1 /* 2 * net/sched/sch_choke.c CHOKE scheduler 3 * 4 * Copyright (c) 2011 Stephen Hemminger <shemminger@vyatta.com> 5 * Copyright (c) 2011 Eric Dumazet <eric.dumazet@gmail.com> 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * version 2 as published by the Free Software Foundation. 10 * 11 */ 12 13 #include <linux/module.h> 14 #include <linux/types.h> 15 #include <linux/kernel.h> 16 #include <linux/skbuff.h> 17 #include <linux/vmalloc.h> 18 #include <net/pkt_sched.h> 19 #include <net/inet_ecn.h> 20 #include <net/red.h> 21 #include <net/flow_dissector.h> 22 23 /* 24 CHOKe stateless AQM for fair bandwidth allocation 25 ================================================= 26 27 CHOKe (CHOose and Keep for responsive flows, CHOose and Kill for 28 unresponsive flows) is a variant of RED that penalizes misbehaving flows but 29 maintains no flow state. The difference from RED is an additional step 30 during the enqueuing process. If average queue size is over the 31 low threshold (qmin), a packet is chosen at random from the queue. 32 If both the new and chosen packet are from the same flow, both 33 are dropped. Unlike RED, CHOKe is not really a "classful" qdisc because it 34 needs to access packets in queue randomly. It has a minimal class 35 interface to allow overriding the builtin flow classifier with 36 filters. 37 38 Source: 39 R. Pan, B. Prabhakar, and K. Psounis, "CHOKe, A Stateless 40 Active Queue Management Scheme for Approximating Fair Bandwidth Allocation", 41 IEEE INFOCOM, 2000. 42 43 A. Tang, J. Wang, S. Low, "Understanding CHOKe: Throughput and Spatial 44 Characteristics", IEEE/ACM Transactions on Networking, 2004 45 46 */ 47 48 /* Upper bound on size of sk_buff table (packets) */ 49 #define CHOKE_MAX_QUEUE (128*1024 - 1) 50 51 struct choke_sched_data { 52 /* Parameters */ 53 u32 limit; 54 unsigned char flags; 55 56 struct red_parms parms; 57 58 /* Variables */ 59 struct red_vars vars; 60 struct tcf_proto __rcu *filter_list; 61 struct { 62 u32 prob_drop; /* Early probability drops */ 63 u32 prob_mark; /* Early probability marks */ 64 u32 forced_drop; /* Forced drops, qavg > max_thresh */ 65 u32 forced_mark; /* Forced marks, qavg > max_thresh */ 66 u32 pdrop; /* Drops due to queue limits */ 67 u32 other; /* Drops due to drop() calls */ 68 u32 matched; /* Drops to flow match */ 69 } stats; 70 71 unsigned int head; 72 unsigned int tail; 73 74 unsigned int tab_mask; /* size - 1 */ 75 76 struct sk_buff **tab; 77 }; 78 79 /* number of elements in queue including holes */ 80 static unsigned int choke_len(const struct choke_sched_data *q) 81 { 82 return (q->tail - q->head) & q->tab_mask; 83 } 84 85 /* Is ECN parameter configured */ 86 static int use_ecn(const struct choke_sched_data *q) 87 { 88 return q->flags & TC_RED_ECN; 89 } 90 91 /* Should packets over max just be dropped (versus marked) */ 92 static int use_harddrop(const struct choke_sched_data *q) 93 { 94 return q->flags & TC_RED_HARDDROP; 95 } 96 97 /* Move head pointer forward to skip over holes */ 98 static void choke_zap_head_holes(struct choke_sched_data *q) 99 { 100 do { 101 q->head = (q->head + 1) & q->tab_mask; 102 if (q->head == q->tail) 103 break; 104 } while (q->tab[q->head] == NULL); 105 } 106 107 /* Move tail pointer backwards to reuse holes */ 108 static void choke_zap_tail_holes(struct choke_sched_data *q) 109 { 110 do { 111 q->tail = (q->tail - 1) & q->tab_mask; 112 if (q->head == q->tail) 113 break; 114 } while (q->tab[q->tail] == NULL); 115 } 116 117 /* Drop packet from queue array by creating a "hole" */ 118 static void choke_drop_by_idx(struct Qdisc *sch, unsigned int idx, 119 struct sk_buff **to_free) 120 { 121 struct choke_sched_data *q = qdisc_priv(sch); 122 struct sk_buff *skb = q->tab[idx]; 123 124 q->tab[idx] = NULL; 125 126 if (idx == q->head) 127 choke_zap_head_holes(q); 128 if (idx == q->tail) 129 choke_zap_tail_holes(q); 130 131 qdisc_qstats_backlog_dec(sch, skb); 132 qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(skb)); 133 qdisc_drop(skb, sch, to_free); 134 --sch->q.qlen; 135 } 136 137 struct choke_skb_cb { 138 u16 classid; 139 u8 keys_valid; 140 struct flow_keys_digest keys; 141 }; 142 143 static inline struct choke_skb_cb *choke_skb_cb(const struct sk_buff *skb) 144 { 145 qdisc_cb_private_validate(skb, sizeof(struct choke_skb_cb)); 146 return (struct choke_skb_cb *)qdisc_skb_cb(skb)->data; 147 } 148 149 static inline void choke_set_classid(struct sk_buff *skb, u16 classid) 150 { 151 choke_skb_cb(skb)->classid = classid; 152 } 153 154 static u16 choke_get_classid(const struct sk_buff *skb) 155 { 156 return choke_skb_cb(skb)->classid; 157 } 158 159 /* 160 * Compare flow of two packets 161 * Returns true only if source and destination address and port match. 162 * false for special cases 163 */ 164 static bool choke_match_flow(struct sk_buff *skb1, 165 struct sk_buff *skb2) 166 { 167 struct flow_keys temp; 168 169 if (skb1->protocol != skb2->protocol) 170 return false; 171 172 if (!choke_skb_cb(skb1)->keys_valid) { 173 choke_skb_cb(skb1)->keys_valid = 1; 174 skb_flow_dissect_flow_keys(skb1, &temp, 0); 175 make_flow_keys_digest(&choke_skb_cb(skb1)->keys, &temp); 176 } 177 178 if (!choke_skb_cb(skb2)->keys_valid) { 179 choke_skb_cb(skb2)->keys_valid = 1; 180 skb_flow_dissect_flow_keys(skb2, &temp, 0); 181 make_flow_keys_digest(&choke_skb_cb(skb2)->keys, &temp); 182 } 183 184 return !memcmp(&choke_skb_cb(skb1)->keys, 185 &choke_skb_cb(skb2)->keys, 186 sizeof(choke_skb_cb(skb1)->keys)); 187 } 188 189 /* 190 * Classify flow using either: 191 * 1. pre-existing classification result in skb 192 * 2. fast internal classification 193 * 3. use TC filter based classification 194 */ 195 static bool choke_classify(struct sk_buff *skb, 196 struct Qdisc *sch, int *qerr) 197 198 { 199 struct choke_sched_data *q = qdisc_priv(sch); 200 struct tcf_result res; 201 struct tcf_proto *fl; 202 int result; 203 204 fl = rcu_dereference_bh(q->filter_list); 205 result = tc_classify(skb, fl, &res, false); 206 if (result >= 0) { 207 #ifdef CONFIG_NET_CLS_ACT 208 switch (result) { 209 case TC_ACT_STOLEN: 210 case TC_ACT_QUEUED: 211 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN; 212 case TC_ACT_SHOT: 213 return false; 214 } 215 #endif 216 choke_set_classid(skb, TC_H_MIN(res.classid)); 217 return true; 218 } 219 220 return false; 221 } 222 223 /* 224 * Select a packet at random from queue 225 * HACK: since queue can have holes from previous deletion; retry several 226 * times to find a random skb but then just give up and return the head 227 * Will return NULL if queue is empty (q->head == q->tail) 228 */ 229 static struct sk_buff *choke_peek_random(const struct choke_sched_data *q, 230 unsigned int *pidx) 231 { 232 struct sk_buff *skb; 233 int retrys = 3; 234 235 do { 236 *pidx = (q->head + prandom_u32_max(choke_len(q))) & q->tab_mask; 237 skb = q->tab[*pidx]; 238 if (skb) 239 return skb; 240 } while (--retrys > 0); 241 242 return q->tab[*pidx = q->head]; 243 } 244 245 /* 246 * Compare new packet with random packet in queue 247 * returns true if matched and sets *pidx 248 */ 249 static bool choke_match_random(const struct choke_sched_data *q, 250 struct sk_buff *nskb, 251 unsigned int *pidx) 252 { 253 struct sk_buff *oskb; 254 255 if (q->head == q->tail) 256 return false; 257 258 oskb = choke_peek_random(q, pidx); 259 if (rcu_access_pointer(q->filter_list)) 260 return choke_get_classid(nskb) == choke_get_classid(oskb); 261 262 return choke_match_flow(oskb, nskb); 263 } 264 265 static int choke_enqueue(struct sk_buff *skb, struct Qdisc *sch, 266 struct sk_buff **to_free) 267 { 268 int ret = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS; 269 struct choke_sched_data *q = qdisc_priv(sch); 270 const struct red_parms *p = &q->parms; 271 272 if (rcu_access_pointer(q->filter_list)) { 273 /* If using external classifiers, get result and record it. */ 274 if (!choke_classify(skb, sch, &ret)) 275 goto other_drop; /* Packet was eaten by filter */ 276 } 277 278 choke_skb_cb(skb)->keys_valid = 0; 279 /* Compute average queue usage (see RED) */ 280 q->vars.qavg = red_calc_qavg(p, &q->vars, sch->q.qlen); 281 if (red_is_idling(&q->vars)) 282 red_end_of_idle_period(&q->vars); 283 284 /* Is queue small? */ 285 if (q->vars.qavg <= p->qth_min) 286 q->vars.qcount = -1; 287 else { 288 unsigned int idx; 289 290 /* Draw a packet at random from queue and compare flow */ 291 if (choke_match_random(q, skb, &idx)) { 292 q->stats.matched++; 293 choke_drop_by_idx(sch, idx, to_free); 294 goto congestion_drop; 295 } 296 297 /* Queue is large, always mark/drop */ 298 if (q->vars.qavg > p->qth_max) { 299 q->vars.qcount = -1; 300 301 qdisc_qstats_overlimit(sch); 302 if (use_harddrop(q) || !use_ecn(q) || 303 !INET_ECN_set_ce(skb)) { 304 q->stats.forced_drop++; 305 goto congestion_drop; 306 } 307 308 q->stats.forced_mark++; 309 } else if (++q->vars.qcount) { 310 if (red_mark_probability(p, &q->vars, q->vars.qavg)) { 311 q->vars.qcount = 0; 312 q->vars.qR = red_random(p); 313 314 qdisc_qstats_overlimit(sch); 315 if (!use_ecn(q) || !INET_ECN_set_ce(skb)) { 316 q->stats.prob_drop++; 317 goto congestion_drop; 318 } 319 320 q->stats.prob_mark++; 321 } 322 } else 323 q->vars.qR = red_random(p); 324 } 325 326 /* Admit new packet */ 327 if (sch->q.qlen < q->limit) { 328 q->tab[q->tail] = skb; 329 q->tail = (q->tail + 1) & q->tab_mask; 330 ++sch->q.qlen; 331 qdisc_qstats_backlog_inc(sch, skb); 332 return NET_XMIT_SUCCESS; 333 } 334 335 q->stats.pdrop++; 336 return qdisc_drop(skb, sch, to_free); 337 338 congestion_drop: 339 qdisc_drop(skb, sch, to_free); 340 return NET_XMIT_CN; 341 342 other_drop: 343 if (ret & __NET_XMIT_BYPASS) 344 qdisc_qstats_drop(sch); 345 __qdisc_drop(skb, to_free); 346 return ret; 347 } 348 349 static struct sk_buff *choke_dequeue(struct Qdisc *sch) 350 { 351 struct choke_sched_data *q = qdisc_priv(sch); 352 struct sk_buff *skb; 353 354 if (q->head == q->tail) { 355 if (!red_is_idling(&q->vars)) 356 red_start_of_idle_period(&q->vars); 357 return NULL; 358 } 359 360 skb = q->tab[q->head]; 361 q->tab[q->head] = NULL; 362 choke_zap_head_holes(q); 363 --sch->q.qlen; 364 qdisc_qstats_backlog_dec(sch, skb); 365 qdisc_bstats_update(sch, skb); 366 367 return skb; 368 } 369 370 static void choke_reset(struct Qdisc *sch) 371 { 372 struct choke_sched_data *q = qdisc_priv(sch); 373 374 while (q->head != q->tail) { 375 struct sk_buff *skb = q->tab[q->head]; 376 377 q->head = (q->head + 1) & q->tab_mask; 378 if (!skb) 379 continue; 380 rtnl_qdisc_drop(skb, sch); 381 } 382 383 sch->q.qlen = 0; 384 sch->qstats.backlog = 0; 385 memset(q->tab, 0, (q->tab_mask + 1) * sizeof(struct sk_buff *)); 386 q->head = q->tail = 0; 387 red_restart(&q->vars); 388 } 389 390 static const struct nla_policy choke_policy[TCA_CHOKE_MAX + 1] = { 391 [TCA_CHOKE_PARMS] = { .len = sizeof(struct tc_red_qopt) }, 392 [TCA_CHOKE_STAB] = { .len = RED_STAB_SIZE }, 393 [TCA_CHOKE_MAX_P] = { .type = NLA_U32 }, 394 }; 395 396 397 static void choke_free(void *addr) 398 { 399 kvfree(addr); 400 } 401 402 static int choke_change(struct Qdisc *sch, struct nlattr *opt) 403 { 404 struct choke_sched_data *q = qdisc_priv(sch); 405 struct nlattr *tb[TCA_CHOKE_MAX + 1]; 406 const struct tc_red_qopt *ctl; 407 int err; 408 struct sk_buff **old = NULL; 409 unsigned int mask; 410 u32 max_P; 411 412 if (opt == NULL) 413 return -EINVAL; 414 415 err = nla_parse_nested(tb, TCA_CHOKE_MAX, opt, choke_policy); 416 if (err < 0) 417 return err; 418 419 if (tb[TCA_CHOKE_PARMS] == NULL || 420 tb[TCA_CHOKE_STAB] == NULL) 421 return -EINVAL; 422 423 max_P = tb[TCA_CHOKE_MAX_P] ? nla_get_u32(tb[TCA_CHOKE_MAX_P]) : 0; 424 425 ctl = nla_data(tb[TCA_CHOKE_PARMS]); 426 427 if (ctl->limit > CHOKE_MAX_QUEUE) 428 return -EINVAL; 429 430 mask = roundup_pow_of_two(ctl->limit + 1) - 1; 431 if (mask != q->tab_mask) { 432 struct sk_buff **ntab; 433 434 ntab = kcalloc(mask + 1, sizeof(struct sk_buff *), 435 GFP_KERNEL | __GFP_NOWARN); 436 if (!ntab) 437 ntab = vzalloc((mask + 1) * sizeof(struct sk_buff *)); 438 if (!ntab) 439 return -ENOMEM; 440 441 sch_tree_lock(sch); 442 old = q->tab; 443 if (old) { 444 unsigned int oqlen = sch->q.qlen, tail = 0; 445 unsigned dropped = 0; 446 447 while (q->head != q->tail) { 448 struct sk_buff *skb = q->tab[q->head]; 449 450 q->head = (q->head + 1) & q->tab_mask; 451 if (!skb) 452 continue; 453 if (tail < mask) { 454 ntab[tail++] = skb; 455 continue; 456 } 457 dropped += qdisc_pkt_len(skb); 458 qdisc_qstats_backlog_dec(sch, skb); 459 --sch->q.qlen; 460 rtnl_qdisc_drop(skb, sch); 461 } 462 qdisc_tree_reduce_backlog(sch, oqlen - sch->q.qlen, dropped); 463 q->head = 0; 464 q->tail = tail; 465 } 466 467 q->tab_mask = mask; 468 q->tab = ntab; 469 } else 470 sch_tree_lock(sch); 471 472 q->flags = ctl->flags; 473 q->limit = ctl->limit; 474 475 red_set_parms(&q->parms, ctl->qth_min, ctl->qth_max, ctl->Wlog, 476 ctl->Plog, ctl->Scell_log, 477 nla_data(tb[TCA_CHOKE_STAB]), 478 max_P); 479 red_set_vars(&q->vars); 480 481 if (q->head == q->tail) 482 red_end_of_idle_period(&q->vars); 483 484 sch_tree_unlock(sch); 485 choke_free(old); 486 return 0; 487 } 488 489 static int choke_init(struct Qdisc *sch, struct nlattr *opt) 490 { 491 return choke_change(sch, opt); 492 } 493 494 static int choke_dump(struct Qdisc *sch, struct sk_buff *skb) 495 { 496 struct choke_sched_data *q = qdisc_priv(sch); 497 struct nlattr *opts = NULL; 498 struct tc_red_qopt opt = { 499 .limit = q->limit, 500 .flags = q->flags, 501 .qth_min = q->parms.qth_min >> q->parms.Wlog, 502 .qth_max = q->parms.qth_max >> q->parms.Wlog, 503 .Wlog = q->parms.Wlog, 504 .Plog = q->parms.Plog, 505 .Scell_log = q->parms.Scell_log, 506 }; 507 508 opts = nla_nest_start(skb, TCA_OPTIONS); 509 if (opts == NULL) 510 goto nla_put_failure; 511 512 if (nla_put(skb, TCA_CHOKE_PARMS, sizeof(opt), &opt) || 513 nla_put_u32(skb, TCA_CHOKE_MAX_P, q->parms.max_P)) 514 goto nla_put_failure; 515 return nla_nest_end(skb, opts); 516 517 nla_put_failure: 518 nla_nest_cancel(skb, opts); 519 return -EMSGSIZE; 520 } 521 522 static int choke_dump_stats(struct Qdisc *sch, struct gnet_dump *d) 523 { 524 struct choke_sched_data *q = qdisc_priv(sch); 525 struct tc_choke_xstats st = { 526 .early = q->stats.prob_drop + q->stats.forced_drop, 527 .marked = q->stats.prob_mark + q->stats.forced_mark, 528 .pdrop = q->stats.pdrop, 529 .other = q->stats.other, 530 .matched = q->stats.matched, 531 }; 532 533 return gnet_stats_copy_app(d, &st, sizeof(st)); 534 } 535 536 static void choke_destroy(struct Qdisc *sch) 537 { 538 struct choke_sched_data *q = qdisc_priv(sch); 539 540 tcf_destroy_chain(&q->filter_list); 541 choke_free(q->tab); 542 } 543 544 static struct sk_buff *choke_peek_head(struct Qdisc *sch) 545 { 546 struct choke_sched_data *q = qdisc_priv(sch); 547 548 return (q->head != q->tail) ? q->tab[q->head] : NULL; 549 } 550 551 static struct Qdisc_ops choke_qdisc_ops __read_mostly = { 552 .id = "choke", 553 .priv_size = sizeof(struct choke_sched_data), 554 555 .enqueue = choke_enqueue, 556 .dequeue = choke_dequeue, 557 .peek = choke_peek_head, 558 .init = choke_init, 559 .destroy = choke_destroy, 560 .reset = choke_reset, 561 .change = choke_change, 562 .dump = choke_dump, 563 .dump_stats = choke_dump_stats, 564 .owner = THIS_MODULE, 565 }; 566 567 static int __init choke_module_init(void) 568 { 569 return register_qdisc(&choke_qdisc_ops); 570 } 571 572 static void __exit choke_module_exit(void) 573 { 574 unregister_qdisc(&choke_qdisc_ops); 575 } 576 577 module_init(choke_module_init) 578 module_exit(choke_module_exit) 579 580 MODULE_LICENSE("GPL"); 581