt 2]
317  *         [ normal pkt 3]
318  * tail->  [ normal pkt 4]
319  */
320 static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
321 {
322 	struct sk_buff *prev, *head = flow->head;
323 
324 	skb->next = NULL;
325 	if (!head) {
326 		flow->head = skb;
327 		flow->tail = skb;
328 		return;
329 	}
330 	if (likely(!skb_is_retransmit(skb))) {
331 		flow->tail->next = skb;
332 		flow->tail = skb;
333 		return;
334 	}
335 
336 	/* This skb is a tcp retransmit,
337 	 * find the last retrans packet in the queue
338 	 */
339 	prev = NULL;
340 	while (skb_is_retransmit(head)) {
341 		prev = head;
342 		head = head->next;
343 		if (!head)
344 			break;
345 	}
346 	if (!prev) { /* no rtx packet in queue, become the new head */
347 		skb->next = flow->head;
348 		flow->head = skb;
349 	} else {
350 		if (prev == flow->tail)
351 			flow->tail = skb;
352 		else
353 			skb->next = prev->next;
354 		prev->next = skb;
355 	}
356 }
357 
358 static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
359 {
360 	struct fq_sched_data *q = qdisc_priv(sch);
361 	struct fq_flow *f;
362 
363 	if (unlikely(sch->q.qlen >= sch->limit))
364 		return qdisc_drop(skb, sch);
365 
366 	f = fq_classify(skb, q);
367 	if (unlikely(f->qlen >= q->flow_plimit && f != &q->internal)) {
368 		q->stat_flows_plimit++;
369 		return qdisc_drop(skb, sch);
370 	}
371 
372 	f->qlen++;
373 	flow_queue_add(f, skb);
374 	if (skb_is_retransmit(skb))
375 		q->stat_tcp_retrans++;
376 	sch->qstats.backlog += qdisc_pkt_len(skb);
377 	if (fq_flow_is_detached(f)) {
378 		fq_flow_add_tail(&q->new_flows, f);
379 		if (q->quantum > f->credit)
380 			f->credit = q->quantum;
381 		q->inactive_flows--;
382 		qdisc_unthrottled(sch);
383 	}
384 	if (unlikely(f == &q->internal)) {
385 		q->stat_internal_packets++;
386 		qdisc_unthrottled(sch);
387 	}
388 	sch->q.qlen++;
389 
390 	return NET_XMIT_SUCCESS;
391 }
392 
393 static void fq_check_throttled(struct fq_sched_data *q, u64 now)
394 {
395 	struct rb_node *p;
396 
397 	if (q->time_next_delayed_flow > now)
398 		return;
399 
400 	q->time_next_delayed_flow = ~0ULL;
401 	while ((p = rb_first(&q->delayed)) != NULL) {
402 		struct fq_flow *f = container_of(p, struct fq_flow, rate_node);
403 
404 		if (f->time_next_packet > now) {
405 			q->time_next_delayed_flow = f->time_next_packet;
406 			break;
407 		}
408 		rb_erase(p, &q->delayed);
409 		q->throttled_flows--;
410 		fq_flow_add_tail(&q->old_flows, f);
411 	}
412 }
413 
414 static struct sk_buff *fq_dequeue(struct Qdisc *sch)
415 {
416 	struct fq_sched_data *q = qdisc_priv(sch);
417 	u64 now = ktime_to_ns(ktime_get());
418 	struct fq_flow_head *head;
419 	struct sk_buff *skb;
420 	struct fq_flow *f;
421 
422 	skb = fq_dequeue_head(&q->internal);
423 	if (skb)
424 		goto out;
425 	fq_check_throttled(q, now);
426 begin:
427 	head = &q->new_flows;
428 	if (!head->first) {
429 		head = &q->old_flows;
430 		if (!head->first) {
431 			if (q->time_next_delayed_flow != ~0ULL)
432 				qdisc_watchdog_schedule_ns(&q->watchdog,
433 							   q->time_next_delayed_flow);
434 			return NULL;
435 		}
436 	}
437 	f = head->first;
438 
439 	if (f->credit <= 0) {
440 		f->credit += q->quantum;
441 		head->first = f->next;
442 		fq_flow_add_tail(&q->old_flows, f);
443 		goto begin;
444 	}
445 
446 	if (unlikely(f->head && now < f->time_next_packet)) {
447 		head->first = f->next;
448 		fq_flow_set_throttled(q, f);
449 		goto begin;
450 	}
451 
452 	skb = fq_dequeue_head(f);
453 	if (!skb) {
454 		head->first = f->next;
455 		/* force a pass through old_flows to prevent starvation */
456 		if ((head == &q->new_flows) && q->old_flows.first) {
457 			fq_flow_add_tail(&q->old_flows, f);
458 		} else {
459 			fq_flow_set_detached(f);
460 			f->age = jiffies;
461 			q->inactive_flows++;
462 		}
463 		goto begin;
464 	}
465 	prefetch(&skb->end);
466 	f->time_next_packet = now;
467 	f->credit -= qdisc_pkt_len(skb);
468 
469 	if (f->credit <= 0 &&
470 	    q->rate_enable &&
471 	    skb->sk && skb->sk->sk_state != TCP_TIME_WAIT) {
472 		u32 rate = skb->sk->sk_pacing_rate ?: q->flow_default_rate;
473 
474 		rate = min(rate, q->flow_max_rate);
475 		if (rate) {
476 			u64 len = (u64)qdisc_pkt_len(skb) * NSEC_PER_SEC;
477 
478 			do_div(len, rate);
479 			/* Since socket rate can change later,
480 			 * clamp the delay to 125 ms.
481 			 * TODO: maybe segment the too big skb, as in commit
482 			 * e43ac79a4bc ("sch_tbf: segment too big GSO packets")
483 			 */
484 			if (unlikely(len > 125 * NSEC_PER_MSEC)) {
485 				len = 125 * NSEC_PER_MSEC;
486 				q->stat_pkts_too_long++;
487 			}
488 
489 			f->time_next_packet = now + len;
490 		}
491 	}
492 out:
493 	sch->qstats.backlog -= qdisc_pkt_len(skb);
494 	qdisc_bstats_update(sch, skb);
495 	sch->q.qlen--;
496 	qdisc_unthrottled(sch);
497 	return skb;
498 }
499 
500 static void fq_reset(struct Qdisc *sch)
501 {
502 	struct sk_buff *skb;
503 
504 	while ((skb = fq_dequeue(sch)) != NULL)
505 		kfree_skb(skb);
506 }
507 
508 static void fq_rehash(struct fq_sched_data *q,
509 		      struct rb_root *old_array, u32 old_log,
510 		      struct rb_root *new_array, u32 new_log)
511 {
512 	struct rb_node *op, **np, *parent;
513 	struct rb_root *oroot, *nroot;
514 	struct fq_flow *of, *nf;
515 	int fcnt = 0;
516 	u32 idx;
517 
518 	for (idx = 0; idx < (1U << old_log); idx++) {
519 		oroot = &old_array[idx];
520 		while ((op = rb_first(oroot)) != NULL) {
521 			rb_erase(op, oroot);
522 			of = container_of(op, struct fq_flow, fq_node);
523 			if (fq_gc_candidate(of)) {
524 				fcnt++;
525 				kmem_cache_free(fq_flow_cachep, of);
526 				continue;
527 			}
528 			nroot = &new_array[hash_32((u32)(long)of->sk, new_log)];
529 
530 			np = &nroot->rb_node;
531 			parent = NULL;
532 			while (*np) {
533 				parent = *np;
534 
535 				nf = container_of(parent, struct fq_flow, fq_node);
536 				BUG_ON(nf->sk == of->sk);
537 
538 				if (nf->sk > of->sk)
539 					np = &parent->rb_right;
540 				else
541 					np = &parent->rb_left;
542 			}
543 
544 			rb_link_node(&of->fq_node, parent, np);
545 			rb_insert_color(&of->fq_node, nroot);
546 		}
547 	}
548 	q->flows -= fcnt;
549 	q->inactive_flows -= fcnt;
550 	q->stat_gc_flows += fcnt;
551 }
552 
553 static int fq_resize(struct fq_sched_data *q, u32 log)
554 {
555 	struct rb_root *array;
556 	u32 idx;
557 
558 	if (q->fq_root && log == q->fq_trees_log)
559 		return 0;
560 
561 	array = kmalloc(sizeof(struct rb_root) << log, GFP_KERNEL);
562 	if (!array)
563 		return -ENOMEM;
564 
565 	for (idx = 0; idx < (1U << log); idx++)
566 		array[idx] = RB_ROOT;
567 
568 	if (q->fq_root) {
569 		fq_rehash(q, q->fq_root, q->fq_trees_log, array, log);
570 		kfree(q->fq_root);
571 	}
572 	q->fq_root = array;
573 	q->fq_trees_log = log;
574 
575 	return 0;
576 }
577 
578 static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
579 	[TCA_FQ_PLIMIT]			= { .type = NLA_U32 },
580 	[TCA_FQ_FLOW_PLIMIT]		= { .type = NLA_U32 },
581 	[TCA_FQ_QUANTUM]		= { .type = NLA_U32 },
582 	[TCA_FQ_INITIAL_QUANTUM]	= { .type = NLA_U32 },
583 	[TCA_FQ_RATE_ENABLE]		= { .type = NLA_U32 },
584 	[TCA_FQ_FLOW_DEFAULT_RATE]	= { .type = NLA_U32 },
585 	[TCA_FQ_FLOW_MAX_RATE]		= { .type = NLA_U32 },
586 	[TCA_FQ_BUCKETS_LOG]		= { .type = NLA_U32 },
587 };
588 
589 static int fq_change(struct Qdisc *sch, struct nlattr *opt)
590 {
591 	struct fq_sched_data *q = qdisc_priv(sch);
592 	struct nlattr *tb[TCA_FQ_MAX + 1];
593 	int err, drop_count = 0;
594 	u32 fq_log;
595 
596 	if (!opt)
597 		return -EINVAL;
598 
599 	err = nla_parse_nested(tb, TCA_FQ_MAX, opt, fq_policy);
600 	if (err < 0)
601 		return err;
602 
603 	sch_tree_lock(sch);
604 
605 	fq_log = q->fq_trees_log;
606 
607 	if (tb[TCA_FQ_BUCKETS_LOG]) {
608 		u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
609 
610 		if (nval >= 1 && nval <= ilog2(256*1024))
611 			fq_log = nval;
612 		else
613 			err = -EINVAL;
614 	}
615 	if (tb[TCA_FQ_PLIMIT])
616 		sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]);
617 
618 	if (tb[TCA_FQ_FLOW_PLIMIT])
619 		q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]);
620 
621 	if (tb[TCA_FQ_QUANTUM])
622 		q->quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
623 
624 	if (tb[TCA_FQ_INITIAL_QUANTUM])
625 		q->quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]);
626 
627 	if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
628 		q->flow_default_rate = nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]);
629 
630 	if (tb[TCA_FQ_FLOW_MAX_RATE])
631 		q->flow_max_rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
632 
633 	if (tb[TCA_FQ_RATE_ENABLE]) {
634 		u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
635 
636 		if (enable <= 1)
637 			q->rate_enable = enable;
638 		else
639 			err = -EINVAL;
640 	}
641 
642 	if (!err)
643 		err = fq_resize(q, fq_log);
644 
645 	while (sch->q.qlen > sch->limit) {
646 		struct sk_buff *skb = fq_dequeue(sch);
647 
648 		kfree_skb(skb);
649 		drop_count++;
650 	}
651 	qdisc_tree_decrease_qlen(sch, drop_count);
652 
653 	sch_tree_unlock(sch);
654 	return err;
655 }
656 
657 static void fq_destroy(struct Qdisc *sch)
658 {
659 	struct fq_sched_data *q = qdisc_priv(sch);
660 	struct rb_root *root;
661 	struct rb_node *p;
662 	unsigned int idx;
663 
664 	if (q->fq_root) {
665 		for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
666 			root = &q->fq_root[idx];
667 			while ((p = rb_first(root)) != NULL) {
668 				rb_erase(p, root);
669 				kmem_cache_free(fq_flow_cachep,
670 						container_of(p, struct fq_flow, fq_node));
671 			}
672 		}
673 		kfree(q->fq_root);
674 	}
675 	qdisc_watchdog_cancel(&q->watchdog);
676 }
677 
678 static int fq_init(struct Qdisc *sch, struct nlattr *opt)
679 {
680 	struct fq_sched_data *q = qdisc_priv(sch);
681 	int err;
682 
683 	sch->limit		= 10000;
684 	q->flow_plimit		= 100;
685 	q->quantum		= 2 * psched_mtu(qdisc_dev(sch));
686 	q->initial_quantum	= 10 * psched_mtu(qdisc_dev(sch));
687 	q->flow_default_rate	= 0;
688 	q->flow_max_rate	= ~0U;
689 	q->rate_enable		= 1;
690 	q->new_flows.first	= NULL;
691 	q->old_flows.first	= NULL;
692 	q->delayed		= RB_ROOT;
693 	q->fq_root		= NULL;
694 	q->fq_trees_log		= ilog2(1024);
695 	qdisc_watchdog_init(&q->watchdog, sch);
696 
697 	if (opt)
698 		err = fq_change(sch, opt);
699 	else
700 		err = fq_resize(q, q->fq_trees_log);
701 
702 	return err;
703 }
704 
705 static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
706 {
707 	struct fq_sched_data *q = qdisc_priv(sch);
708 	struct nlattr *opts;
709 
710 	opts = nla_nest_start(skb, TCA_OPTIONS);
711 	if (opts == NULL)
712 		goto nla_put_failure;
713 
714 	if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) ||
715 	    nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) ||
716 	    nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) ||
717 	    nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) ||
718 	    nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) ||
719 	    nla_put_u32(skb, TCA_FQ_FLOW_DEFAULT_RATE, q->flow_default_rate) ||
720 	    nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE, q->flow_max_rate) ||
721 	    nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log))
722 		goto nla_put_failure;
723 
724 	nla_nest_end(skb, opts);
725 	return skb->len;
726 
727 nla_put_failure:
728 	return -1;
729 }
730 
731 static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
732 {
733 	struct fq_sched_data *q = qdisc_priv(sch);
734 	u64 now = ktime_to_ns(ktime_get());
735 	struct tc_fq_qd_stats st = {
736 		.gc_flows		= q->stat_gc_flows,
737 		.highprio_packets	= q->stat_internal_packets,
738 		.tcp_retrans		= q->stat_tcp_retrans,
739 		.throttled		= q->stat_throttled,
740 		.flows_plimit		= q->stat_flows_plimit,
741 		.pkts_too_long		= q->stat_pkts_too_long,
742 		.allocation_errors	= q->stat_allocation_errors,
743 		.flows			= q->flows,
744 		.inactive_flows		= q->inactive_flows,
745 		.throttled_flows	= q->throttled_flows,
746 		.time_next_delayed_flow	= q->time_next_delayed_flow - now,
747 	};
748 
749 	return gnet_stats_copy_app(d, &st, sizeof(st));
750 }
751 
752 static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
753 	.id		=	"fq",
754 	.priv_size	=	sizeof(struct fq_sched_data),
755 
756 	.enqueue	=	fq_enqueue,
757 	.dequeue	=	fq_dequeue,
758 	.peek		=	qdisc_peek_dequeued,
759 	.init		=	fq_init,
760 	.reset		=	fq_reset,
761 	.destroy	=	fq_destroy,
762 	.change		=	fq_change,
763 	.dump		=	fq_dump,
764 	.dump_stats	=	fq_dump_stats,
765 	.owner		=	THIS_MODULE,
766 };
767 
768 static int __init fq_module_init(void)
769 {
770 	int ret;
771 
772 	fq_flow_cachep = kmem_cache_create("fq_flow_cache",
773 					   sizeof(struct fq_flow),
774 					   0, 0, NULL);
775 	if (!fq_flow_cachep)
776 		return -ENOMEM;
777 
778 	ret = register_qdisc(&fq_qdisc_ops);
779 	if (ret)
780 		kmem_cache_destroy(fq_flow_cachep);
781 	return ret;
782 }
783 
784 static void __exit fq_module_exit(void)
785 {
786 	unregister_qdisc(&fq_qdisc_ops);
787 	kmem_cache_destroy(fq_flow_cachep);
788 }
789 
790 module_init(fq_module_init)
791 module_exit(fq_module_exit)
792 MODULE_AUTHOR("Eric Dumazet");
793 MODULE_LICENSE("GPL");
794