1 /* 2 * net/sched/sch_choke.c CHOKE scheduler 3 * 4 * Copyright (c) 2011 Stephen Hemminger <shemminger@vyatta.com> 5 * Copyright (c) 2011 Eric Dumazet <eric.dumazet@gmail.com> 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * version 2 as published by the Free Software Foundation. 10 * 11 */ 12 13 #include <linux/module.h> 14 #include <linux/types.h> 15 #include <linux/kernel.h> 16 #include <linux/skbuff.h> 17 #include <linux/vmalloc.h> 18 #include <net/pkt_sched.h> 19 #include <net/pkt_cls.h> 20 #include <net/inet_ecn.h> 21 #include <net/red.h> 22 #include <net/flow_dissector.h> 23 24 /* 25 CHOKe stateless AQM for fair bandwidth allocation 26 ================================================= 27 28 CHOKe (CHOose and Keep for responsive flows, CHOose and Kill for 29 unresponsive flows) is a variant of RED that penalizes misbehaving flows but 30 maintains no flow state. The difference from RED is an additional step 31 during the enqueuing process. If average queue size is over the 32 low threshold (qmin), a packet is chosen at random from the queue. 33 If both the new and chosen packet are from the same flow, both 34 are dropped. Unlike RED, CHOKe is not really a "classful" qdisc because it 35 needs to access packets in queue randomly. It has a minimal class 36 interface to allow overriding the builtin flow classifier with 37 filters. 38 39 Source: 40 R. Pan, B. Prabhakar, and K. Psounis, "CHOKe, A Stateless 41 Active Queue Management Scheme for Approximating Fair Bandwidth Allocation", 42 IEEE INFOCOM, 2000. 43 44 A. Tang, J. Wang, S. Low, "Understanding CHOKe: Throughput and Spatial 45 Characteristics", IEEE/ACM Transactions on Networking, 2004 46 47 */ 48 49 /* Upper bound on size of sk_buff table (packets) */ 50 #define CHOKE_MAX_QUEUE (128*1024 - 1) 51 52 struct choke_sched_data { 53 /* Parameters */ 54 u32 limit; 55 unsigned char flags; 56 57 struct red_parms parms; 58 59 /* Variables */ 60 struct red_vars vars; 61 struct { 62 u32 prob_drop; /* Early probability drops */ 63 u32 prob_mark; /* Early probability marks */ 64 u32 forced_drop; /* Forced drops, qavg > max_thresh */ 65 u32 forced_mark; /* Forced marks, qavg > max_thresh */ 66 u32 pdrop; /* Drops due to queue limits */ 67 u32 other; /* Drops due to drop() calls */ 68 u32 matched; /* Drops to flow match */ 69 } stats; 70 71 unsigned int head; 72 unsigned int tail; 73 74 unsigned int tab_mask; /* size - 1 */ 75 76 struct sk_buff **tab; 77 }; 78 79 /* number of elements in queue including holes */ 80 static unsigned int choke_len(const struct choke_sched_data *q) 81 { 82 return (q->tail - q->head) & q->tab_mask; 83 } 84 85 /* Is ECN parameter configured */ 86 static int use_ecn(const struct choke_sched_data *q) 87 { 88 return q->flags & TC_RED_ECN; 89 } 90 91 /* Should packets over max just be dropped (versus marked) */ 92 static int use_harddrop(const struct choke_sched_data *q) 93 { 94 return q->flags & TC_RED_HARDDROP; 95 } 96 97 /* Move head pointer forward to skip over holes */ 98 static void choke_zap_head_holes(struct choke_sched_data *q) 99 { 100 do { 101 q->head = (q->head + 1) & q->tab_mask; 102 if (q->head == q->tail) 103 break; 104 } while (q->tab[q->head] == NULL); 105 } 106 107 /* Move tail pointer backwards to reuse holes */ 108 static void choke_zap_tail_holes(struct choke_sched_data *q) 109 { 110 do { 111 q->tail = (q->tail - 1) & q->tab_mask; 112 if (q->head == q->tail) 113 break; 114 } while (q->tab[q->tail] == NULL); 115 } 116 117 /* Drop packet from queue array by creating a "hole" */ 118 static void choke_drop_by_idx(struct Qdisc *sch, unsigned int idx, 119 struct sk_buff **to_free) 120 { 121 struct choke_sched_data *q = qdisc_priv(sch); 122 struct sk_buff *skb = q->tab[idx]; 123 124 q->tab[idx] = NULL; 125 126 if (idx == q->head) 127 choke_zap_head_holes(q); 128 if (idx == q->tail) 129 choke_zap_tail_holes(q); 130 131 qdisc_qstats_backlog_dec(sch, skb); 132 qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(skb)); 133 qdisc_drop(skb, sch, to_free); 134 --sch->q.qlen; 135 } 136 137 struct choke_skb_cb { 138 u16 classid; 139 u8 keys_valid; 140 struct flow_keys_digest keys; 141 }; 142 143 static inline struct choke_skb_cb *choke_skb_cb(const struct sk_buff *skb) 144 { 145 qdisc_cb_private_validate(skb, sizeof(struct choke_skb_cb)); 146 return (struct choke_skb_cb *)qdisc_skb_cb(skb)->data; 147 } 148 149 static inline void choke_set_classid(struct sk_buff *skb, u16 classid) 150 { 151 choke_skb_cb(skb)->classid = classid; 152 } 153 154 /* 155 * Compare flow of two packets 156 * Returns true only if source and destination address and port match. 157 * false for special cases 158 */ 159 static bool choke_match_flow(struct sk_buff *skb1, 160 struct sk_buff *skb2) 161 { 162 struct flow_keys temp; 163 164 if (skb1->protocol != skb2->protocol) 165 return false; 166 167 if (!choke_skb_cb(skb1)->keys_valid) { 168 choke_skb_cb(skb1)->keys_valid = 1; 169 skb_flow_dissect_flow_keys(skb1, &temp, 0); 170 make_flow_keys_digest(&choke_skb_cb(skb1)->keys, &temp); 171 } 172 173 if (!choke_skb_cb(skb2)->keys_valid) { 174 choke_skb_cb(skb2)->keys_valid = 1; 175 skb_flow_dissect_flow_keys(skb2, &temp, 0); 176 make_flow_keys_digest(&choke_skb_cb(skb2)->keys, &temp); 177 } 178 179 return !memcmp(&choke_skb_cb(skb1)->keys, 180 &choke_skb_cb(skb2)->keys, 181 sizeof(choke_skb_cb(skb1)->keys)); 182 } 183 184 /* 185 * Select a packet at random from queue 186 * HACK: since queue can have holes from previous deletion; retry several 187 * times to find a random skb but then just give up and return the head 188 * Will return NULL if queue is empty (q->head == q->tail) 189 */ 190 static struct sk_buff *choke_peek_random(const struct choke_sched_data *q, 191 unsigned int *pidx) 192 { 193 struct sk_buff *skb; 194 int retrys = 3; 195 196 do { 197 *pidx = (q->head + prandom_u32_max(choke_len(q))) & q->tab_mask; 198 skb = q->tab[*pidx]; 199 if (skb) 200 return skb; 201 } while (--retrys > 0); 202 203 return q->tab[*pidx = q->head]; 204 } 205 206 /* 207 * Compare new packet with random packet in queue 208 * returns true if matched and sets *pidx 209 */ 210 static bool choke_match_random(const struct choke_sched_data *q, 211 struct sk_buff *nskb, 212 unsigned int *pidx) 213 { 214 struct sk_buff *oskb; 215 216 if (q->head == q->tail) 217 return false; 218 219 oskb = choke_peek_random(q, pidx); 220 return choke_match_flow(oskb, nskb); 221 } 222 223 static int choke_enqueue(struct sk_buff *skb, struct Qdisc *sch, 224 struct sk_buff **to_free) 225 { 226 struct choke_sched_data *q = qdisc_priv(sch); 227 const struct red_parms *p = &q->parms; 228 229 choke_skb_cb(skb)->keys_valid = 0; 230 /* Compute average queue usage (see RED) */ 231 q->vars.qavg = red_calc_qavg(p, &q->vars, sch->q.qlen); 232 if (red_is_idling(&q->vars)) 233 red_end_of_idle_period(&q->vars); 234 235 /* Is queue small? */ 236 if (q->vars.qavg <= p->qth_min) 237 q->vars.qcount = -1; 238 else { 239 unsigned int idx; 240 241 /* Draw a packet at random from queue and compare flow */ 242 if (choke_match_random(q, skb, &idx)) { 243 q->stats.matched++; 244 choke_drop_by_idx(sch, idx, to_free); 245 goto congestion_drop; 246 } 247 248 /* Queue is large, always mark/drop */ 249 if (q->vars.qavg > p->qth_max) { 250 q->vars.qcount = -1; 251 252 qdisc_qstats_overlimit(sch); 253 if (use_harddrop(q) || !use_ecn(q) || 254 !INET_ECN_set_ce(skb)) { 255 q->stats.forced_drop++; 256 goto congestion_drop; 257 } 258 259 q->stats.forced_mark++; 260 } else if (++q->vars.qcount) { 261 if (red_mark_probability(p, &q->vars, q->vars.qavg)) { 262 q->vars.qcount = 0; 263 q->vars.qR = red_random(p); 264 265 qdisc_qstats_overlimit(sch); 266 if (!use_ecn(q) || !INET_ECN_set_ce(skb)) { 267 q->stats.prob_drop++; 268 goto congestion_drop; 269 } 270 271 q->stats.prob_mark++; 272 } 273 } else 274 q->vars.qR = red_random(p); 275 } 276 277 /* Admit new packet */ 278 if (sch->q.qlen < q->limit) { 279 q->tab[q->tail] = skb; 280 q->tail = (q->tail + 1) & q->tab_mask; 281 ++sch->q.qlen; 282 qdisc_qstats_backlog_inc(sch, skb); 283 return NET_XMIT_SUCCESS; 284 } 285 286 q->stats.pdrop++; 287 return qdisc_drop(skb, sch, to_free); 288 289 congestion_drop: 290 qdisc_drop(skb, sch, to_free); 291 return NET_XMIT_CN; 292 } 293 294 static struct sk_buff *choke_dequeue(struct Qdisc *sch) 295 { 296 struct choke_sched_data *q = qdisc_priv(sch); 297 struct sk_buff *skb; 298 299 if (q->head == q->tail) { 300 if (!red_is_idling(&q->vars)) 301 red_start_of_idle_period(&q->vars); 302 return NULL; 303 } 304 305 skb = q->tab[q->head]; 306 q->tab[q->head] = NULL; 307 choke_zap_head_holes(q); 308 --sch->q.qlen; 309 qdisc_qstats_backlog_dec(sch, skb); 310 qdisc_bstats_update(sch, skb); 311 312 return skb; 313 } 314 315 static void choke_reset(struct Qdisc *sch) 316 { 317 struct choke_sched_data *q = qdisc_priv(sch); 318 319 while (q->head != q->tail) { 320 struct sk_buff *skb = q->tab[q->head]; 321 322 q->head = (q->head + 1) & q->tab_mask; 323 if (!skb) 324 continue; 325 rtnl_qdisc_drop(skb, sch); 326 } 327 328 sch->q.qlen = 0; 329 sch->qstats.backlog = 0; 330 memset(q->tab, 0, (q->tab_mask + 1) * sizeof(struct sk_buff *)); 331 q->head = q->tail = 0; 332 red_restart(&q->vars); 333 } 334 335 static const struct nla_policy choke_policy[TCA_CHOKE_MAX + 1] = { 336 [TCA_CHOKE_PARMS] = { .len = sizeof(struct tc_red_qopt) }, 337 [TCA_CHOKE_STAB] = { .len = RED_STAB_SIZE }, 338 [TCA_CHOKE_MAX_P] = { .type = NLA_U32 }, 339 }; 340 341 342 static void choke_free(void *addr) 343 { 344 kvfree(addr); 345 } 346 347 static int choke_change(struct Qdisc *sch, struct nlattr *opt, 348 struct netlink_ext_ack *extack) 349 { 350 struct choke_sched_data *q = qdisc_priv(sch); 351 struct nlattr *tb[TCA_CHOKE_MAX + 1]; 352 const struct tc_red_qopt *ctl; 353 int err; 354 struct sk_buff **old = NULL; 355 unsigned int mask; 356 u32 max_P; 357 358 if (opt == NULL) 359 return -EINVAL; 360 361 err = nla_parse_nested(tb, TCA_CHOKE_MAX, opt, choke_policy, NULL); 362 if (err < 0) 363 return err; 364 365 if (tb[TCA_CHOKE_PARMS] == NULL || 366 tb[TCA_CHOKE_STAB] == NULL) 367 return -EINVAL; 368 369 max_P = tb[TCA_CHOKE_MAX_P] ? nla_get_u32(tb[TCA_CHOKE_MAX_P]) : 0; 370 371 ctl = nla_data(tb[TCA_CHOKE_PARMS]); 372 373 if (!red_check_params(ctl->qth_min, ctl->qth_max, ctl->Wlog)) 374 return -EINVAL; 375 376 if (ctl->limit > CHOKE_MAX_QUEUE) 377 return -EINVAL; 378 379 mask = roundup_pow_of_two(ctl->limit + 1) - 1; 380 if (mask != q->tab_mask) { 381 struct sk_buff **ntab; 382 383 ntab = kvmalloc_array((mask + 1), sizeof(struct sk_buff *), GFP_KERNEL | __GFP_ZERO); 384 if (!ntab) 385 return -ENOMEM; 386 387 sch_tree_lock(sch); 388 old = q->tab; 389 if (old) { 390 unsigned int oqlen = sch->q.qlen, tail = 0; 391 unsigned dropped = 0; 392 393 while (q->head != q->tail) { 394 struct sk_buff *skb = q->tab[q->head]; 395 396 q->head = (q->head + 1) & q->tab_mask; 397 if (!skb) 398 continue; 399 if (tail < mask) { 400 ntab[tail++] = skb; 401 continue; 402 } 403 dropped += qdisc_pkt_len(skb); 404 qdisc_qstats_backlog_dec(sch, skb); 405 --sch->q.qlen; 406 rtnl_qdisc_drop(skb, sch); 407 } 408 qdisc_tree_reduce_backlog(sch, oqlen - sch->q.qlen, dropped); 409 q->head = 0; 410 q->tail = tail; 411 } 412 413 q->tab_mask = mask; 414 q->tab = ntab; 415 } else 416 sch_tree_lock(sch); 417 418 q->flags = ctl->flags; 419 q->limit = ctl->limit; 420 421 red_set_parms(&q->parms, ctl->qth_min, ctl->qth_max, ctl->Wlog, 422 ctl->Plog, ctl->Scell_log, 423 nla_data(tb[TCA_CHOKE_STAB]), 424 max_P); 425 red_set_vars(&q->vars); 426 427 if (q->head == q->tail) 428 red_end_of_idle_period(&q->vars); 429 430 sch_tree_unlock(sch); 431 choke_free(old); 432 return 0; 433 } 434 435 static int choke_init(struct Qdisc *sch, struct nlattr *opt, 436 struct netlink_ext_ack *extack) 437 { 438 return choke_change(sch, opt, extack); 439 } 440 441 static int choke_dump(struct Qdisc *sch, struct sk_buff *skb) 442 { 443 struct choke_sched_data *q = qdisc_priv(sch); 444 struct nlattr *opts = NULL; 445 struct tc_red_qopt opt = { 446 .limit = q->limit, 447 .flags = q->flags, 448 .qth_min = q->parms.qth_min >> q->parms.Wlog, 449 .qth_max = q->parms.qth_max >> q->parms.Wlog, 450 .Wlog = q->parms.Wlog, 451 .Plog = q->parms.Plog, 452 .Scell_log = q->parms.Scell_log, 453 }; 454 455 opts = nla_nest_start(skb, TCA_OPTIONS); 456 if (opts == NULL) 457 goto nla_put_failure; 458 459 if (nla_put(skb, TCA_CHOKE_PARMS, sizeof(opt), &opt) || 460 nla_put_u32(skb, TCA_CHOKE_MAX_P, q->parms.max_P)) 461 goto nla_put_failure; 462 return nla_nest_end(skb, opts); 463 464 nla_put_failure: 465 nla_nest_cancel(skb, opts); 466 return -EMSGSIZE; 467 } 468 469 static int choke_dump_stats(struct Qdisc *sch, struct gnet_dump *d) 470 { 471 struct choke_sched_data *q = qdisc_priv(sch); 472 struct tc_choke_xstats st = { 473 .early = q->stats.prob_drop + q->stats.forced_drop, 474 .marked = q->stats.prob_mark + q->stats.forced_mark, 475 .pdrop = q->stats.pdrop, 476 .other = q->stats.other, 477 .matched = q->stats.matched, 478 }; 479 480 return gnet_stats_copy_app(d, &st, sizeof(st)); 481 } 482 483 static void choke_destroy(struct Qdisc *sch) 484 { 485 struct choke_sched_data *q = qdisc_priv(sch); 486 487 choke_free(q->tab); 488 } 489 490 static struct sk_buff *choke_peek_head(struct Qdisc *sch) 491 { 492 struct choke_sched_data *q = qdisc_priv(sch); 493 494 return (q->head != q->tail) ? q->tab[q->head] : NULL; 495 } 496 497 static struct Qdisc_ops choke_qdisc_ops __read_mostly = { 498 .id = "choke", 499 .priv_size = sizeof(struct choke_sched_data), 500 501 .enqueue = choke_enqueue, 502 .dequeue = choke_dequeue, 503 .peek = choke_peek_head, 504 .init = choke_init, 505 .destroy = choke_destroy, 506 .reset = choke_reset, 507 .change = choke_change, 508 .dump = choke_dump, 509 .dump_stats = choke_dump_stats, 510 .owner = THIS_MODULE, 511 }; 512 513 static int __init choke_module_init(void) 514 { 515 return register_qdisc(&choke_qdisc_ops); 516 } 517 518 static void __exit choke_module_exit(void) 519 { 520 unregister_qdisc(&choke_qdisc_ops); 521 } 522 523 module_init(choke_module_init) 524 module_exit(choke_module_exit) 525 526 MODULE_LICENSE("GPL"); 527