xref: /openbmc/linux/net/sched/sch_choke.c (revision 95e9fd10)
1 /*
2  * net/sched/sch_choke.c	CHOKE scheduler
3  *
4  * Copyright (c) 2011 Stephen Hemminger <shemminger@vyatta.com>
5  * Copyright (c) 2011 Eric Dumazet <eric.dumazet@gmail.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * version 2 as published by the Free Software Foundation.
10  *
11  */
12 
13 #include <linux/module.h>
14 #include <linux/types.h>
15 #include <linux/kernel.h>
16 #include <linux/skbuff.h>
17 #include <linux/reciprocal_div.h>
18 #include <linux/vmalloc.h>
19 #include <net/pkt_sched.h>
20 #include <net/inet_ecn.h>
21 #include <net/red.h>
22 #include <net/flow_keys.h>
23 
24 /*
25    CHOKe stateless AQM for fair bandwidth allocation
26    =================================================
27 
28    CHOKe (CHOose and Keep for responsive flows, CHOose and Kill for
29    unresponsive flows) is a variant of RED that penalizes misbehaving flows but
30    maintains no flow state. The difference from RED is an additional step
31    during the enqueuing process. If average queue size is over the
32    low threshold (qmin), a packet is chosen at random from the queue.
33    If both the new and chosen packet are from the same flow, both
34    are dropped. Unlike RED, CHOKe is not really a "classful" qdisc because it
35    needs to access packets in queue randomly. It has a minimal class
36    interface to allow overriding the builtin flow classifier with
37    filters.
38 
39    Source:
40    R. Pan, B. Prabhakar, and K. Psounis, "CHOKe, A Stateless
41    Active Queue Management Scheme for Approximating Fair Bandwidth Allocation",
42    IEEE INFOCOM, 2000.
43 
44    A. Tang, J. Wang, S. Low, "Understanding CHOKe: Throughput and Spatial
45    Characteristics", IEEE/ACM Transactions on Networking, 2004
46 
47  */
48 
49 /* Upper bound on size of sk_buff table (packets) */
50 #define CHOKE_MAX_QUEUE	(128*1024 - 1)
51 
52 struct choke_sched_data {
53 /* Parameters */
54 	u32		 limit;
55 	unsigned char	 flags;
56 
57 	struct red_parms parms;
58 
59 /* Variables */
60 	struct red_vars  vars;
61 	struct tcf_proto *filter_list;
62 	struct {
63 		u32	prob_drop;	/* Early probability drops */
64 		u32	prob_mark;	/* Early probability marks */
65 		u32	forced_drop;	/* Forced drops, qavg > max_thresh */
66 		u32	forced_mark;	/* Forced marks, qavg > max_thresh */
67 		u32	pdrop;          /* Drops due to queue limits */
68 		u32	other;          /* Drops due to drop() calls */
69 		u32	matched;	/* Drops to flow match */
70 	} stats;
71 
72 	unsigned int	 head;
73 	unsigned int	 tail;
74 
75 	unsigned int	 tab_mask; /* size - 1 */
76 
77 	struct sk_buff **tab;
78 };
79 
80 /* deliver a random number between 0 and N - 1 */
81 static u32 random_N(unsigned int N)
82 {
83 	return reciprocal_divide(random32(), N);
84 }
85 
86 /* number of elements in queue including holes */
87 static unsigned int choke_len(const struct choke_sched_data *q)
88 {
89 	return (q->tail - q->head) & q->tab_mask;
90 }
91 
92 /* Is ECN parameter configured */
93 static int use_ecn(const struct choke_sched_data *q)
94 {
95 	return q->flags & TC_RED_ECN;
96 }
97 
98 /* Should packets over max just be dropped (versus marked) */
99 static int use_harddrop(const struct choke_sched_data *q)
100 {
101 	return q->flags & TC_RED_HARDDROP;
102 }
103 
104 /* Move head pointer forward to skip over holes */
105 static void choke_zap_head_holes(struct choke_sched_data *q)
106 {
107 	do {
108 		q->head = (q->head + 1) & q->tab_mask;
109 		if (q->head == q->tail)
110 			break;
111 	} while (q->tab[q->head] == NULL);
112 }
113 
114 /* Move tail pointer backwards to reuse holes */
115 static void choke_zap_tail_holes(struct choke_sched_data *q)
116 {
117 	do {
118 		q->tail = (q->tail - 1) & q->tab_mask;
119 		if (q->head == q->tail)
120 			break;
121 	} while (q->tab[q->tail] == NULL);
122 }
123 
124 /* Drop packet from queue array by creating a "hole" */
125 static void choke_drop_by_idx(struct Qdisc *sch, unsigned int idx)
126 {
127 	struct choke_sched_data *q = qdisc_priv(sch);
128 	struct sk_buff *skb = q->tab[idx];
129 
130 	q->tab[idx] = NULL;
131 
132 	if (idx == q->head)
133 		choke_zap_head_holes(q);
134 	if (idx == q->tail)
135 		choke_zap_tail_holes(q);
136 
137 	sch->qstats.backlog -= qdisc_pkt_len(skb);
138 	qdisc_drop(skb, sch);
139 	qdisc_tree_decrease_qlen(sch, 1);
140 	--sch->q.qlen;
141 }
142 
143 struct choke_skb_cb {
144 	u16			classid;
145 	u8			keys_valid;
146 	struct flow_keys	keys;
147 };
148 
149 static inline struct choke_skb_cb *choke_skb_cb(const struct sk_buff *skb)
150 {
151 	qdisc_cb_private_validate(skb, sizeof(struct choke_skb_cb));
152 	return (struct choke_skb_cb *)qdisc_skb_cb(skb)->data;
153 }
154 
155 static inline void choke_set_classid(struct sk_buff *skb, u16 classid)
156 {
157 	choke_skb_cb(skb)->classid = classid;
158 }
159 
160 static u16 choke_get_classid(const struct sk_buff *skb)
161 {
162 	return choke_skb_cb(skb)->classid;
163 }
164 
165 /*
166  * Compare flow of two packets
167  *  Returns true only if source and destination address and port match.
168  *          false for special cases
169  */
170 static bool choke_match_flow(struct sk_buff *skb1,
171 			     struct sk_buff *skb2)
172 {
173 	if (skb1->protocol != skb2->protocol)
174 		return false;
175 
176 	if (!choke_skb_cb(skb1)->keys_valid) {
177 		choke_skb_cb(skb1)->keys_valid = 1;
178 		skb_flow_dissect(skb1, &choke_skb_cb(skb1)->keys);
179 	}
180 
181 	if (!choke_skb_cb(skb2)->keys_valid) {
182 		choke_skb_cb(skb2)->keys_valid = 1;
183 		skb_flow_dissect(skb2, &choke_skb_cb(skb2)->keys);
184 	}
185 
186 	return !memcmp(&choke_skb_cb(skb1)->keys,
187 		       &choke_skb_cb(skb2)->keys,
188 		       sizeof(struct flow_keys));
189 }
190 
191 /*
192  * Classify flow using either:
193  *  1. pre-existing classification result in skb
194  *  2. fast internal classification
195  *  3. use TC filter based classification
196  */
197 static bool choke_classify(struct sk_buff *skb,
198 			   struct Qdisc *sch, int *qerr)
199 
200 {
201 	struct choke_sched_data *q = qdisc_priv(sch);
202 	struct tcf_result res;
203 	int result;
204 
205 	result = tc_classify(skb, q->filter_list, &res);
206 	if (result >= 0) {
207 #ifdef CONFIG_NET_CLS_ACT
208 		switch (result) {
209 		case TC_ACT_STOLEN:
210 		case TC_ACT_QUEUED:
211 			*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
212 		case TC_ACT_SHOT:
213 			return false;
214 		}
215 #endif
216 		choke_set_classid(skb, TC_H_MIN(res.classid));
217 		return true;
218 	}
219 
220 	return false;
221 }
222 
223 /*
224  * Select a packet at random from queue
225  * HACK: since queue can have holes from previous deletion; retry several
226  *   times to find a random skb but then just give up and return the head
227  * Will return NULL if queue is empty (q->head == q->tail)
228  */
229 static struct sk_buff *choke_peek_random(const struct choke_sched_data *q,
230 					 unsigned int *pidx)
231 {
232 	struct sk_buff *skb;
233 	int retrys = 3;
234 
235 	do {
236 		*pidx = (q->head + random_N(choke_len(q))) & q->tab_mask;
237 		skb = q->tab[*pidx];
238 		if (skb)
239 			return skb;
240 	} while (--retrys > 0);
241 
242 	return q->tab[*pidx = q->head];
243 }
244 
245 /*
246  * Compare new packet with random packet in queue
247  * returns true if matched and sets *pidx
248  */
249 static bool choke_match_random(const struct choke_sched_data *q,
250 			       struct sk_buff *nskb,
251 			       unsigned int *pidx)
252 {
253 	struct sk_buff *oskb;
254 
255 	if (q->head == q->tail)
256 		return false;
257 
258 	oskb = choke_peek_random(q, pidx);
259 	if (q->filter_list)
260 		return choke_get_classid(nskb) == choke_get_classid(oskb);
261 
262 	return choke_match_flow(oskb, nskb);
263 }
264 
265 static int choke_enqueue(struct sk_buff *skb, struct Qdisc *sch)
266 {
267 	struct choke_sched_data *q = qdisc_priv(sch);
268 	const struct red_parms *p = &q->parms;
269 	int ret = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
270 
271 	if (q->filter_list) {
272 		/* If using external classifiers, get result and record it. */
273 		if (!choke_classify(skb, sch, &ret))
274 			goto other_drop;	/* Packet was eaten by filter */
275 	}
276 
277 	choke_skb_cb(skb)->keys_valid = 0;
278 	/* Compute average queue usage (see RED) */
279 	q->vars.qavg = red_calc_qavg(p, &q->vars, sch->q.qlen);
280 	if (red_is_idling(&q->vars))
281 		red_end_of_idle_period(&q->vars);
282 
283 	/* Is queue small? */
284 	if (q->vars.qavg <= p->qth_min)
285 		q->vars.qcount = -1;
286 	else {
287 		unsigned int idx;
288 
289 		/* Draw a packet at random from queue and compare flow */
290 		if (choke_match_random(q, skb, &idx)) {
291 			q->stats.matched++;
292 			choke_drop_by_idx(sch, idx);
293 			goto congestion_drop;
294 		}
295 
296 		/* Queue is large, always mark/drop */
297 		if (q->vars.qavg > p->qth_max) {
298 			q->vars.qcount = -1;
299 
300 			sch->qstats.overlimits++;
301 			if (use_harddrop(q) || !use_ecn(q) ||
302 			    !INET_ECN_set_ce(skb)) {
303 				q->stats.forced_drop++;
304 				goto congestion_drop;
305 			}
306 
307 			q->stats.forced_mark++;
308 		} else if (++q->vars.qcount) {
309 			if (red_mark_probability(p, &q->vars, q->vars.qavg)) {
310 				q->vars.qcount = 0;
311 				q->vars.qR = red_random(p);
312 
313 				sch->qstats.overlimits++;
314 				if (!use_ecn(q) || !INET_ECN_set_ce(skb)) {
315 					q->stats.prob_drop++;
316 					goto congestion_drop;
317 				}
318 
319 				q->stats.prob_mark++;
320 			}
321 		} else
322 			q->vars.qR = red_random(p);
323 	}
324 
325 	/* Admit new packet */
326 	if (sch->q.qlen < q->limit) {
327 		q->tab[q->tail] = skb;
328 		q->tail = (q->tail + 1) & q->tab_mask;
329 		++sch->q.qlen;
330 		sch->qstats.backlog += qdisc_pkt_len(skb);
331 		return NET_XMIT_SUCCESS;
332 	}
333 
334 	q->stats.pdrop++;
335 	return qdisc_drop(skb, sch);
336 
337 congestion_drop:
338 	qdisc_drop(skb, sch);
339 	return NET_XMIT_CN;
340 
341 other_drop:
342 	if (ret & __NET_XMIT_BYPASS)
343 		sch->qstats.drops++;
344 	kfree_skb(skb);
345 	return ret;
346 }
347 
348 static struct sk_buff *choke_dequeue(struct Qdisc *sch)
349 {
350 	struct choke_sched_data *q = qdisc_priv(sch);
351 	struct sk_buff *skb;
352 
353 	if (q->head == q->tail) {
354 		if (!red_is_idling(&q->vars))
355 			red_start_of_idle_period(&q->vars);
356 		return NULL;
357 	}
358 
359 	skb = q->tab[q->head];
360 	q->tab[q->head] = NULL;
361 	choke_zap_head_holes(q);
362 	--sch->q.qlen;
363 	sch->qstats.backlog -= qdisc_pkt_len(skb);
364 	qdisc_bstats_update(sch, skb);
365 
366 	return skb;
367 }
368 
369 static unsigned int choke_drop(struct Qdisc *sch)
370 {
371 	struct choke_sched_data *q = qdisc_priv(sch);
372 	unsigned int len;
373 
374 	len = qdisc_queue_drop(sch);
375 	if (len > 0)
376 		q->stats.other++;
377 	else {
378 		if (!red_is_idling(&q->vars))
379 			red_start_of_idle_period(&q->vars);
380 	}
381 
382 	return len;
383 }
384 
385 static void choke_reset(struct Qdisc *sch)
386 {
387 	struct choke_sched_data *q = qdisc_priv(sch);
388 
389 	red_restart(&q->vars);
390 }
391 
392 static const struct nla_policy choke_policy[TCA_CHOKE_MAX + 1] = {
393 	[TCA_CHOKE_PARMS]	= { .len = sizeof(struct tc_red_qopt) },
394 	[TCA_CHOKE_STAB]	= { .len = RED_STAB_SIZE },
395 	[TCA_CHOKE_MAX_P]	= { .type = NLA_U32 },
396 };
397 
398 
399 static void choke_free(void *addr)
400 {
401 	if (addr) {
402 		if (is_vmalloc_addr(addr))
403 			vfree(addr);
404 		else
405 			kfree(addr);
406 	}
407 }
408 
409 static int choke_change(struct Qdisc *sch, struct nlattr *opt)
410 {
411 	struct choke_sched_data *q = qdisc_priv(sch);
412 	struct nlattr *tb[TCA_CHOKE_MAX + 1];
413 	const struct tc_red_qopt *ctl;
414 	int err;
415 	struct sk_buff **old = NULL;
416 	unsigned int mask;
417 	u32 max_P;
418 
419 	if (opt == NULL)
420 		return -EINVAL;
421 
422 	err = nla_parse_nested(tb, TCA_CHOKE_MAX, opt, choke_policy);
423 	if (err < 0)
424 		return err;
425 
426 	if (tb[TCA_CHOKE_PARMS] == NULL ||
427 	    tb[TCA_CHOKE_STAB] == NULL)
428 		return -EINVAL;
429 
430 	max_P = tb[TCA_CHOKE_MAX_P] ? nla_get_u32(tb[TCA_CHOKE_MAX_P]) : 0;
431 
432 	ctl = nla_data(tb[TCA_CHOKE_PARMS]);
433 
434 	if (ctl->limit > CHOKE_MAX_QUEUE)
435 		return -EINVAL;
436 
437 	mask = roundup_pow_of_two(ctl->limit + 1) - 1;
438 	if (mask != q->tab_mask) {
439 		struct sk_buff **ntab;
440 
441 		ntab = kcalloc(mask + 1, sizeof(struct sk_buff *), GFP_KERNEL);
442 		if (!ntab)
443 			ntab = vzalloc((mask + 1) * sizeof(struct sk_buff *));
444 		if (!ntab)
445 			return -ENOMEM;
446 
447 		sch_tree_lock(sch);
448 		old = q->tab;
449 		if (old) {
450 			unsigned int oqlen = sch->q.qlen, tail = 0;
451 
452 			while (q->head != q->tail) {
453 				struct sk_buff *skb = q->tab[q->head];
454 
455 				q->head = (q->head + 1) & q->tab_mask;
456 				if (!skb)
457 					continue;
458 				if (tail < mask) {
459 					ntab[tail++] = skb;
460 					continue;
461 				}
462 				sch->qstats.backlog -= qdisc_pkt_len(skb);
463 				--sch->q.qlen;
464 				qdisc_drop(skb, sch);
465 			}
466 			qdisc_tree_decrease_qlen(sch, oqlen - sch->q.qlen);
467 			q->head = 0;
468 			q->tail = tail;
469 		}
470 
471 		q->tab_mask = mask;
472 		q->tab = ntab;
473 	} else
474 		sch_tree_lock(sch);
475 
476 	q->flags = ctl->flags;
477 	q->limit = ctl->limit;
478 
479 	red_set_parms(&q->parms, ctl->qth_min, ctl->qth_max, ctl->Wlog,
480 		      ctl->Plog, ctl->Scell_log,
481 		      nla_data(tb[TCA_CHOKE_STAB]),
482 		      max_P);
483 	red_set_vars(&q->vars);
484 
485 	if (q->head == q->tail)
486 		red_end_of_idle_period(&q->vars);
487 
488 	sch_tree_unlock(sch);
489 	choke_free(old);
490 	return 0;
491 }
492 
493 static int choke_init(struct Qdisc *sch, struct nlattr *opt)
494 {
495 	return choke_change(sch, opt);
496 }
497 
498 static int choke_dump(struct Qdisc *sch, struct sk_buff *skb)
499 {
500 	struct choke_sched_data *q = qdisc_priv(sch);
501 	struct nlattr *opts = NULL;
502 	struct tc_red_qopt opt = {
503 		.limit		= q->limit,
504 		.flags		= q->flags,
505 		.qth_min	= q->parms.qth_min >> q->parms.Wlog,
506 		.qth_max	= q->parms.qth_max >> q->parms.Wlog,
507 		.Wlog		= q->parms.Wlog,
508 		.Plog		= q->parms.Plog,
509 		.Scell_log	= q->parms.Scell_log,
510 	};
511 
512 	opts = nla_nest_start(skb, TCA_OPTIONS);
513 	if (opts == NULL)
514 		goto nla_put_failure;
515 
516 	if (nla_put(skb, TCA_CHOKE_PARMS, sizeof(opt), &opt) ||
517 	    nla_put_u32(skb, TCA_CHOKE_MAX_P, q->parms.max_P))
518 		goto nla_put_failure;
519 	return nla_nest_end(skb, opts);
520 
521 nla_put_failure:
522 	nla_nest_cancel(skb, opts);
523 	return -EMSGSIZE;
524 }
525 
526 static int choke_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
527 {
528 	struct choke_sched_data *q = qdisc_priv(sch);
529 	struct tc_choke_xstats st = {
530 		.early	= q->stats.prob_drop + q->stats.forced_drop,
531 		.marked	= q->stats.prob_mark + q->stats.forced_mark,
532 		.pdrop	= q->stats.pdrop,
533 		.other	= q->stats.other,
534 		.matched = q->stats.matched,
535 	};
536 
537 	return gnet_stats_copy_app(d, &st, sizeof(st));
538 }
539 
540 static void choke_destroy(struct Qdisc *sch)
541 {
542 	struct choke_sched_data *q = qdisc_priv(sch);
543 
544 	tcf_destroy_chain(&q->filter_list);
545 	choke_free(q->tab);
546 }
547 
548 static struct Qdisc *choke_leaf(struct Qdisc *sch, unsigned long arg)
549 {
550 	return NULL;
551 }
552 
553 static unsigned long choke_get(struct Qdisc *sch, u32 classid)
554 {
555 	return 0;
556 }
557 
558 static void choke_put(struct Qdisc *q, unsigned long cl)
559 {
560 }
561 
562 static unsigned long choke_bind(struct Qdisc *sch, unsigned long parent,
563 				u32 classid)
564 {
565 	return 0;
566 }
567 
568 static struct tcf_proto **choke_find_tcf(struct Qdisc *sch, unsigned long cl)
569 {
570 	struct choke_sched_data *q = qdisc_priv(sch);
571 
572 	if (cl)
573 		return NULL;
574 	return &q->filter_list;
575 }
576 
577 static int choke_dump_class(struct Qdisc *sch, unsigned long cl,
578 			  struct sk_buff *skb, struct tcmsg *tcm)
579 {
580 	tcm->tcm_handle |= TC_H_MIN(cl);
581 	return 0;
582 }
583 
584 static void choke_walk(struct Qdisc *sch, struct qdisc_walker *arg)
585 {
586 	if (!arg->stop) {
587 		if (arg->fn(sch, 1, arg) < 0) {
588 			arg->stop = 1;
589 			return;
590 		}
591 		arg->count++;
592 	}
593 }
594 
595 static const struct Qdisc_class_ops choke_class_ops = {
596 	.leaf		=	choke_leaf,
597 	.get		=	choke_get,
598 	.put		=	choke_put,
599 	.tcf_chain	=	choke_find_tcf,
600 	.bind_tcf	=	choke_bind,
601 	.unbind_tcf	=	choke_put,
602 	.dump		=	choke_dump_class,
603 	.walk		=	choke_walk,
604 };
605 
606 static struct sk_buff *choke_peek_head(struct Qdisc *sch)
607 {
608 	struct choke_sched_data *q = qdisc_priv(sch);
609 
610 	return (q->head != q->tail) ? q->tab[q->head] : NULL;
611 }
612 
613 static struct Qdisc_ops choke_qdisc_ops __read_mostly = {
614 	.id		=	"choke",
615 	.priv_size	=	sizeof(struct choke_sched_data),
616 
617 	.enqueue	=	choke_enqueue,
618 	.dequeue	=	choke_dequeue,
619 	.peek		=	choke_peek_head,
620 	.drop		=	choke_drop,
621 	.init		=	choke_init,
622 	.destroy	=	choke_destroy,
623 	.reset		=	choke_reset,
624 	.change		=	choke_change,
625 	.dump		=	choke_dump,
626 	.dump_stats	=	choke_dump_stats,
627 	.owner		=	THIS_MODULE,
628 };
629 
630 static int __init choke_module_init(void)
631 {
632 	return register_qdisc(&choke_qdisc_ops);
633 }
634 
635 static void __exit choke_module_exit(void)
636 {
637 	unregister_qdisc(&choke_qdisc_ops);
638 }
639 
640 module_init(choke_module_init)
641 module_exit(choke_module_exit)
642 
643 MODULE_LICENSE("GPL");
644