xref: /openbmc/linux/net/sched/sch_cake.c (revision 99b75a4e)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 
3 /* COMMON Applications Kept Enhanced (CAKE) discipline
4  *
5  * Copyright (C) 2014-2018 Jonathan Morton <chromatix99@gmail.com>
6  * Copyright (C) 2015-2018 Toke Høiland-Jørgensen <toke@toke.dk>
7  * Copyright (C) 2014-2018 Dave Täht <dave.taht@gmail.com>
8  * Copyright (C) 2015-2018 Sebastian Moeller <moeller0@gmx.de>
9  * (C) 2015-2018 Kevin Darbyshire-Bryant <kevin@darbyshire-bryant.me.uk>
10  * Copyright (C) 2017-2018 Ryan Mounce <ryan@mounce.com.au>
11  *
12  * The CAKE Principles:
13  *		   (or, how to have your cake and eat it too)
14  *
15  * This is a combination of several shaping, AQM and FQ techniques into one
16  * easy-to-use package:
17  *
18  * - An overall bandwidth shaper, to move the bottleneck away from dumb CPE
19  *   equipment and bloated MACs.  This operates in deficit mode (as in sch_fq),
20  *   eliminating the need for any sort of burst parameter (eg. token bucket
21  *   depth).  Burst support is limited to that necessary to overcome scheduling
22  *   latency.
23  *
24  * - A Diffserv-aware priority queue, giving more priority to certain classes,
25  *   up to a specified fraction of bandwidth.  Above that bandwidth threshold,
26  *   the priority is reduced to avoid starving other tins.
27  *
28  * - Each priority tin has a separate Flow Queue system, to isolate traffic
29  *   flows from each other.  This prevents a burst on one flow from increasing
30  *   the delay to another.  Flows are distributed to queues using a
31  *   set-associative hash function.
32  *
33  * - Each queue is actively managed by Cobalt, which is a combination of the
34  *   Codel and Blue AQM algorithms.  This serves flows fairly, and signals
35  *   congestion early via ECN (if available) and/or packet drops, to keep
36  *   latency low.  The codel parameters are auto-tuned based on the bandwidth
37  *   setting, as is necessary at low bandwidths.
38  *
39  * The configuration parameters are kept deliberately simple for ease of use.
40  * Everything has sane defaults.  Complete generality of configuration is *not*
41  * a goal.
42  *
43  * The priority queue operates according to a weighted DRR scheme, combined with
44  * a bandwidth tracker which reuses the shaper logic to detect which side of the
45  * bandwidth sharing threshold the tin is operating.  This determines whether a
46  * priority-based weight (high) or a bandwidth-based weight (low) is used for
47  * that tin in the current pass.
48  *
49  * This qdisc was inspired by Eric Dumazet's fq_codel code, which he kindly
50  * granted us permission to leverage.
51  */
52 
53 #include <linux/module.h>
54 #include <linux/types.h>
55 #include <linux/kernel.h>
56 #include <linux/jiffies.h>
57 #include <linux/string.h>
58 #include <linux/in.h>
59 #include <linux/errno.h>
60 #include <linux/init.h>
61 #include <linux/skbuff.h>
62 #include <linux/jhash.h>
63 #include <linux/slab.h>
64 #include <linux/vmalloc.h>
65 #include <linux/reciprocal_div.h>
66 #include <net/netlink.h>
67 #include <linux/if_vlan.h>
68 #include <net/pkt_sched.h>
69 #include <net/pkt_cls.h>
70 #include <net/tcp.h>
71 #include <net/flow_dissector.h>
72 
73 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
74 #include <net/netfilter/nf_conntrack_core.h>
75 #endif
76 
77 #define CAKE_SET_WAYS (8)
78 #define CAKE_MAX_TINS (8)
79 #define CAKE_QUEUES (1024)
80 #define CAKE_FLOW_MASK 63
81 #define CAKE_FLOW_NAT_FLAG 64
82 
83 /* struct cobalt_params - contains codel and blue parameters
84  * @interval:	codel initial drop rate
85  * @target:     maximum persistent sojourn time & blue update rate
86  * @mtu_time:   serialisation delay of maximum-size packet
87  * @p_inc:      increment of blue drop probability (0.32 fxp)
88  * @p_dec:      decrement of blue drop probability (0.32 fxp)
89  */
90 struct cobalt_params {
91 	u64	interval;
92 	u64	target;
93 	u64	mtu_time;
94 	u32	p_inc;
95 	u32	p_dec;
96 };
97 
98 /* struct cobalt_vars - contains codel and blue variables
99  * @count:		codel dropping frequency
100  * @rec_inv_sqrt:	reciprocal value of sqrt(count) >> 1
101  * @drop_next:		time to drop next packet, or when we dropped last
102  * @blue_timer:		Blue time to next drop
103  * @p_drop:		BLUE drop probability (0.32 fxp)
104  * @dropping:		set if in dropping state
105  * @ecn_marked:		set if marked
106  */
107 struct cobalt_vars {
108 	u32	count;
109 	u32	rec_inv_sqrt;
110 	ktime_t	drop_next;
111 	ktime_t	blue_timer;
112 	u32     p_drop;
113 	bool	dropping;
114 	bool    ecn_marked;
115 };
116 
117 enum {
118 	CAKE_SET_NONE = 0,
119 	CAKE_SET_SPARSE,
120 	CAKE_SET_SPARSE_WAIT, /* counted in SPARSE, actually in BULK */
121 	CAKE_SET_BULK,
122 	CAKE_SET_DECAYING
123 };
124 
125 struct cake_flow {
126 	/* this stuff is all needed per-flow at dequeue time */
127 	struct sk_buff	  *head;
128 	struct sk_buff	  *tail;
129 	struct list_head  flowchain;
130 	s32		  deficit;
131 	u32		  dropped;
132 	struct cobalt_vars cvars;
133 	u16		  srchost; /* index into cake_host table */
134 	u16		  dsthost;
135 	u8		  set;
136 }; /* please try to keep this structure <= 64 bytes */
137 
138 struct cake_host {
139 	u32 srchost_tag;
140 	u32 dsthost_tag;
141 	u16 srchost_bulk_flow_count;
142 	u16 dsthost_bulk_flow_count;
143 };
144 
145 struct cake_heap_entry {
146 	u16 t:3, b:10;
147 };
148 
149 struct cake_tin_data {
150 	struct cake_flow flows[CAKE_QUEUES];
151 	u32	backlogs[CAKE_QUEUES];
152 	u32	tags[CAKE_QUEUES]; /* for set association */
153 	u16	overflow_idx[CAKE_QUEUES];
154 	struct cake_host hosts[CAKE_QUEUES]; /* for triple isolation */
155 	u16	flow_quantum;
156 
157 	struct cobalt_params cparams;
158 	u32	drop_overlimit;
159 	u16	bulk_flow_count;
160 	u16	sparse_flow_count;
161 	u16	decaying_flow_count;
162 	u16	unresponsive_flow_count;
163 
164 	u32	max_skblen;
165 
166 	struct list_head new_flows;
167 	struct list_head old_flows;
168 	struct list_head decaying_flows;
169 
170 	/* time_next = time_this + ((len * rate_ns) >> rate_shft) */
171 	ktime_t	time_next_packet;
172 	u64	tin_rate_ns;
173 	u64	tin_rate_bps;
174 	u16	tin_rate_shft;
175 
176 	u16	tin_quantum_prio;
177 	u16	tin_quantum_band;
178 	s32	tin_deficit;
179 	u32	tin_backlog;
180 	u32	tin_dropped;
181 	u32	tin_ecn_mark;
182 
183 	u32	packets;
184 	u64	bytes;
185 
186 	u32	ack_drops;
187 
188 	/* moving averages */
189 	u64 avge_delay;
190 	u64 peak_delay;
191 	u64 base_delay;
192 
193 	/* hash function stats */
194 	u32	way_directs;
195 	u32	way_hits;
196 	u32	way_misses;
197 	u32	way_collisions;
198 }; /* number of tins is small, so size of this struct doesn't matter much */
199 
200 struct cake_sched_data {
201 	struct tcf_proto __rcu *filter_list; /* optional external classifier */
202 	struct tcf_block *block;
203 	struct cake_tin_data *tins;
204 
205 	struct cake_heap_entry overflow_heap[CAKE_QUEUES * CAKE_MAX_TINS];
206 	u16		overflow_timeout;
207 
208 	u16		tin_cnt;
209 	u8		tin_mode;
210 	u8		flow_mode;
211 	u8		ack_filter;
212 	u8		atm_mode;
213 
214 	u32		fwmark_mask;
215 	u16		fwmark_shft;
216 
217 	/* time_next = time_this + ((len * rate_ns) >> rate_shft) */
218 	u16		rate_shft;
219 	ktime_t		time_next_packet;
220 	ktime_t		failsafe_next_packet;
221 	u64		rate_ns;
222 	u64		rate_bps;
223 	u16		rate_flags;
224 	s16		rate_overhead;
225 	u16		rate_mpu;
226 	u64		interval;
227 	u64		target;
228 
229 	/* resource tracking */
230 	u32		buffer_used;
231 	u32		buffer_max_used;
232 	u32		buffer_limit;
233 	u32		buffer_config_limit;
234 
235 	/* indices for dequeue */
236 	u16		cur_tin;
237 	u16		cur_flow;
238 
239 	struct qdisc_watchdog watchdog;
240 	const u8	*tin_index;
241 	const u8	*tin_order;
242 
243 	/* bandwidth capacity estimate */
244 	ktime_t		last_packet_time;
245 	ktime_t		avg_window_begin;
246 	u64		avg_packet_interval;
247 	u64		avg_window_bytes;
248 	u64		avg_peak_bandwidth;
249 	ktime_t		last_reconfig_time;
250 
251 	/* packet length stats */
252 	u32		avg_netoff;
253 	u16		max_netlen;
254 	u16		max_adjlen;
255 	u16		min_netlen;
256 	u16		min_adjlen;
257 };
258 
259 enum {
260 	CAKE_FLAG_OVERHEAD	   = BIT(0),
261 	CAKE_FLAG_AUTORATE_INGRESS = BIT(1),
262 	CAKE_FLAG_INGRESS	   = BIT(2),
263 	CAKE_FLAG_WASH		   = BIT(3),
264 	CAKE_FLAG_SPLIT_GSO	   = BIT(4)
265 };
266 
267 /* COBALT operates the Codel and BLUE algorithms in parallel, in order to
268  * obtain the best features of each.  Codel is excellent on flows which
269  * respond to congestion signals in a TCP-like way.  BLUE is more effective on
270  * unresponsive flows.
271  */
272 
273 struct cobalt_skb_cb {
274 	ktime_t enqueue_time;
275 	u32     adjusted_len;
276 };
277 
278 static u64 us_to_ns(u64 us)
279 {
280 	return us * NSEC_PER_USEC;
281 }
282 
283 static struct cobalt_skb_cb *get_cobalt_cb(const struct sk_buff *skb)
284 {
285 	qdisc_cb_private_validate(skb, sizeof(struct cobalt_skb_cb));
286 	return (struct cobalt_skb_cb *)qdisc_skb_cb(skb)->data;
287 }
288 
289 static ktime_t cobalt_get_enqueue_time(const struct sk_buff *skb)
290 {
291 	return get_cobalt_cb(skb)->enqueue_time;
292 }
293 
294 static void cobalt_set_enqueue_time(struct sk_buff *skb,
295 				    ktime_t now)
296 {
297 	get_cobalt_cb(skb)->enqueue_time = now;
298 }
299 
300 static u16 quantum_div[CAKE_QUEUES + 1] = {0};
301 
302 /* Diffserv lookup tables */
303 
304 static const u8 precedence[] = {
305 	0, 0, 0, 0, 0, 0, 0, 0,
306 	1, 1, 1, 1, 1, 1, 1, 1,
307 	2, 2, 2, 2, 2, 2, 2, 2,
308 	3, 3, 3, 3, 3, 3, 3, 3,
309 	4, 4, 4, 4, 4, 4, 4, 4,
310 	5, 5, 5, 5, 5, 5, 5, 5,
311 	6, 6, 6, 6, 6, 6, 6, 6,
312 	7, 7, 7, 7, 7, 7, 7, 7,
313 };
314 
315 static const u8 diffserv8[] = {
316 	2, 5, 1, 2, 4, 2, 2, 2,
317 	0, 2, 1, 2, 1, 2, 1, 2,
318 	5, 2, 4, 2, 4, 2, 4, 2,
319 	3, 2, 3, 2, 3, 2, 3, 2,
320 	6, 2, 3, 2, 3, 2, 3, 2,
321 	6, 2, 2, 2, 6, 2, 6, 2,
322 	7, 2, 2, 2, 2, 2, 2, 2,
323 	7, 2, 2, 2, 2, 2, 2, 2,
324 };
325 
326 static const u8 diffserv4[] = {
327 	0, 2, 0, 0, 2, 0, 0, 0,
328 	1, 0, 0, 0, 0, 0, 0, 0,
329 	2, 0, 2, 0, 2, 0, 2, 0,
330 	2, 0, 2, 0, 2, 0, 2, 0,
331 	3, 0, 2, 0, 2, 0, 2, 0,
332 	3, 0, 0, 0, 3, 0, 3, 0,
333 	3, 0, 0, 0, 0, 0, 0, 0,
334 	3, 0, 0, 0, 0, 0, 0, 0,
335 };
336 
337 static const u8 diffserv3[] = {
338 	0, 0, 0, 0, 2, 0, 0, 0,
339 	1, 0, 0, 0, 0, 0, 0, 0,
340 	0, 0, 0, 0, 0, 0, 0, 0,
341 	0, 0, 0, 0, 0, 0, 0, 0,
342 	0, 0, 0, 0, 0, 0, 0, 0,
343 	0, 0, 0, 0, 2, 0, 2, 0,
344 	2, 0, 0, 0, 0, 0, 0, 0,
345 	2, 0, 0, 0, 0, 0, 0, 0,
346 };
347 
348 static const u8 besteffort[] = {
349 	0, 0, 0, 0, 0, 0, 0, 0,
350 	0, 0, 0, 0, 0, 0, 0, 0,
351 	0, 0, 0, 0, 0, 0, 0, 0,
352 	0, 0, 0, 0, 0, 0, 0, 0,
353 	0, 0, 0, 0, 0, 0, 0, 0,
354 	0, 0, 0, 0, 0, 0, 0, 0,
355 	0, 0, 0, 0, 0, 0, 0, 0,
356 	0, 0, 0, 0, 0, 0, 0, 0,
357 };
358 
359 /* tin priority order for stats dumping */
360 
361 static const u8 normal_order[] = {0, 1, 2, 3, 4, 5, 6, 7};
362 static const u8 bulk_order[] = {1, 0, 2, 3};
363 
364 #define REC_INV_SQRT_CACHE (16)
365 static u32 cobalt_rec_inv_sqrt_cache[REC_INV_SQRT_CACHE] = {0};
366 
367 /* http://en.wikipedia.org/wiki/Methods_of_computing_square_roots
368  * new_invsqrt = (invsqrt / 2) * (3 - count * invsqrt^2)
369  *
370  * Here, invsqrt is a fixed point number (< 1.0), 32bit mantissa, aka Q0.32
371  */
372 
373 static void cobalt_newton_step(struct cobalt_vars *vars)
374 {
375 	u32 invsqrt, invsqrt2;
376 	u64 val;
377 
378 	invsqrt = vars->rec_inv_sqrt;
379 	invsqrt2 = ((u64)invsqrt * invsqrt) >> 32;
380 	val = (3LL << 32) - ((u64)vars->count * invsqrt2);
381 
382 	val >>= 2; /* avoid overflow in following multiply */
383 	val = (val * invsqrt) >> (32 - 2 + 1);
384 
385 	vars->rec_inv_sqrt = val;
386 }
387 
388 static void cobalt_invsqrt(struct cobalt_vars *vars)
389 {
390 	if (vars->count < REC_INV_SQRT_CACHE)
391 		vars->rec_inv_sqrt = cobalt_rec_inv_sqrt_cache[vars->count];
392 	else
393 		cobalt_newton_step(vars);
394 }
395 
396 /* There is a big difference in timing between the accurate values placed in
397  * the cache and the approximations given by a single Newton step for small
398  * count values, particularly when stepping from count 1 to 2 or vice versa.
399  * Above 16, a single Newton step gives sufficient accuracy in either
400  * direction, given the precision stored.
401  *
402  * The magnitude of the error when stepping up to count 2 is such as to give
403  * the value that *should* have been produced at count 4.
404  */
405 
406 static void cobalt_cache_init(void)
407 {
408 	struct cobalt_vars v;
409 
410 	memset(&v, 0, sizeof(v));
411 	v.rec_inv_sqrt = ~0U;
412 	cobalt_rec_inv_sqrt_cache[0] = v.rec_inv_sqrt;
413 
414 	for (v.count = 1; v.count < REC_INV_SQRT_CACHE; v.count++) {
415 		cobalt_newton_step(&v);
416 		cobalt_newton_step(&v);
417 		cobalt_newton_step(&v);
418 		cobalt_newton_step(&v);
419 
420 		cobalt_rec_inv_sqrt_cache[v.count] = v.rec_inv_sqrt;
421 	}
422 }
423 
424 static void cobalt_vars_init(struct cobalt_vars *vars)
425 {
426 	memset(vars, 0, sizeof(*vars));
427 
428 	if (!cobalt_rec_inv_sqrt_cache[0]) {
429 		cobalt_cache_init();
430 		cobalt_rec_inv_sqrt_cache[0] = ~0;
431 	}
432 }
433 
434 /* CoDel control_law is t + interval/sqrt(count)
435  * We maintain in rec_inv_sqrt the reciprocal value of sqrt(count) to avoid
436  * both sqrt() and divide operation.
437  */
438 static ktime_t cobalt_control(ktime_t t,
439 			      u64 interval,
440 			      u32 rec_inv_sqrt)
441 {
442 	return ktime_add_ns(t, reciprocal_scale(interval,
443 						rec_inv_sqrt));
444 }
445 
446 /* Call this when a packet had to be dropped due to queue overflow.  Returns
447  * true if the BLUE state was quiescent before but active after this call.
448  */
449 static bool cobalt_queue_full(struct cobalt_vars *vars,
450 			      struct cobalt_params *p,
451 			      ktime_t now)
452 {
453 	bool up = false;
454 
455 	if (ktime_to_ns(ktime_sub(now, vars->blue_timer)) > p->target) {
456 		up = !vars->p_drop;
457 		vars->p_drop += p->p_inc;
458 		if (vars->p_drop < p->p_inc)
459 			vars->p_drop = ~0;
460 		vars->blue_timer = now;
461 	}
462 	vars->dropping = true;
463 	vars->drop_next = now;
464 	if (!vars->count)
465 		vars->count = 1;
466 
467 	return up;
468 }
469 
470 /* Call this when the queue was serviced but turned out to be empty.  Returns
471  * true if the BLUE state was active before but quiescent after this call.
472  */
473 static bool cobalt_queue_empty(struct cobalt_vars *vars,
474 			       struct cobalt_params *p,
475 			       ktime_t now)
476 {
477 	bool down = false;
478 
479 	if (vars->p_drop &&
480 	    ktime_to_ns(ktime_sub(now, vars->blue_timer)) > p->target) {
481 		if (vars->p_drop < p->p_dec)
482 			vars->p_drop = 0;
483 		else
484 			vars->p_drop -= p->p_dec;
485 		vars->blue_timer = now;
486 		down = !vars->p_drop;
487 	}
488 	vars->dropping = false;
489 
490 	if (vars->count && ktime_to_ns(ktime_sub(now, vars->drop_next)) >= 0) {
491 		vars->count--;
492 		cobalt_invsqrt(vars);
493 		vars->drop_next = cobalt_control(vars->drop_next,
494 						 p->interval,
495 						 vars->rec_inv_sqrt);
496 	}
497 
498 	return down;
499 }
500 
501 /* Call this with a freshly dequeued packet for possible congestion marking.
502  * Returns true as an instruction to drop the packet, false for delivery.
503  */
504 static bool cobalt_should_drop(struct cobalt_vars *vars,
505 			       struct cobalt_params *p,
506 			       ktime_t now,
507 			       struct sk_buff *skb,
508 			       u32 bulk_flows)
509 {
510 	bool next_due, over_target, drop = false;
511 	ktime_t schedule;
512 	u64 sojourn;
513 
514 /* The 'schedule' variable records, in its sign, whether 'now' is before or
515  * after 'drop_next'.  This allows 'drop_next' to be updated before the next
516  * scheduling decision is actually branched, without destroying that
517  * information.  Similarly, the first 'schedule' value calculated is preserved
518  * in the boolean 'next_due'.
519  *
520  * As for 'drop_next', we take advantage of the fact that 'interval' is both
521  * the delay between first exceeding 'target' and the first signalling event,
522  * *and* the scaling factor for the signalling frequency.  It's therefore very
523  * natural to use a single mechanism for both purposes, and eliminates a
524  * significant amount of reference Codel's spaghetti code.  To help with this,
525  * both the '0' and '1' entries in the invsqrt cache are 0xFFFFFFFF, as close
526  * as possible to 1.0 in fixed-point.
527  */
528 
529 	sojourn = ktime_to_ns(ktime_sub(now, cobalt_get_enqueue_time(skb)));
530 	schedule = ktime_sub(now, vars->drop_next);
531 	over_target = sojourn > p->target &&
532 		      sojourn > p->mtu_time * bulk_flows * 2 &&
533 		      sojourn > p->mtu_time * 4;
534 	next_due = vars->count && ktime_to_ns(schedule) >= 0;
535 
536 	vars->ecn_marked = false;
537 
538 	if (over_target) {
539 		if (!vars->dropping) {
540 			vars->dropping = true;
541 			vars->drop_next = cobalt_control(now,
542 							 p->interval,
543 							 vars->rec_inv_sqrt);
544 		}
545 		if (!vars->count)
546 			vars->count = 1;
547 	} else if (vars->dropping) {
548 		vars->dropping = false;
549 	}
550 
551 	if (next_due && vars->dropping) {
552 		/* Use ECN mark if possible, otherwise drop */
553 		drop = !(vars->ecn_marked = INET_ECN_set_ce(skb));
554 
555 		vars->count++;
556 		if (!vars->count)
557 			vars->count--;
558 		cobalt_invsqrt(vars);
559 		vars->drop_next = cobalt_control(vars->drop_next,
560 						 p->interval,
561 						 vars->rec_inv_sqrt);
562 		schedule = ktime_sub(now, vars->drop_next);
563 	} else {
564 		while (next_due) {
565 			vars->count--;
566 			cobalt_invsqrt(vars);
567 			vars->drop_next = cobalt_control(vars->drop_next,
568 							 p->interval,
569 							 vars->rec_inv_sqrt);
570 			schedule = ktime_sub(now, vars->drop_next);
571 			next_due = vars->count && ktime_to_ns(schedule) >= 0;
572 		}
573 	}
574 
575 	/* Simple BLUE implementation.  Lack of ECN is deliberate. */
576 	if (vars->p_drop)
577 		drop |= (prandom_u32() < vars->p_drop);
578 
579 	/* Overload the drop_next field as an activity timeout */
580 	if (!vars->count)
581 		vars->drop_next = ktime_add_ns(now, p->interval);
582 	else if (ktime_to_ns(schedule) > 0 && !drop)
583 		vars->drop_next = now;
584 
585 	return drop;
586 }
587 
588 static void cake_update_flowkeys(struct flow_keys *keys,
589 				 const struct sk_buff *skb)
590 {
591 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
592 	struct nf_conntrack_tuple tuple = {};
593 	bool rev = !skb->_nfct;
594 
595 	if (tc_skb_protocol(skb) != htons(ETH_P_IP))
596 		return;
597 
598 	if (!nf_ct_get_tuple_skb(&tuple, skb))
599 		return;
600 
601 	keys->addrs.v4addrs.src = rev ? tuple.dst.u3.ip : tuple.src.u3.ip;
602 	keys->addrs.v4addrs.dst = rev ? tuple.src.u3.ip : tuple.dst.u3.ip;
603 
604 	if (keys->ports.ports) {
605 		keys->ports.src = rev ? tuple.dst.u.all : tuple.src.u.all;
606 		keys->ports.dst = rev ? tuple.src.u.all : tuple.dst.u.all;
607 	}
608 #endif
609 }
610 
611 /* Cake has several subtle multiple bit settings. In these cases you
612  *  would be matching triple isolate mode as well.
613  */
614 
615 static bool cake_dsrc(int flow_mode)
616 {
617 	return (flow_mode & CAKE_FLOW_DUAL_SRC) == CAKE_FLOW_DUAL_SRC;
618 }
619 
620 static bool cake_ddst(int flow_mode)
621 {
622 	return (flow_mode & CAKE_FLOW_DUAL_DST) == CAKE_FLOW_DUAL_DST;
623 }
624 
625 static u32 cake_hash(struct cake_tin_data *q, const struct sk_buff *skb,
626 		     int flow_mode, u16 flow_override, u16 host_override)
627 {
628 	u32 flow_hash = 0, srchost_hash = 0, dsthost_hash = 0;
629 	u16 reduced_hash, srchost_idx, dsthost_idx;
630 	struct flow_keys keys, host_keys;
631 
632 	if (unlikely(flow_mode == CAKE_FLOW_NONE))
633 		return 0;
634 
635 	/* If both overrides are set we can skip packet dissection entirely */
636 	if ((flow_override || !(flow_mode & CAKE_FLOW_FLOWS)) &&
637 	    (host_override || !(flow_mode & CAKE_FLOW_HOSTS)))
638 		goto skip_hash;
639 
640 	skb_flow_dissect_flow_keys(skb, &keys,
641 				   FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
642 
643 	if (flow_mode & CAKE_FLOW_NAT_FLAG)
644 		cake_update_flowkeys(&keys, skb);
645 
646 	/* flow_hash_from_keys() sorts the addresses by value, so we have
647 	 * to preserve their order in a separate data structure to treat
648 	 * src and dst host addresses as independently selectable.
649 	 */
650 	host_keys = keys;
651 	host_keys.ports.ports     = 0;
652 	host_keys.basic.ip_proto  = 0;
653 	host_keys.keyid.keyid     = 0;
654 	host_keys.tags.flow_label = 0;
655 
656 	switch (host_keys.control.addr_type) {
657 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
658 		host_keys.addrs.v4addrs.src = 0;
659 		dsthost_hash = flow_hash_from_keys(&host_keys);
660 		host_keys.addrs.v4addrs.src = keys.addrs.v4addrs.src;
661 		host_keys.addrs.v4addrs.dst = 0;
662 		srchost_hash = flow_hash_from_keys(&host_keys);
663 		break;
664 
665 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
666 		memset(&host_keys.addrs.v6addrs.src, 0,
667 		       sizeof(host_keys.addrs.v6addrs.src));
668 		dsthost_hash = flow_hash_from_keys(&host_keys);
669 		host_keys.addrs.v6addrs.src = keys.addrs.v6addrs.src;
670 		memset(&host_keys.addrs.v6addrs.dst, 0,
671 		       sizeof(host_keys.addrs.v6addrs.dst));
672 		srchost_hash = flow_hash_from_keys(&host_keys);
673 		break;
674 
675 	default:
676 		dsthost_hash = 0;
677 		srchost_hash = 0;
678 	}
679 
680 	/* This *must* be after the above switch, since as a
681 	 * side-effect it sorts the src and dst addresses.
682 	 */
683 	if (flow_mode & CAKE_FLOW_FLOWS)
684 		flow_hash = flow_hash_from_keys(&keys);
685 
686 skip_hash:
687 	if (flow_override)
688 		flow_hash = flow_override - 1;
689 	if (host_override) {
690 		dsthost_hash = host_override - 1;
691 		srchost_hash = host_override - 1;
692 	}
693 
694 	if (!(flow_mode & CAKE_FLOW_FLOWS)) {
695 		if (flow_mode & CAKE_FLOW_SRC_IP)
696 			flow_hash ^= srchost_hash;
697 
698 		if (flow_mode & CAKE_FLOW_DST_IP)
699 			flow_hash ^= dsthost_hash;
700 	}
701 
702 	reduced_hash = flow_hash % CAKE_QUEUES;
703 
704 	/* set-associative hashing */
705 	/* fast path if no hash collision (direct lookup succeeds) */
706 	if (likely(q->tags[reduced_hash] == flow_hash &&
707 		   q->flows[reduced_hash].set)) {
708 		q->way_directs++;
709 	} else {
710 		u32 inner_hash = reduced_hash % CAKE_SET_WAYS;
711 		u32 outer_hash = reduced_hash - inner_hash;
712 		bool allocate_src = false;
713 		bool allocate_dst = false;
714 		u32 i, k;
715 
716 		/* check if any active queue in the set is reserved for
717 		 * this flow.
718 		 */
719 		for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
720 		     i++, k = (k + 1) % CAKE_SET_WAYS) {
721 			if (q->tags[outer_hash + k] == flow_hash) {
722 				if (i)
723 					q->way_hits++;
724 
725 				if (!q->flows[outer_hash + k].set) {
726 					/* need to increment host refcnts */
727 					allocate_src = cake_dsrc(flow_mode);
728 					allocate_dst = cake_ddst(flow_mode);
729 				}
730 
731 				goto found;
732 			}
733 		}
734 
735 		/* no queue is reserved for this flow, look for an
736 		 * empty one.
737 		 */
738 		for (i = 0; i < CAKE_SET_WAYS;
739 			 i++, k = (k + 1) % CAKE_SET_WAYS) {
740 			if (!q->flows[outer_hash + k].set) {
741 				q->way_misses++;
742 				allocate_src = cake_dsrc(flow_mode);
743 				allocate_dst = cake_ddst(flow_mode);
744 				goto found;
745 			}
746 		}
747 
748 		/* With no empty queues, default to the original
749 		 * queue, accept the collision, update the host tags.
750 		 */
751 		q->way_collisions++;
752 		if (q->flows[outer_hash + k].set == CAKE_SET_BULK) {
753 			q->hosts[q->flows[reduced_hash].srchost].srchost_bulk_flow_count--;
754 			q->hosts[q->flows[reduced_hash].dsthost].dsthost_bulk_flow_count--;
755 		}
756 		allocate_src = cake_dsrc(flow_mode);
757 		allocate_dst = cake_ddst(flow_mode);
758 found:
759 		/* reserve queue for future packets in same flow */
760 		reduced_hash = outer_hash + k;
761 		q->tags[reduced_hash] = flow_hash;
762 
763 		if (allocate_src) {
764 			srchost_idx = srchost_hash % CAKE_QUEUES;
765 			inner_hash = srchost_idx % CAKE_SET_WAYS;
766 			outer_hash = srchost_idx - inner_hash;
767 			for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
768 				i++, k = (k + 1) % CAKE_SET_WAYS) {
769 				if (q->hosts[outer_hash + k].srchost_tag ==
770 				    srchost_hash)
771 					goto found_src;
772 			}
773 			for (i = 0; i < CAKE_SET_WAYS;
774 				i++, k = (k + 1) % CAKE_SET_WAYS) {
775 				if (!q->hosts[outer_hash + k].srchost_bulk_flow_count)
776 					break;
777 			}
778 			q->hosts[outer_hash + k].srchost_tag = srchost_hash;
779 found_src:
780 			srchost_idx = outer_hash + k;
781 			if (q->flows[reduced_hash].set == CAKE_SET_BULK)
782 				q->hosts[srchost_idx].srchost_bulk_flow_count++;
783 			q->flows[reduced_hash].srchost = srchost_idx;
784 		}
785 
786 		if (allocate_dst) {
787 			dsthost_idx = dsthost_hash % CAKE_QUEUES;
788 			inner_hash = dsthost_idx % CAKE_SET_WAYS;
789 			outer_hash = dsthost_idx - inner_hash;
790 			for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
791 			     i++, k = (k + 1) % CAKE_SET_WAYS) {
792 				if (q->hosts[outer_hash + k].dsthost_tag ==
793 				    dsthost_hash)
794 					goto found_dst;
795 			}
796 			for (i = 0; i < CAKE_SET_WAYS;
797 			     i++, k = (k + 1) % CAKE_SET_WAYS) {
798 				if (!q->hosts[outer_hash + k].dsthost_bulk_flow_count)
799 					break;
800 			}
801 			q->hosts[outer_hash + k].dsthost_tag = dsthost_hash;
802 found_dst:
803 			dsthost_idx = outer_hash + k;
804 			if (q->flows[reduced_hash].set == CAKE_SET_BULK)
805 				q->hosts[dsthost_idx].dsthost_bulk_flow_count++;
806 			q->flows[reduced_hash].dsthost = dsthost_idx;
807 		}
808 	}
809 
810 	return reduced_hash;
811 }
812 
813 /* helper functions : might be changed when/if skb use a standard list_head */
814 /* remove one skb from head of slot queue */
815 
816 static struct sk_buff *dequeue_head(struct cake_flow *flow)
817 {
818 	struct sk_buff *skb = flow->head;
819 
820 	if (skb) {
821 		flow->head = skb->next;
822 		skb_mark_not_on_list(skb);
823 	}
824 
825 	return skb;
826 }
827 
828 /* add skb to flow queue (tail add) */
829 
830 static void flow_queue_add(struct cake_flow *flow, struct sk_buff *skb)
831 {
832 	if (!flow->head)
833 		flow->head = skb;
834 	else
835 		flow->tail->next = skb;
836 	flow->tail = skb;
837 	skb->next = NULL;
838 }
839 
840 static struct iphdr *cake_get_iphdr(const struct sk_buff *skb,
841 				    struct ipv6hdr *buf)
842 {
843 	unsigned int offset = skb_network_offset(skb);
844 	struct iphdr *iph;
845 
846 	iph = skb_header_pointer(skb, offset, sizeof(struct iphdr), buf);
847 
848 	if (!iph)
849 		return NULL;
850 
851 	if (iph->version == 4 && iph->protocol == IPPROTO_IPV6)
852 		return skb_header_pointer(skb, offset + iph->ihl * 4,
853 					  sizeof(struct ipv6hdr), buf);
854 
855 	else if (iph->version == 4)
856 		return iph;
857 
858 	else if (iph->version == 6)
859 		return skb_header_pointer(skb, offset, sizeof(struct ipv6hdr),
860 					  buf);
861 
862 	return NULL;
863 }
864 
865 static struct tcphdr *cake_get_tcphdr(const struct sk_buff *skb,
866 				      void *buf, unsigned int bufsize)
867 {
868 	unsigned int offset = skb_network_offset(skb);
869 	const struct ipv6hdr *ipv6h;
870 	const struct tcphdr *tcph;
871 	const struct iphdr *iph;
872 	struct ipv6hdr _ipv6h;
873 	struct tcphdr _tcph;
874 
875 	ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
876 
877 	if (!ipv6h)
878 		return NULL;
879 
880 	if (ipv6h->version == 4) {
881 		iph = (struct iphdr *)ipv6h;
882 		offset += iph->ihl * 4;
883 
884 		/* special-case 6in4 tunnelling, as that is a common way to get
885 		 * v6 connectivity in the home
886 		 */
887 		if (iph->protocol == IPPROTO_IPV6) {
888 			ipv6h = skb_header_pointer(skb, offset,
889 						   sizeof(_ipv6h), &_ipv6h);
890 
891 			if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
892 				return NULL;
893 
894 			offset += sizeof(struct ipv6hdr);
895 
896 		} else if (iph->protocol != IPPROTO_TCP) {
897 			return NULL;
898 		}
899 
900 	} else if (ipv6h->version == 6) {
901 		if (ipv6h->nexthdr != IPPROTO_TCP)
902 			return NULL;
903 
904 		offset += sizeof(struct ipv6hdr);
905 	} else {
906 		return NULL;
907 	}
908 
909 	tcph = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
910 	if (!tcph)
911 		return NULL;
912 
913 	return skb_header_pointer(skb, offset,
914 				  min(__tcp_hdrlen(tcph), bufsize), buf);
915 }
916 
917 static const void *cake_get_tcpopt(const struct tcphdr *tcph,
918 				   int code, int *oplen)
919 {
920 	/* inspired by tcp_parse_options in tcp_input.c */
921 	int length = __tcp_hdrlen(tcph) - sizeof(struct tcphdr);
922 	const u8 *ptr = (const u8 *)(tcph + 1);
923 
924 	while (length > 0) {
925 		int opcode = *ptr++;
926 		int opsize;
927 
928 		if (opcode == TCPOPT_EOL)
929 			break;
930 		if (opcode == TCPOPT_NOP) {
931 			length--;
932 			continue;
933 		}
934 		opsize = *ptr++;
935 		if (opsize < 2 || opsize > length)
936 			break;
937 
938 		if (opcode == code) {
939 			*oplen = opsize;
940 			return ptr;
941 		}
942 
943 		ptr += opsize - 2;
944 		length -= opsize;
945 	}
946 
947 	return NULL;
948 }
949 
950 /* Compare two SACK sequences. A sequence is considered greater if it SACKs more
951  * bytes than the other. In the case where both sequences ACKs bytes that the
952  * other doesn't, A is considered greater. DSACKs in A also makes A be
953  * considered greater.
954  *
955  * @return -1, 0 or 1 as normal compare functions
956  */
957 static int cake_tcph_sack_compare(const struct tcphdr *tcph_a,
958 				  const struct tcphdr *tcph_b)
959 {
960 	const struct tcp_sack_block_wire *sack_a, *sack_b;
961 	u32 ack_seq_a = ntohl(tcph_a->ack_seq);
962 	u32 bytes_a = 0, bytes_b = 0;
963 	int oplen_a, oplen_b;
964 	bool first = true;
965 
966 	sack_a = cake_get_tcpopt(tcph_a, TCPOPT_SACK, &oplen_a);
967 	sack_b = cake_get_tcpopt(tcph_b, TCPOPT_SACK, &oplen_b);
968 
969 	/* pointers point to option contents */
970 	oplen_a -= TCPOLEN_SACK_BASE;
971 	oplen_b -= TCPOLEN_SACK_BASE;
972 
973 	if (sack_a && oplen_a >= sizeof(*sack_a) &&
974 	    (!sack_b || oplen_b < sizeof(*sack_b)))
975 		return -1;
976 	else if (sack_b && oplen_b >= sizeof(*sack_b) &&
977 		 (!sack_a || oplen_a < sizeof(*sack_a)))
978 		return 1;
979 	else if ((!sack_a || oplen_a < sizeof(*sack_a)) &&
980 		 (!sack_b || oplen_b < sizeof(*sack_b)))
981 		return 0;
982 
983 	while (oplen_a >= sizeof(*sack_a)) {
984 		const struct tcp_sack_block_wire *sack_tmp = sack_b;
985 		u32 start_a = get_unaligned_be32(&sack_a->start_seq);
986 		u32 end_a = get_unaligned_be32(&sack_a->end_seq);
987 		int oplen_tmp = oplen_b;
988 		bool found = false;
989 
990 		/* DSACK; always considered greater to prevent dropping */
991 		if (before(start_a, ack_seq_a))
992 			return -1;
993 
994 		bytes_a += end_a - start_a;
995 
996 		while (oplen_tmp >= sizeof(*sack_tmp)) {
997 			u32 start_b = get_unaligned_be32(&sack_tmp->start_seq);
998 			u32 end_b = get_unaligned_be32(&sack_tmp->end_seq);
999 
1000 			/* first time through we count the total size */
1001 			if (first)
1002 				bytes_b += end_b - start_b;
1003 
1004 			if (!after(start_b, start_a) && !before(end_b, end_a)) {
1005 				found = true;
1006 				if (!first)
1007 					break;
1008 			}
1009 			oplen_tmp -= sizeof(*sack_tmp);
1010 			sack_tmp++;
1011 		}
1012 
1013 		if (!found)
1014 			return -1;
1015 
1016 		oplen_a -= sizeof(*sack_a);
1017 		sack_a++;
1018 		first = false;
1019 	}
1020 
1021 	/* If we made it this far, all ranges SACKed by A are covered by B, so
1022 	 * either the SACKs are equal, or B SACKs more bytes.
1023 	 */
1024 	return bytes_b > bytes_a ? 1 : 0;
1025 }
1026 
1027 static void cake_tcph_get_tstamp(const struct tcphdr *tcph,
1028 				 u32 *tsval, u32 *tsecr)
1029 {
1030 	const u8 *ptr;
1031 	int opsize;
1032 
1033 	ptr = cake_get_tcpopt(tcph, TCPOPT_TIMESTAMP, &opsize);
1034 
1035 	if (ptr && opsize == TCPOLEN_TIMESTAMP) {
1036 		*tsval = get_unaligned_be32(ptr);
1037 		*tsecr = get_unaligned_be32(ptr + 4);
1038 	}
1039 }
1040 
1041 static bool cake_tcph_may_drop(const struct tcphdr *tcph,
1042 			       u32 tstamp_new, u32 tsecr_new)
1043 {
1044 	/* inspired by tcp_parse_options in tcp_input.c */
1045 	int length = __tcp_hdrlen(tcph) - sizeof(struct tcphdr);
1046 	const u8 *ptr = (const u8 *)(tcph + 1);
1047 	u32 tstamp, tsecr;
1048 
1049 	/* 3 reserved flags must be unset to avoid future breakage
1050 	 * ACK must be set
1051 	 * ECE/CWR are handled separately
1052 	 * All other flags URG/PSH/RST/SYN/FIN must be unset
1053 	 * 0x0FFF0000 = all TCP flags (confirm ACK=1, others zero)
1054 	 * 0x00C00000 = CWR/ECE (handled separately)
1055 	 * 0x0F3F0000 = 0x0FFF0000 & ~0x00C00000
1056 	 */
1057 	if (((tcp_flag_word(tcph) &
1058 	      cpu_to_be32(0x0F3F0000)) != TCP_FLAG_ACK))
1059 		return false;
1060 
1061 	while (length > 0) {
1062 		int opcode = *ptr++;
1063 		int opsize;
1064 
1065 		if (opcode == TCPOPT_EOL)
1066 			break;
1067 		if (opcode == TCPOPT_NOP) {
1068 			length--;
1069 			continue;
1070 		}
1071 		opsize = *ptr++;
1072 		if (opsize < 2 || opsize > length)
1073 			break;
1074 
1075 		switch (opcode) {
1076 		case TCPOPT_MD5SIG: /* doesn't influence state */
1077 			break;
1078 
1079 		case TCPOPT_SACK: /* stricter checking performed later */
1080 			if (opsize % 8 != 2)
1081 				return false;
1082 			break;
1083 
1084 		case TCPOPT_TIMESTAMP:
1085 			/* only drop timestamps lower than new */
1086 			if (opsize != TCPOLEN_TIMESTAMP)
1087 				return false;
1088 			tstamp = get_unaligned_be32(ptr);
1089 			tsecr = get_unaligned_be32(ptr + 4);
1090 			if (after(tstamp, tstamp_new) ||
1091 			    after(tsecr, tsecr_new))
1092 				return false;
1093 			break;
1094 
1095 		case TCPOPT_MSS:  /* these should only be set on SYN */
1096 		case TCPOPT_WINDOW:
1097 		case TCPOPT_SACK_PERM:
1098 		case TCPOPT_FASTOPEN:
1099 		case TCPOPT_EXP:
1100 		default: /* don't drop if any unknown options are present */
1101 			return false;
1102 		}
1103 
1104 		ptr += opsize - 2;
1105 		length -= opsize;
1106 	}
1107 
1108 	return true;
1109 }
1110 
1111 static struct sk_buff *cake_ack_filter(struct cake_sched_data *q,
1112 				       struct cake_flow *flow)
1113 {
1114 	bool aggressive = q->ack_filter == CAKE_ACK_AGGRESSIVE;
1115 	struct sk_buff *elig_ack = NULL, *elig_ack_prev = NULL;
1116 	struct sk_buff *skb_check, *skb_prev = NULL;
1117 	const struct ipv6hdr *ipv6h, *ipv6h_check;
1118 	unsigned char _tcph[64], _tcph_check[64];
1119 	const struct tcphdr *tcph, *tcph_check;
1120 	const struct iphdr *iph, *iph_check;
1121 	struct ipv6hdr _iph, _iph_check;
1122 	const struct sk_buff *skb;
1123 	int seglen, num_found = 0;
1124 	u32 tstamp = 0, tsecr = 0;
1125 	__be32 elig_flags = 0;
1126 	int sack_comp;
1127 
1128 	/* no other possible ACKs to filter */
1129 	if (flow->head == flow->tail)
1130 		return NULL;
1131 
1132 	skb = flow->tail;
1133 	tcph = cake_get_tcphdr(skb, _tcph, sizeof(_tcph));
1134 	iph = cake_get_iphdr(skb, &_iph);
1135 	if (!tcph)
1136 		return NULL;
1137 
1138 	cake_tcph_get_tstamp(tcph, &tstamp, &tsecr);
1139 
1140 	/* the 'triggering' packet need only have the ACK flag set.
1141 	 * also check that SYN is not set, as there won't be any previous ACKs.
1142 	 */
1143 	if ((tcp_flag_word(tcph) &
1144 	     (TCP_FLAG_ACK | TCP_FLAG_SYN)) != TCP_FLAG_ACK)
1145 		return NULL;
1146 
1147 	/* the 'triggering' ACK is at the tail of the queue, we have already
1148 	 * returned if it is the only packet in the flow. loop through the rest
1149 	 * of the queue looking for pure ACKs with the same 5-tuple as the
1150 	 * triggering one.
1151 	 */
1152 	for (skb_check = flow->head;
1153 	     skb_check && skb_check != skb;
1154 	     skb_prev = skb_check, skb_check = skb_check->next) {
1155 		iph_check = cake_get_iphdr(skb_check, &_iph_check);
1156 		tcph_check = cake_get_tcphdr(skb_check, &_tcph_check,
1157 					     sizeof(_tcph_check));
1158 
1159 		/* only TCP packets with matching 5-tuple are eligible, and only
1160 		 * drop safe headers
1161 		 */
1162 		if (!tcph_check || iph->version != iph_check->version ||
1163 		    tcph_check->source != tcph->source ||
1164 		    tcph_check->dest != tcph->dest)
1165 			continue;
1166 
1167 		if (iph_check->version == 4) {
1168 			if (iph_check->saddr != iph->saddr ||
1169 			    iph_check->daddr != iph->daddr)
1170 				continue;
1171 
1172 			seglen = ntohs(iph_check->tot_len) -
1173 				       (4 * iph_check->ihl);
1174 		} else if (iph_check->version == 6) {
1175 			ipv6h = (struct ipv6hdr *)iph;
1176 			ipv6h_check = (struct ipv6hdr *)iph_check;
1177 
1178 			if (ipv6_addr_cmp(&ipv6h_check->saddr, &ipv6h->saddr) ||
1179 			    ipv6_addr_cmp(&ipv6h_check->daddr, &ipv6h->daddr))
1180 				continue;
1181 
1182 			seglen = ntohs(ipv6h_check->payload_len);
1183 		} else {
1184 			WARN_ON(1);  /* shouldn't happen */
1185 			continue;
1186 		}
1187 
1188 		/* If the ECE/CWR flags changed from the previous eligible
1189 		 * packet in the same flow, we should no longer be dropping that
1190 		 * previous packet as this would lose information.
1191 		 */
1192 		if (elig_ack && (tcp_flag_word(tcph_check) &
1193 				 (TCP_FLAG_ECE | TCP_FLAG_CWR)) != elig_flags) {
1194 			elig_ack = NULL;
1195 			elig_ack_prev = NULL;
1196 			num_found--;
1197 		}
1198 
1199 		/* Check TCP options and flags, don't drop ACKs with segment
1200 		 * data, and don't drop ACKs with a higher cumulative ACK
1201 		 * counter than the triggering packet. Check ACK seqno here to
1202 		 * avoid parsing SACK options of packets we are going to exclude
1203 		 * anyway.
1204 		 */
1205 		if (!cake_tcph_may_drop(tcph_check, tstamp, tsecr) ||
1206 		    (seglen - __tcp_hdrlen(tcph_check)) != 0 ||
1207 		    after(ntohl(tcph_check->ack_seq), ntohl(tcph->ack_seq)))
1208 			continue;
1209 
1210 		/* Check SACK options. The triggering packet must SACK more data
1211 		 * than the ACK under consideration, or SACK the same range but
1212 		 * have a larger cumulative ACK counter. The latter is a
1213 		 * pathological case, but is contained in the following check
1214 		 * anyway, just to be safe.
1215 		 */
1216 		sack_comp = cake_tcph_sack_compare(tcph_check, tcph);
1217 
1218 		if (sack_comp < 0 ||
1219 		    (ntohl(tcph_check->ack_seq) == ntohl(tcph->ack_seq) &&
1220 		     sack_comp == 0))
1221 			continue;
1222 
1223 		/* At this point we have found an eligible pure ACK to drop; if
1224 		 * we are in aggressive mode, we are done. Otherwise, keep
1225 		 * searching unless this is the second eligible ACK we
1226 		 * found.
1227 		 *
1228 		 * Since we want to drop ACK closest to the head of the queue,
1229 		 * save the first eligible ACK we find, even if we need to loop
1230 		 * again.
1231 		 */
1232 		if (!elig_ack) {
1233 			elig_ack = skb_check;
1234 			elig_ack_prev = skb_prev;
1235 			elig_flags = (tcp_flag_word(tcph_check)
1236 				      & (TCP_FLAG_ECE | TCP_FLAG_CWR));
1237 		}
1238 
1239 		if (num_found++ > 0)
1240 			goto found;
1241 	}
1242 
1243 	/* We made it through the queue without finding two eligible ACKs . If
1244 	 * we found a single eligible ACK we can drop it in aggressive mode if
1245 	 * we can guarantee that this does not interfere with ECN flag
1246 	 * information. We ensure this by dropping it only if the enqueued
1247 	 * packet is consecutive with the eligible ACK, and their flags match.
1248 	 */
1249 	if (elig_ack && aggressive && elig_ack->next == skb &&
1250 	    (elig_flags == (tcp_flag_word(tcph) &
1251 			    (TCP_FLAG_ECE | TCP_FLAG_CWR))))
1252 		goto found;
1253 
1254 	return NULL;
1255 
1256 found:
1257 	if (elig_ack_prev)
1258 		elig_ack_prev->next = elig_ack->next;
1259 	else
1260 		flow->head = elig_ack->next;
1261 
1262 	skb_mark_not_on_list(elig_ack);
1263 
1264 	return elig_ack;
1265 }
1266 
1267 static u64 cake_ewma(u64 avg, u64 sample, u32 shift)
1268 {
1269 	avg -= avg >> shift;
1270 	avg += sample >> shift;
1271 	return avg;
1272 }
1273 
1274 static u32 cake_calc_overhead(struct cake_sched_data *q, u32 len, u32 off)
1275 {
1276 	if (q->rate_flags & CAKE_FLAG_OVERHEAD)
1277 		len -= off;
1278 
1279 	if (q->max_netlen < len)
1280 		q->max_netlen = len;
1281 	if (q->min_netlen > len)
1282 		q->min_netlen = len;
1283 
1284 	len += q->rate_overhead;
1285 
1286 	if (len < q->rate_mpu)
1287 		len = q->rate_mpu;
1288 
1289 	if (q->atm_mode == CAKE_ATM_ATM) {
1290 		len += 47;
1291 		len /= 48;
1292 		len *= 53;
1293 	} else if (q->atm_mode == CAKE_ATM_PTM) {
1294 		/* Add one byte per 64 bytes or part thereof.
1295 		 * This is conservative and easier to calculate than the
1296 		 * precise value.
1297 		 */
1298 		len += (len + 63) / 64;
1299 	}
1300 
1301 	if (q->max_adjlen < len)
1302 		q->max_adjlen = len;
1303 	if (q->min_adjlen > len)
1304 		q->min_adjlen = len;
1305 
1306 	return len;
1307 }
1308 
1309 static u32 cake_overhead(struct cake_sched_data *q, const struct sk_buff *skb)
1310 {
1311 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
1312 	unsigned int hdr_len, last_len = 0;
1313 	u32 off = skb_network_offset(skb);
1314 	u32 len = qdisc_pkt_len(skb);
1315 	u16 segs = 1;
1316 
1317 	q->avg_netoff = cake_ewma(q->avg_netoff, off << 16, 8);
1318 
1319 	if (!shinfo->gso_size)
1320 		return cake_calc_overhead(q, len, off);
1321 
1322 	/* borrowed from qdisc_pkt_len_init() */
1323 	hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
1324 
1325 	/* + transport layer */
1326 	if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 |
1327 						SKB_GSO_TCPV6))) {
1328 		const struct tcphdr *th;
1329 		struct tcphdr _tcphdr;
1330 
1331 		th = skb_header_pointer(skb, skb_transport_offset(skb),
1332 					sizeof(_tcphdr), &_tcphdr);
1333 		if (likely(th))
1334 			hdr_len += __tcp_hdrlen(th);
1335 	} else {
1336 		struct udphdr _udphdr;
1337 
1338 		if (skb_header_pointer(skb, skb_transport_offset(skb),
1339 				       sizeof(_udphdr), &_udphdr))
1340 			hdr_len += sizeof(struct udphdr);
1341 	}
1342 
1343 	if (unlikely(shinfo->gso_type & SKB_GSO_DODGY))
1344 		segs = DIV_ROUND_UP(skb->len - hdr_len,
1345 				    shinfo->gso_size);
1346 	else
1347 		segs = shinfo->gso_segs;
1348 
1349 	len = shinfo->gso_size + hdr_len;
1350 	last_len = skb->len - shinfo->gso_size * (segs - 1);
1351 
1352 	return (cake_calc_overhead(q, len, off) * (segs - 1) +
1353 		cake_calc_overhead(q, last_len, off));
1354 }
1355 
1356 static void cake_heap_swap(struct cake_sched_data *q, u16 i, u16 j)
1357 {
1358 	struct cake_heap_entry ii = q->overflow_heap[i];
1359 	struct cake_heap_entry jj = q->overflow_heap[j];
1360 
1361 	q->overflow_heap[i] = jj;
1362 	q->overflow_heap[j] = ii;
1363 
1364 	q->tins[ii.t].overflow_idx[ii.b] = j;
1365 	q->tins[jj.t].overflow_idx[jj.b] = i;
1366 }
1367 
1368 static u32 cake_heap_get_backlog(const struct cake_sched_data *q, u16 i)
1369 {
1370 	struct cake_heap_entry ii = q->overflow_heap[i];
1371 
1372 	return q->tins[ii.t].backlogs[ii.b];
1373 }
1374 
1375 static void cake_heapify(struct cake_sched_data *q, u16 i)
1376 {
1377 	static const u32 a = CAKE_MAX_TINS * CAKE_QUEUES;
1378 	u32 mb = cake_heap_get_backlog(q, i);
1379 	u32 m = i;
1380 
1381 	while (m < a) {
1382 		u32 l = m + m + 1;
1383 		u32 r = l + 1;
1384 
1385 		if (l < a) {
1386 			u32 lb = cake_heap_get_backlog(q, l);
1387 
1388 			if (lb > mb) {
1389 				m  = l;
1390 				mb = lb;
1391 			}
1392 		}
1393 
1394 		if (r < a) {
1395 			u32 rb = cake_heap_get_backlog(q, r);
1396 
1397 			if (rb > mb) {
1398 				m  = r;
1399 				mb = rb;
1400 			}
1401 		}
1402 
1403 		if (m != i) {
1404 			cake_heap_swap(q, i, m);
1405 			i = m;
1406 		} else {
1407 			break;
1408 		}
1409 	}
1410 }
1411 
1412 static void cake_heapify_up(struct cake_sched_data *q, u16 i)
1413 {
1414 	while (i > 0 && i < CAKE_MAX_TINS * CAKE_QUEUES) {
1415 		u16 p = (i - 1) >> 1;
1416 		u32 ib = cake_heap_get_backlog(q, i);
1417 		u32 pb = cake_heap_get_backlog(q, p);
1418 
1419 		if (ib > pb) {
1420 			cake_heap_swap(q, i, p);
1421 			i = p;
1422 		} else {
1423 			break;
1424 		}
1425 	}
1426 }
1427 
1428 static int cake_advance_shaper(struct cake_sched_data *q,
1429 			       struct cake_tin_data *b,
1430 			       struct sk_buff *skb,
1431 			       ktime_t now, bool drop)
1432 {
1433 	u32 len = get_cobalt_cb(skb)->adjusted_len;
1434 
1435 	/* charge packet bandwidth to this tin
1436 	 * and to the global shaper.
1437 	 */
1438 	if (q->rate_ns) {
1439 		u64 tin_dur = (len * b->tin_rate_ns) >> b->tin_rate_shft;
1440 		u64 global_dur = (len * q->rate_ns) >> q->rate_shft;
1441 		u64 failsafe_dur = global_dur + (global_dur >> 1);
1442 
1443 		if (ktime_before(b->time_next_packet, now))
1444 			b->time_next_packet = ktime_add_ns(b->time_next_packet,
1445 							   tin_dur);
1446 
1447 		else if (ktime_before(b->time_next_packet,
1448 				      ktime_add_ns(now, tin_dur)))
1449 			b->time_next_packet = ktime_add_ns(now, tin_dur);
1450 
1451 		q->time_next_packet = ktime_add_ns(q->time_next_packet,
1452 						   global_dur);
1453 		if (!drop)
1454 			q->failsafe_next_packet = \
1455 				ktime_add_ns(q->failsafe_next_packet,
1456 					     failsafe_dur);
1457 	}
1458 	return len;
1459 }
1460 
1461 static unsigned int cake_drop(struct Qdisc *sch, struct sk_buff **to_free)
1462 {
1463 	struct cake_sched_data *q = qdisc_priv(sch);
1464 	ktime_t now = ktime_get();
1465 	u32 idx = 0, tin = 0, len;
1466 	struct cake_heap_entry qq;
1467 	struct cake_tin_data *b;
1468 	struct cake_flow *flow;
1469 	struct sk_buff *skb;
1470 
1471 	if (!q->overflow_timeout) {
1472 		int i;
1473 		/* Build fresh max-heap */
1474 		for (i = CAKE_MAX_TINS * CAKE_QUEUES / 2; i >= 0; i--)
1475 			cake_heapify(q, i);
1476 	}
1477 	q->overflow_timeout = 65535;
1478 
1479 	/* select longest queue for pruning */
1480 	qq  = q->overflow_heap[0];
1481 	tin = qq.t;
1482 	idx = qq.b;
1483 
1484 	b = &q->tins[tin];
1485 	flow = &b->flows[idx];
1486 	skb = dequeue_head(flow);
1487 	if (unlikely(!skb)) {
1488 		/* heap has gone wrong, rebuild it next time */
1489 		q->overflow_timeout = 0;
1490 		return idx + (tin << 16);
1491 	}
1492 
1493 	if (cobalt_queue_full(&flow->cvars, &b->cparams, now))
1494 		b->unresponsive_flow_count++;
1495 
1496 	len = qdisc_pkt_len(skb);
1497 	q->buffer_used      -= skb->truesize;
1498 	b->backlogs[idx]    -= len;
1499 	b->tin_backlog      -= len;
1500 	sch->qstats.backlog -= len;
1501 	qdisc_tree_reduce_backlog(sch, 1, len);
1502 
1503 	flow->dropped++;
1504 	b->tin_dropped++;
1505 	sch->qstats.drops++;
1506 
1507 	if (q->rate_flags & CAKE_FLAG_INGRESS)
1508 		cake_advance_shaper(q, b, skb, now, true);
1509 
1510 	__qdisc_drop(skb, to_free);
1511 	sch->q.qlen--;
1512 
1513 	cake_heapify(q, 0);
1514 
1515 	return idx + (tin << 16);
1516 }
1517 
1518 static u8 cake_handle_diffserv(struct sk_buff *skb, u16 wash)
1519 {
1520 	u8 dscp;
1521 
1522 	switch (skb->protocol) {
1523 	case htons(ETH_P_IP):
1524 		dscp = ipv4_get_dsfield(ip_hdr(skb)) >> 2;
1525 		if (wash && dscp)
1526 			ipv4_change_dsfield(ip_hdr(skb), INET_ECN_MASK, 0);
1527 		return dscp;
1528 
1529 	case htons(ETH_P_IPV6):
1530 		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) >> 2;
1531 		if (wash && dscp)
1532 			ipv6_change_dsfield(ipv6_hdr(skb), INET_ECN_MASK, 0);
1533 		return dscp;
1534 
1535 	case htons(ETH_P_ARP):
1536 		return 0x38;  /* CS7 - Net Control */
1537 
1538 	default:
1539 		/* If there is no Diffserv field, treat as best-effort */
1540 		return 0;
1541 	}
1542 }
1543 
1544 static struct cake_tin_data *cake_select_tin(struct Qdisc *sch,
1545 					     struct sk_buff *skb)
1546 {
1547 	struct cake_sched_data *q = qdisc_priv(sch);
1548 	u32 tin, mark;
1549 	u8 dscp;
1550 
1551 	/* Tin selection: Default to diffserv-based selection, allow overriding
1552 	 * using firewall marks or skb->priority.
1553 	 */
1554 	dscp = cake_handle_diffserv(skb,
1555 				    q->rate_flags & CAKE_FLAG_WASH);
1556 	mark = (skb->mark & q->fwmark_mask) >> q->fwmark_shft;
1557 
1558 	if (q->tin_mode == CAKE_DIFFSERV_BESTEFFORT)
1559 		tin = 0;
1560 
1561 	else if (mark && mark <= q->tin_cnt)
1562 		tin = q->tin_order[mark - 1];
1563 
1564 	else if (TC_H_MAJ(skb->priority) == sch->handle &&
1565 		 TC_H_MIN(skb->priority) > 0 &&
1566 		 TC_H_MIN(skb->priority) <= q->tin_cnt)
1567 		tin = q->tin_order[TC_H_MIN(skb->priority) - 1];
1568 
1569 	else {
1570 		tin = q->tin_index[dscp];
1571 
1572 		if (unlikely(tin >= q->tin_cnt))
1573 			tin = 0;
1574 	}
1575 
1576 	return &q->tins[tin];
1577 }
1578 
1579 static u32 cake_classify(struct Qdisc *sch, struct cake_tin_data **t,
1580 			 struct sk_buff *skb, int flow_mode, int *qerr)
1581 {
1582 	struct cake_sched_data *q = qdisc_priv(sch);
1583 	struct tcf_proto *filter;
1584 	struct tcf_result res;
1585 	u16 flow = 0, host = 0;
1586 	int result;
1587 
1588 	filter = rcu_dereference_bh(q->filter_list);
1589 	if (!filter)
1590 		goto hash;
1591 
1592 	*qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
1593 	result = tcf_classify(skb, filter, &res, false);
1594 
1595 	if (result >= 0) {
1596 #ifdef CONFIG_NET_CLS_ACT
1597 		switch (result) {
1598 		case TC_ACT_STOLEN:
1599 		case TC_ACT_QUEUED:
1600 		case TC_ACT_TRAP:
1601 			*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
1602 			/* fall through */
1603 		case TC_ACT_SHOT:
1604 			return 0;
1605 		}
1606 #endif
1607 		if (TC_H_MIN(res.classid) <= CAKE_QUEUES)
1608 			flow = TC_H_MIN(res.classid);
1609 		if (TC_H_MAJ(res.classid) <= (CAKE_QUEUES << 16))
1610 			host = TC_H_MAJ(res.classid) >> 16;
1611 	}
1612 hash:
1613 	*t = cake_select_tin(sch, skb);
1614 	return cake_hash(*t, skb, flow_mode, flow, host) + 1;
1615 }
1616 
1617 static void cake_reconfigure(struct Qdisc *sch);
1618 
1619 static s32 cake_enqueue(struct sk_buff *skb, struct Qdisc *sch,
1620 			struct sk_buff **to_free)
1621 {
1622 	struct cake_sched_data *q = qdisc_priv(sch);
1623 	int len = qdisc_pkt_len(skb);
1624 	int uninitialized_var(ret);
1625 	struct sk_buff *ack = NULL;
1626 	ktime_t now = ktime_get();
1627 	struct cake_tin_data *b;
1628 	struct cake_flow *flow;
1629 	u32 idx;
1630 
1631 	/* choose flow to insert into */
1632 	idx = cake_classify(sch, &b, skb, q->flow_mode, &ret);
1633 	if (idx == 0) {
1634 		if (ret & __NET_XMIT_BYPASS)
1635 			qdisc_qstats_drop(sch);
1636 		__qdisc_drop(skb, to_free);
1637 		return ret;
1638 	}
1639 	idx--;
1640 	flow = &b->flows[idx];
1641 
1642 	/* ensure shaper state isn't stale */
1643 	if (!b->tin_backlog) {
1644 		if (ktime_before(b->time_next_packet, now))
1645 			b->time_next_packet = now;
1646 
1647 		if (!sch->q.qlen) {
1648 			if (ktime_before(q->time_next_packet, now)) {
1649 				q->failsafe_next_packet = now;
1650 				q->time_next_packet = now;
1651 			} else if (ktime_after(q->time_next_packet, now) &&
1652 				   ktime_after(q->failsafe_next_packet, now)) {
1653 				u64 next = \
1654 					min(ktime_to_ns(q->time_next_packet),
1655 					    ktime_to_ns(
1656 						   q->failsafe_next_packet));
1657 				sch->qstats.overlimits++;
1658 				qdisc_watchdog_schedule_ns(&q->watchdog, next);
1659 			}
1660 		}
1661 	}
1662 
1663 	if (unlikely(len > b->max_skblen))
1664 		b->max_skblen = len;
1665 
1666 	if (skb_is_gso(skb) && q->rate_flags & CAKE_FLAG_SPLIT_GSO) {
1667 		struct sk_buff *segs, *nskb;
1668 		netdev_features_t features = netif_skb_features(skb);
1669 		unsigned int slen = 0, numsegs = 0;
1670 
1671 		segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
1672 		if (IS_ERR_OR_NULL(segs))
1673 			return qdisc_drop(skb, sch, to_free);
1674 
1675 		while (segs) {
1676 			nskb = segs->next;
1677 			skb_mark_not_on_list(segs);
1678 			qdisc_skb_cb(segs)->pkt_len = segs->len;
1679 			cobalt_set_enqueue_time(segs, now);
1680 			get_cobalt_cb(segs)->adjusted_len = cake_overhead(q,
1681 									  segs);
1682 			flow_queue_add(flow, segs);
1683 
1684 			sch->q.qlen++;
1685 			numsegs++;
1686 			slen += segs->len;
1687 			q->buffer_used += segs->truesize;
1688 			b->packets++;
1689 			segs = nskb;
1690 		}
1691 
1692 		/* stats */
1693 		b->bytes	    += slen;
1694 		b->backlogs[idx]    += slen;
1695 		b->tin_backlog      += slen;
1696 		sch->qstats.backlog += slen;
1697 		q->avg_window_bytes += slen;
1698 
1699 		qdisc_tree_reduce_backlog(sch, 1-numsegs, len-slen);
1700 		consume_skb(skb);
1701 	} else {
1702 		/* not splitting */
1703 		cobalt_set_enqueue_time(skb, now);
1704 		get_cobalt_cb(skb)->adjusted_len = cake_overhead(q, skb);
1705 		flow_queue_add(flow, skb);
1706 
1707 		if (q->ack_filter)
1708 			ack = cake_ack_filter(q, flow);
1709 
1710 		if (ack) {
1711 			b->ack_drops++;
1712 			sch->qstats.drops++;
1713 			b->bytes += qdisc_pkt_len(ack);
1714 			len -= qdisc_pkt_len(ack);
1715 			q->buffer_used += skb->truesize - ack->truesize;
1716 			if (q->rate_flags & CAKE_FLAG_INGRESS)
1717 				cake_advance_shaper(q, b, ack, now, true);
1718 
1719 			qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(ack));
1720 			consume_skb(ack);
1721 		} else {
1722 			sch->q.qlen++;
1723 			q->buffer_used      += skb->truesize;
1724 		}
1725 
1726 		/* stats */
1727 		b->packets++;
1728 		b->bytes	    += len;
1729 		b->backlogs[idx]    += len;
1730 		b->tin_backlog      += len;
1731 		sch->qstats.backlog += len;
1732 		q->avg_window_bytes += len;
1733 	}
1734 
1735 	if (q->overflow_timeout)
1736 		cake_heapify_up(q, b->overflow_idx[idx]);
1737 
1738 	/* incoming bandwidth capacity estimate */
1739 	if (q->rate_flags & CAKE_FLAG_AUTORATE_INGRESS) {
1740 		u64 packet_interval = \
1741 			ktime_to_ns(ktime_sub(now, q->last_packet_time));
1742 
1743 		if (packet_interval > NSEC_PER_SEC)
1744 			packet_interval = NSEC_PER_SEC;
1745 
1746 		/* filter out short-term bursts, eg. wifi aggregation */
1747 		q->avg_packet_interval = \
1748 			cake_ewma(q->avg_packet_interval,
1749 				  packet_interval,
1750 				  (packet_interval > q->avg_packet_interval ?
1751 					  2 : 8));
1752 
1753 		q->last_packet_time = now;
1754 
1755 		if (packet_interval > q->avg_packet_interval) {
1756 			u64 window_interval = \
1757 				ktime_to_ns(ktime_sub(now,
1758 						      q->avg_window_begin));
1759 			u64 b = q->avg_window_bytes * (u64)NSEC_PER_SEC;
1760 
1761 			do_div(b, window_interval);
1762 			q->avg_peak_bandwidth =
1763 				cake_ewma(q->avg_peak_bandwidth, b,
1764 					  b > q->avg_peak_bandwidth ? 2 : 8);
1765 			q->avg_window_bytes = 0;
1766 			q->avg_window_begin = now;
1767 
1768 			if (ktime_after(now,
1769 					ktime_add_ms(q->last_reconfig_time,
1770 						     250))) {
1771 				q->rate_bps = (q->avg_peak_bandwidth * 15) >> 4;
1772 				cake_reconfigure(sch);
1773 			}
1774 		}
1775 	} else {
1776 		q->avg_window_bytes = 0;
1777 		q->last_packet_time = now;
1778 	}
1779 
1780 	/* flowchain */
1781 	if (!flow->set || flow->set == CAKE_SET_DECAYING) {
1782 		struct cake_host *srchost = &b->hosts[flow->srchost];
1783 		struct cake_host *dsthost = &b->hosts[flow->dsthost];
1784 		u16 host_load = 1;
1785 
1786 		if (!flow->set) {
1787 			list_add_tail(&flow->flowchain, &b->new_flows);
1788 		} else {
1789 			b->decaying_flow_count--;
1790 			list_move_tail(&flow->flowchain, &b->new_flows);
1791 		}
1792 		flow->set = CAKE_SET_SPARSE;
1793 		b->sparse_flow_count++;
1794 
1795 		if (cake_dsrc(q->flow_mode))
1796 			host_load = max(host_load, srchost->srchost_bulk_flow_count);
1797 
1798 		if (cake_ddst(q->flow_mode))
1799 			host_load = max(host_load, dsthost->dsthost_bulk_flow_count);
1800 
1801 		flow->deficit = (b->flow_quantum *
1802 				 quantum_div[host_load]) >> 16;
1803 	} else if (flow->set == CAKE_SET_SPARSE_WAIT) {
1804 		struct cake_host *srchost = &b->hosts[flow->srchost];
1805 		struct cake_host *dsthost = &b->hosts[flow->dsthost];
1806 
1807 		/* this flow was empty, accounted as a sparse flow, but actually
1808 		 * in the bulk rotation.
1809 		 */
1810 		flow->set = CAKE_SET_BULK;
1811 		b->sparse_flow_count--;
1812 		b->bulk_flow_count++;
1813 
1814 		if (cake_dsrc(q->flow_mode))
1815 			srchost->srchost_bulk_flow_count++;
1816 
1817 		if (cake_ddst(q->flow_mode))
1818 			dsthost->dsthost_bulk_flow_count++;
1819 
1820 	}
1821 
1822 	if (q->buffer_used > q->buffer_max_used)
1823 		q->buffer_max_used = q->buffer_used;
1824 
1825 	if (q->buffer_used > q->buffer_limit) {
1826 		u32 dropped = 0;
1827 
1828 		while (q->buffer_used > q->buffer_limit) {
1829 			dropped++;
1830 			cake_drop(sch, to_free);
1831 		}
1832 		b->drop_overlimit += dropped;
1833 	}
1834 	return NET_XMIT_SUCCESS;
1835 }
1836 
1837 static struct sk_buff *cake_dequeue_one(struct Qdisc *sch)
1838 {
1839 	struct cake_sched_data *q = qdisc_priv(sch);
1840 	struct cake_tin_data *b = &q->tins[q->cur_tin];
1841 	struct cake_flow *flow = &b->flows[q->cur_flow];
1842 	struct sk_buff *skb = NULL;
1843 	u32 len;
1844 
1845 	if (flow->head) {
1846 		skb = dequeue_head(flow);
1847 		len = qdisc_pkt_len(skb);
1848 		b->backlogs[q->cur_flow] -= len;
1849 		b->tin_backlog		 -= len;
1850 		sch->qstats.backlog      -= len;
1851 		q->buffer_used		 -= skb->truesize;
1852 		sch->q.qlen--;
1853 
1854 		if (q->overflow_timeout)
1855 			cake_heapify(q, b->overflow_idx[q->cur_flow]);
1856 	}
1857 	return skb;
1858 }
1859 
1860 /* Discard leftover packets from a tin no longer in use. */
1861 static void cake_clear_tin(struct Qdisc *sch, u16 tin)
1862 {
1863 	struct cake_sched_data *q = qdisc_priv(sch);
1864 	struct sk_buff *skb;
1865 
1866 	q->cur_tin = tin;
1867 	for (q->cur_flow = 0; q->cur_flow < CAKE_QUEUES; q->cur_flow++)
1868 		while (!!(skb = cake_dequeue_one(sch)))
1869 			kfree_skb(skb);
1870 }
1871 
1872 static struct sk_buff *cake_dequeue(struct Qdisc *sch)
1873 {
1874 	struct cake_sched_data *q = qdisc_priv(sch);
1875 	struct cake_tin_data *b = &q->tins[q->cur_tin];
1876 	struct cake_host *srchost, *dsthost;
1877 	ktime_t now = ktime_get();
1878 	struct cake_flow *flow;
1879 	struct list_head *head;
1880 	bool first_flow = true;
1881 	struct sk_buff *skb;
1882 	u16 host_load;
1883 	u64 delay;
1884 	u32 len;
1885 
1886 begin:
1887 	if (!sch->q.qlen)
1888 		return NULL;
1889 
1890 	/* global hard shaper */
1891 	if (ktime_after(q->time_next_packet, now) &&
1892 	    ktime_after(q->failsafe_next_packet, now)) {
1893 		u64 next = min(ktime_to_ns(q->time_next_packet),
1894 			       ktime_to_ns(q->failsafe_next_packet));
1895 
1896 		sch->qstats.overlimits++;
1897 		qdisc_watchdog_schedule_ns(&q->watchdog, next);
1898 		return NULL;
1899 	}
1900 
1901 	/* Choose a class to work on. */
1902 	if (!q->rate_ns) {
1903 		/* In unlimited mode, can't rely on shaper timings, just balance
1904 		 * with DRR
1905 		 */
1906 		bool wrapped = false, empty = true;
1907 
1908 		while (b->tin_deficit < 0 ||
1909 		       !(b->sparse_flow_count + b->bulk_flow_count)) {
1910 			if (b->tin_deficit <= 0)
1911 				b->tin_deficit += b->tin_quantum_band;
1912 			if (b->sparse_flow_count + b->bulk_flow_count)
1913 				empty = false;
1914 
1915 			q->cur_tin++;
1916 			b++;
1917 			if (q->cur_tin >= q->tin_cnt) {
1918 				q->cur_tin = 0;
1919 				b = q->tins;
1920 
1921 				if (wrapped) {
1922 					/* It's possible for q->qlen to be
1923 					 * nonzero when we actually have no
1924 					 * packets anywhere.
1925 					 */
1926 					if (empty)
1927 						return NULL;
1928 				} else {
1929 					wrapped = true;
1930 				}
1931 			}
1932 		}
1933 	} else {
1934 		/* In shaped mode, choose:
1935 		 * - Highest-priority tin with queue and meeting schedule, or
1936 		 * - The earliest-scheduled tin with queue.
1937 		 */
1938 		ktime_t best_time = KTIME_MAX;
1939 		int tin, best_tin = 0;
1940 
1941 		for (tin = 0; tin < q->tin_cnt; tin++) {
1942 			b = q->tins + tin;
1943 			if ((b->sparse_flow_count + b->bulk_flow_count) > 0) {
1944 				ktime_t time_to_pkt = \
1945 					ktime_sub(b->time_next_packet, now);
1946 
1947 				if (ktime_to_ns(time_to_pkt) <= 0 ||
1948 				    ktime_compare(time_to_pkt,
1949 						  best_time) <= 0) {
1950 					best_time = time_to_pkt;
1951 					best_tin = tin;
1952 				}
1953 			}
1954 		}
1955 
1956 		q->cur_tin = best_tin;
1957 		b = q->tins + best_tin;
1958 
1959 		/* No point in going further if no packets to deliver. */
1960 		if (unlikely(!(b->sparse_flow_count + b->bulk_flow_count)))
1961 			return NULL;
1962 	}
1963 
1964 retry:
1965 	/* service this class */
1966 	head = &b->decaying_flows;
1967 	if (!first_flow || list_empty(head)) {
1968 		head = &b->new_flows;
1969 		if (list_empty(head)) {
1970 			head = &b->old_flows;
1971 			if (unlikely(list_empty(head))) {
1972 				head = &b->decaying_flows;
1973 				if (unlikely(list_empty(head)))
1974 					goto begin;
1975 			}
1976 		}
1977 	}
1978 	flow = list_first_entry(head, struct cake_flow, flowchain);
1979 	q->cur_flow = flow - b->flows;
1980 	first_flow = false;
1981 
1982 	/* triple isolation (modified DRR++) */
1983 	srchost = &b->hosts[flow->srchost];
1984 	dsthost = &b->hosts[flow->dsthost];
1985 	host_load = 1;
1986 
1987 	/* flow isolation (DRR++) */
1988 	if (flow->deficit <= 0) {
1989 		/* Keep all flows with deficits out of the sparse and decaying
1990 		 * rotations.  No non-empty flow can go into the decaying
1991 		 * rotation, so they can't get deficits
1992 		 */
1993 		if (flow->set == CAKE_SET_SPARSE) {
1994 			if (flow->head) {
1995 				b->sparse_flow_count--;
1996 				b->bulk_flow_count++;
1997 
1998 				if (cake_dsrc(q->flow_mode))
1999 					srchost->srchost_bulk_flow_count++;
2000 
2001 				if (cake_ddst(q->flow_mode))
2002 					dsthost->dsthost_bulk_flow_count++;
2003 
2004 				flow->set = CAKE_SET_BULK;
2005 			} else {
2006 				/* we've moved it to the bulk rotation for
2007 				 * correct deficit accounting but we still want
2008 				 * to count it as a sparse flow, not a bulk one.
2009 				 */
2010 				flow->set = CAKE_SET_SPARSE_WAIT;
2011 			}
2012 		}
2013 
2014 		if (cake_dsrc(q->flow_mode))
2015 			host_load = max(host_load, srchost->srchost_bulk_flow_count);
2016 
2017 		if (cake_ddst(q->flow_mode))
2018 			host_load = max(host_load, dsthost->dsthost_bulk_flow_count);
2019 
2020 		WARN_ON(host_load > CAKE_QUEUES);
2021 
2022 		/* The shifted prandom_u32() is a way to apply dithering to
2023 		 * avoid accumulating roundoff errors
2024 		 */
2025 		flow->deficit += (b->flow_quantum * quantum_div[host_load] +
2026 				  (prandom_u32() >> 16)) >> 16;
2027 		list_move_tail(&flow->flowchain, &b->old_flows);
2028 
2029 		goto retry;
2030 	}
2031 
2032 	/* Retrieve a packet via the AQM */
2033 	while (1) {
2034 		skb = cake_dequeue_one(sch);
2035 		if (!skb) {
2036 			/* this queue was actually empty */
2037 			if (cobalt_queue_empty(&flow->cvars, &b->cparams, now))
2038 				b->unresponsive_flow_count--;
2039 
2040 			if (flow->cvars.p_drop || flow->cvars.count ||
2041 			    ktime_before(now, flow->cvars.drop_next)) {
2042 				/* keep in the flowchain until the state has
2043 				 * decayed to rest
2044 				 */
2045 				list_move_tail(&flow->flowchain,
2046 					       &b->decaying_flows);
2047 				if (flow->set == CAKE_SET_BULK) {
2048 					b->bulk_flow_count--;
2049 
2050 					if (cake_dsrc(q->flow_mode))
2051 						srchost->srchost_bulk_flow_count--;
2052 
2053 					if (cake_ddst(q->flow_mode))
2054 						dsthost->dsthost_bulk_flow_count--;
2055 
2056 					b->decaying_flow_count++;
2057 				} else if (flow->set == CAKE_SET_SPARSE ||
2058 					   flow->set == CAKE_SET_SPARSE_WAIT) {
2059 					b->sparse_flow_count--;
2060 					b->decaying_flow_count++;
2061 				}
2062 				flow->set = CAKE_SET_DECAYING;
2063 			} else {
2064 				/* remove empty queue from the flowchain */
2065 				list_del_init(&flow->flowchain);
2066 				if (flow->set == CAKE_SET_SPARSE ||
2067 				    flow->set == CAKE_SET_SPARSE_WAIT)
2068 					b->sparse_flow_count--;
2069 				else if (flow->set == CAKE_SET_BULK) {
2070 					b->bulk_flow_count--;
2071 
2072 					if (cake_dsrc(q->flow_mode))
2073 						srchost->srchost_bulk_flow_count--;
2074 
2075 					if (cake_ddst(q->flow_mode))
2076 						dsthost->dsthost_bulk_flow_count--;
2077 
2078 				} else
2079 					b->decaying_flow_count--;
2080 
2081 				flow->set = CAKE_SET_NONE;
2082 			}
2083 			goto begin;
2084 		}
2085 
2086 		/* Last packet in queue may be marked, shouldn't be dropped */
2087 		if (!cobalt_should_drop(&flow->cvars, &b->cparams, now, skb,
2088 					(b->bulk_flow_count *
2089 					 !!(q->rate_flags &
2090 					    CAKE_FLAG_INGRESS))) ||
2091 		    !flow->head)
2092 			break;
2093 
2094 		/* drop this packet, get another one */
2095 		if (q->rate_flags & CAKE_FLAG_INGRESS) {
2096 			len = cake_advance_shaper(q, b, skb,
2097 						  now, true);
2098 			flow->deficit -= len;
2099 			b->tin_deficit -= len;
2100 		}
2101 		flow->dropped++;
2102 		b->tin_dropped++;
2103 		qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(skb));
2104 		qdisc_qstats_drop(sch);
2105 		kfree_skb(skb);
2106 		if (q->rate_flags & CAKE_FLAG_INGRESS)
2107 			goto retry;
2108 	}
2109 
2110 	b->tin_ecn_mark += !!flow->cvars.ecn_marked;
2111 	qdisc_bstats_update(sch, skb);
2112 
2113 	/* collect delay stats */
2114 	delay = ktime_to_ns(ktime_sub(now, cobalt_get_enqueue_time(skb)));
2115 	b->avge_delay = cake_ewma(b->avge_delay, delay, 8);
2116 	b->peak_delay = cake_ewma(b->peak_delay, delay,
2117 				  delay > b->peak_delay ? 2 : 8);
2118 	b->base_delay = cake_ewma(b->base_delay, delay,
2119 				  delay < b->base_delay ? 2 : 8);
2120 
2121 	len = cake_advance_shaper(q, b, skb, now, false);
2122 	flow->deficit -= len;
2123 	b->tin_deficit -= len;
2124 
2125 	if (ktime_after(q->time_next_packet, now) && sch->q.qlen) {
2126 		u64 next = min(ktime_to_ns(q->time_next_packet),
2127 			       ktime_to_ns(q->failsafe_next_packet));
2128 
2129 		qdisc_watchdog_schedule_ns(&q->watchdog, next);
2130 	} else if (!sch->q.qlen) {
2131 		int i;
2132 
2133 		for (i = 0; i < q->tin_cnt; i++) {
2134 			if (q->tins[i].decaying_flow_count) {
2135 				ktime_t next = \
2136 					ktime_add_ns(now,
2137 						     q->tins[i].cparams.target);
2138 
2139 				qdisc_watchdog_schedule_ns(&q->watchdog,
2140 							   ktime_to_ns(next));
2141 				break;
2142 			}
2143 		}
2144 	}
2145 
2146 	if (q->overflow_timeout)
2147 		q->overflow_timeout--;
2148 
2149 	return skb;
2150 }
2151 
2152 static void cake_reset(struct Qdisc *sch)
2153 {
2154 	u32 c;
2155 
2156 	for (c = 0; c < CAKE_MAX_TINS; c++)
2157 		cake_clear_tin(sch, c);
2158 }
2159 
2160 static const struct nla_policy cake_policy[TCA_CAKE_MAX + 1] = {
2161 	[TCA_CAKE_BASE_RATE64]   = { .type = NLA_U64 },
2162 	[TCA_CAKE_DIFFSERV_MODE] = { .type = NLA_U32 },
2163 	[TCA_CAKE_ATM]		 = { .type = NLA_U32 },
2164 	[TCA_CAKE_FLOW_MODE]     = { .type = NLA_U32 },
2165 	[TCA_CAKE_OVERHEAD]      = { .type = NLA_S32 },
2166 	[TCA_CAKE_RTT]		 = { .type = NLA_U32 },
2167 	[TCA_CAKE_TARGET]	 = { .type = NLA_U32 },
2168 	[TCA_CAKE_AUTORATE]      = { .type = NLA_U32 },
2169 	[TCA_CAKE_MEMORY]	 = { .type = NLA_U32 },
2170 	[TCA_CAKE_NAT]		 = { .type = NLA_U32 },
2171 	[TCA_CAKE_RAW]		 = { .type = NLA_U32 },
2172 	[TCA_CAKE_WASH]		 = { .type = NLA_U32 },
2173 	[TCA_CAKE_MPU]		 = { .type = NLA_U32 },
2174 	[TCA_CAKE_INGRESS]	 = { .type = NLA_U32 },
2175 	[TCA_CAKE_ACK_FILTER]	 = { .type = NLA_U32 },
2176 	[TCA_CAKE_FWMARK]	 = { .type = NLA_U32 },
2177 };
2178 
2179 static void cake_set_rate(struct cake_tin_data *b, u64 rate, u32 mtu,
2180 			  u64 target_ns, u64 rtt_est_ns)
2181 {
2182 	/* convert byte-rate into time-per-byte
2183 	 * so it will always unwedge in reasonable time.
2184 	 */
2185 	static const u64 MIN_RATE = 64;
2186 	u32 byte_target = mtu;
2187 	u64 byte_target_ns;
2188 	u8  rate_shft = 0;
2189 	u64 rate_ns = 0;
2190 
2191 	b->flow_quantum = 1514;
2192 	if (rate) {
2193 		b->flow_quantum = max(min(rate >> 12, 1514ULL), 300ULL);
2194 		rate_shft = 34;
2195 		rate_ns = ((u64)NSEC_PER_SEC) << rate_shft;
2196 		rate_ns = div64_u64(rate_ns, max(MIN_RATE, rate));
2197 		while (!!(rate_ns >> 34)) {
2198 			rate_ns >>= 1;
2199 			rate_shft--;
2200 		}
2201 	} /* else unlimited, ie. zero delay */
2202 
2203 	b->tin_rate_bps  = rate;
2204 	b->tin_rate_ns   = rate_ns;
2205 	b->tin_rate_shft = rate_shft;
2206 
2207 	byte_target_ns = (byte_target * rate_ns) >> rate_shft;
2208 
2209 	b->cparams.target = max((byte_target_ns * 3) / 2, target_ns);
2210 	b->cparams.interval = max(rtt_est_ns +
2211 				     b->cparams.target - target_ns,
2212 				     b->cparams.target * 2);
2213 	b->cparams.mtu_time = byte_target_ns;
2214 	b->cparams.p_inc = 1 << 24; /* 1/256 */
2215 	b->cparams.p_dec = 1 << 20; /* 1/4096 */
2216 }
2217 
2218 static int cake_config_besteffort(struct Qdisc *sch)
2219 {
2220 	struct cake_sched_data *q = qdisc_priv(sch);
2221 	struct cake_tin_data *b = &q->tins[0];
2222 	u32 mtu = psched_mtu(qdisc_dev(sch));
2223 	u64 rate = q->rate_bps;
2224 
2225 	q->tin_cnt = 1;
2226 
2227 	q->tin_index = besteffort;
2228 	q->tin_order = normal_order;
2229 
2230 	cake_set_rate(b, rate, mtu,
2231 		      us_to_ns(q->target), us_to_ns(q->interval));
2232 	b->tin_quantum_band = 65535;
2233 	b->tin_quantum_prio = 65535;
2234 
2235 	return 0;
2236 }
2237 
2238 static int cake_config_precedence(struct Qdisc *sch)
2239 {
2240 	/* convert high-level (user visible) parameters into internal format */
2241 	struct cake_sched_data *q = qdisc_priv(sch);
2242 	u32 mtu = psched_mtu(qdisc_dev(sch));
2243 	u64 rate = q->rate_bps;
2244 	u32 quantum1 = 256;
2245 	u32 quantum2 = 256;
2246 	u32 i;
2247 
2248 	q->tin_cnt = 8;
2249 	q->tin_index = precedence;
2250 	q->tin_order = normal_order;
2251 
2252 	for (i = 0; i < q->tin_cnt; i++) {
2253 		struct cake_tin_data *b = &q->tins[i];
2254 
2255 		cake_set_rate(b, rate, mtu, us_to_ns(q->target),
2256 			      us_to_ns(q->interval));
2257 
2258 		b->tin_quantum_prio = max_t(u16, 1U, quantum1);
2259 		b->tin_quantum_band = max_t(u16, 1U, quantum2);
2260 
2261 		/* calculate next class's parameters */
2262 		rate  *= 7;
2263 		rate >>= 3;
2264 
2265 		quantum1  *= 3;
2266 		quantum1 >>= 1;
2267 
2268 		quantum2  *= 7;
2269 		quantum2 >>= 3;
2270 	}
2271 
2272 	return 0;
2273 }
2274 
2275 /*	List of known Diffserv codepoints:
2276  *
2277  *	Least Effort (CS1)
2278  *	Best Effort (CS0)
2279  *	Max Reliability & LLT "Lo" (TOS1)
2280  *	Max Throughput (TOS2)
2281  *	Min Delay (TOS4)
2282  *	LLT "La" (TOS5)
2283  *	Assured Forwarding 1 (AF1x) - x3
2284  *	Assured Forwarding 2 (AF2x) - x3
2285  *	Assured Forwarding 3 (AF3x) - x3
2286  *	Assured Forwarding 4 (AF4x) - x3
2287  *	Precedence Class 2 (CS2)
2288  *	Precedence Class 3 (CS3)
2289  *	Precedence Class 4 (CS4)
2290  *	Precedence Class 5 (CS5)
2291  *	Precedence Class 6 (CS6)
2292  *	Precedence Class 7 (CS7)
2293  *	Voice Admit (VA)
2294  *	Expedited Forwarding (EF)
2295 
2296  *	Total 25 codepoints.
2297  */
2298 
2299 /*	List of traffic classes in RFC 4594:
2300  *		(roughly descending order of contended priority)
2301  *		(roughly ascending order of uncontended throughput)
2302  *
2303  *	Network Control (CS6,CS7)      - routing traffic
2304  *	Telephony (EF,VA)         - aka. VoIP streams
2305  *	Signalling (CS5)               - VoIP setup
2306  *	Multimedia Conferencing (AF4x) - aka. video calls
2307  *	Realtime Interactive (CS4)     - eg. games
2308  *	Multimedia Streaming (AF3x)    - eg. YouTube, NetFlix, Twitch
2309  *	Broadcast Video (CS3)
2310  *	Low Latency Data (AF2x,TOS4)      - eg. database
2311  *	Ops, Admin, Management (CS2,TOS1) - eg. ssh
2312  *	Standard Service (CS0 & unrecognised codepoints)
2313  *	High Throughput Data (AF1x,TOS2)  - eg. web traffic
2314  *	Low Priority Data (CS1)           - eg. BitTorrent
2315 
2316  *	Total 12 traffic classes.
2317  */
2318 
2319 static int cake_config_diffserv8(struct Qdisc *sch)
2320 {
2321 /*	Pruned list of traffic classes for typical applications:
2322  *
2323  *		Network Control          (CS6, CS7)
2324  *		Minimum Latency          (EF, VA, CS5, CS4)
2325  *		Interactive Shell        (CS2, TOS1)
2326  *		Low Latency Transactions (AF2x, TOS4)
2327  *		Video Streaming          (AF4x, AF3x, CS3)
2328  *		Bog Standard             (CS0 etc.)
2329  *		High Throughput          (AF1x, TOS2)
2330  *		Background Traffic       (CS1)
2331  *
2332  *		Total 8 traffic classes.
2333  */
2334 
2335 	struct cake_sched_data *q = qdisc_priv(sch);
2336 	u32 mtu = psched_mtu(qdisc_dev(sch));
2337 	u64 rate = q->rate_bps;
2338 	u32 quantum1 = 256;
2339 	u32 quantum2 = 256;
2340 	u32 i;
2341 
2342 	q->tin_cnt = 8;
2343 
2344 	/* codepoint to class mapping */
2345 	q->tin_index = diffserv8;
2346 	q->tin_order = normal_order;
2347 
2348 	/* class characteristics */
2349 	for (i = 0; i < q->tin_cnt; i++) {
2350 		struct cake_tin_data *b = &q->tins[i];
2351 
2352 		cake_set_rate(b, rate, mtu, us_to_ns(q->target),
2353 			      us_to_ns(q->interval));
2354 
2355 		b->tin_quantum_prio = max_t(u16, 1U, quantum1);
2356 		b->tin_quantum_band = max_t(u16, 1U, quantum2);
2357 
2358 		/* calculate next class's parameters */
2359 		rate  *= 7;
2360 		rate >>= 3;
2361 
2362 		quantum1  *= 3;
2363 		quantum1 >>= 1;
2364 
2365 		quantum2  *= 7;
2366 		quantum2 >>= 3;
2367 	}
2368 
2369 	return 0;
2370 }
2371 
2372 static int cake_config_diffserv4(struct Qdisc *sch)
2373 {
2374 /*  Further pruned list of traffic classes for four-class system:
2375  *
2376  *	    Latency Sensitive  (CS7, CS6, EF, VA, CS5, CS4)
2377  *	    Streaming Media    (AF4x, AF3x, CS3, AF2x, TOS4, CS2, TOS1)
2378  *	    Best Effort        (CS0, AF1x, TOS2, and those not specified)
2379  *	    Background Traffic (CS1)
2380  *
2381  *		Total 4 traffic classes.
2382  */
2383 
2384 	struct cake_sched_data *q = qdisc_priv(sch);
2385 	u32 mtu = psched_mtu(qdisc_dev(sch));
2386 	u64 rate = q->rate_bps;
2387 	u32 quantum = 1024;
2388 
2389 	q->tin_cnt = 4;
2390 
2391 	/* codepoint to class mapping */
2392 	q->tin_index = diffserv4;
2393 	q->tin_order = bulk_order;
2394 
2395 	/* class characteristics */
2396 	cake_set_rate(&q->tins[0], rate, mtu,
2397 		      us_to_ns(q->target), us_to_ns(q->interval));
2398 	cake_set_rate(&q->tins[1], rate >> 4, mtu,
2399 		      us_to_ns(q->target), us_to_ns(q->interval));
2400 	cake_set_rate(&q->tins[2], rate >> 1, mtu,
2401 		      us_to_ns(q->target), us_to_ns(q->interval));
2402 	cake_set_rate(&q->tins[3], rate >> 2, mtu,
2403 		      us_to_ns(q->target), us_to_ns(q->interval));
2404 
2405 	/* priority weights */
2406 	q->tins[0].tin_quantum_prio = quantum;
2407 	q->tins[1].tin_quantum_prio = quantum >> 4;
2408 	q->tins[2].tin_quantum_prio = quantum << 2;
2409 	q->tins[3].tin_quantum_prio = quantum << 4;
2410 
2411 	/* bandwidth-sharing weights */
2412 	q->tins[0].tin_quantum_band = quantum;
2413 	q->tins[1].tin_quantum_band = quantum >> 4;
2414 	q->tins[2].tin_quantum_band = quantum >> 1;
2415 	q->tins[3].tin_quantum_band = quantum >> 2;
2416 
2417 	return 0;
2418 }
2419 
2420 static int cake_config_diffserv3(struct Qdisc *sch)
2421 {
2422 /*  Simplified Diffserv structure with 3 tins.
2423  *		Low Priority		(CS1)
2424  *		Best Effort
2425  *		Latency Sensitive	(TOS4, VA, EF, CS6, CS7)
2426  */
2427 	struct cake_sched_data *q = qdisc_priv(sch);
2428 	u32 mtu = psched_mtu(qdisc_dev(sch));
2429 	u64 rate = q->rate_bps;
2430 	u32 quantum = 1024;
2431 
2432 	q->tin_cnt = 3;
2433 
2434 	/* codepoint to class mapping */
2435 	q->tin_index = diffserv3;
2436 	q->tin_order = bulk_order;
2437 
2438 	/* class characteristics */
2439 	cake_set_rate(&q->tins[0], rate, mtu,
2440 		      us_to_ns(q->target), us_to_ns(q->interval));
2441 	cake_set_rate(&q->tins[1], rate >> 4, mtu,
2442 		      us_to_ns(q->target), us_to_ns(q->interval));
2443 	cake_set_rate(&q->tins[2], rate >> 2, mtu,
2444 		      us_to_ns(q->target), us_to_ns(q->interval));
2445 
2446 	/* priority weights */
2447 	q->tins[0].tin_quantum_prio = quantum;
2448 	q->tins[1].tin_quantum_prio = quantum >> 4;
2449 	q->tins[2].tin_quantum_prio = quantum << 4;
2450 
2451 	/* bandwidth-sharing weights */
2452 	q->tins[0].tin_quantum_band = quantum;
2453 	q->tins[1].tin_quantum_band = quantum >> 4;
2454 	q->tins[2].tin_quantum_band = quantum >> 2;
2455 
2456 	return 0;
2457 }
2458 
2459 static void cake_reconfigure(struct Qdisc *sch)
2460 {
2461 	struct cake_sched_data *q = qdisc_priv(sch);
2462 	int c, ft;
2463 
2464 	switch (q->tin_mode) {
2465 	case CAKE_DIFFSERV_BESTEFFORT:
2466 		ft = cake_config_besteffort(sch);
2467 		break;
2468 
2469 	case CAKE_DIFFSERV_PRECEDENCE:
2470 		ft = cake_config_precedence(sch);
2471 		break;
2472 
2473 	case CAKE_DIFFSERV_DIFFSERV8:
2474 		ft = cake_config_diffserv8(sch);
2475 		break;
2476 
2477 	case CAKE_DIFFSERV_DIFFSERV4:
2478 		ft = cake_config_diffserv4(sch);
2479 		break;
2480 
2481 	case CAKE_DIFFSERV_DIFFSERV3:
2482 	default:
2483 		ft = cake_config_diffserv3(sch);
2484 		break;
2485 	}
2486 
2487 	for (c = q->tin_cnt; c < CAKE_MAX_TINS; c++) {
2488 		cake_clear_tin(sch, c);
2489 		q->tins[c].cparams.mtu_time = q->tins[ft].cparams.mtu_time;
2490 	}
2491 
2492 	q->rate_ns   = q->tins[ft].tin_rate_ns;
2493 	q->rate_shft = q->tins[ft].tin_rate_shft;
2494 
2495 	if (q->buffer_config_limit) {
2496 		q->buffer_limit = q->buffer_config_limit;
2497 	} else if (q->rate_bps) {
2498 		u64 t = q->rate_bps * q->interval;
2499 
2500 		do_div(t, USEC_PER_SEC / 4);
2501 		q->buffer_limit = max_t(u32, t, 4U << 20);
2502 	} else {
2503 		q->buffer_limit = ~0;
2504 	}
2505 
2506 	sch->flags &= ~TCQ_F_CAN_BYPASS;
2507 
2508 	q->buffer_limit = min(q->buffer_limit,
2509 			      max(sch->limit * psched_mtu(qdisc_dev(sch)),
2510 				  q->buffer_config_limit));
2511 }
2512 
2513 static int cake_change(struct Qdisc *sch, struct nlattr *opt,
2514 		       struct netlink_ext_ack *extack)
2515 {
2516 	struct cake_sched_data *q = qdisc_priv(sch);
2517 	struct nlattr *tb[TCA_CAKE_MAX + 1];
2518 	int err;
2519 
2520 	if (!opt)
2521 		return -EINVAL;
2522 
2523 	err = nla_parse_nested(tb, TCA_CAKE_MAX, opt, cake_policy, extack);
2524 	if (err < 0)
2525 		return err;
2526 
2527 	if (tb[TCA_CAKE_NAT]) {
2528 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
2529 		q->flow_mode &= ~CAKE_FLOW_NAT_FLAG;
2530 		q->flow_mode |= CAKE_FLOW_NAT_FLAG *
2531 			!!nla_get_u32(tb[TCA_CAKE_NAT]);
2532 #else
2533 		NL_SET_ERR_MSG_ATTR(extack, tb[TCA_CAKE_NAT],
2534 				    "No conntrack support in kernel");
2535 		return -EOPNOTSUPP;
2536 #endif
2537 	}
2538 
2539 	if (tb[TCA_CAKE_BASE_RATE64])
2540 		q->rate_bps = nla_get_u64(tb[TCA_CAKE_BASE_RATE64]);
2541 
2542 	if (tb[TCA_CAKE_DIFFSERV_MODE])
2543 		q->tin_mode = nla_get_u32(tb[TCA_CAKE_DIFFSERV_MODE]);
2544 
2545 	if (tb[TCA_CAKE_WASH]) {
2546 		if (!!nla_get_u32(tb[TCA_CAKE_WASH]))
2547 			q->rate_flags |= CAKE_FLAG_WASH;
2548 		else
2549 			q->rate_flags &= ~CAKE_FLAG_WASH;
2550 	}
2551 
2552 	if (tb[TCA_CAKE_FLOW_MODE])
2553 		q->flow_mode = ((q->flow_mode & CAKE_FLOW_NAT_FLAG) |
2554 				(nla_get_u32(tb[TCA_CAKE_FLOW_MODE]) &
2555 					CAKE_FLOW_MASK));
2556 
2557 	if (tb[TCA_CAKE_ATM])
2558 		q->atm_mode = nla_get_u32(tb[TCA_CAKE_ATM]);
2559 
2560 	if (tb[TCA_CAKE_OVERHEAD]) {
2561 		q->rate_overhead = nla_get_s32(tb[TCA_CAKE_OVERHEAD]);
2562 		q->rate_flags |= CAKE_FLAG_OVERHEAD;
2563 
2564 		q->max_netlen = 0;
2565 		q->max_adjlen = 0;
2566 		q->min_netlen = ~0;
2567 		q->min_adjlen = ~0;
2568 	}
2569 
2570 	if (tb[TCA_CAKE_RAW]) {
2571 		q->rate_flags &= ~CAKE_FLAG_OVERHEAD;
2572 
2573 		q->max_netlen = 0;
2574 		q->max_adjlen = 0;
2575 		q->min_netlen = ~0;
2576 		q->min_adjlen = ~0;
2577 	}
2578 
2579 	if (tb[TCA_CAKE_MPU])
2580 		q->rate_mpu = nla_get_u32(tb[TCA_CAKE_MPU]);
2581 
2582 	if (tb[TCA_CAKE_RTT]) {
2583 		q->interval = nla_get_u32(tb[TCA_CAKE_RTT]);
2584 
2585 		if (!q->interval)
2586 			q->interval = 1;
2587 	}
2588 
2589 	if (tb[TCA_CAKE_TARGET]) {
2590 		q->target = nla_get_u32(tb[TCA_CAKE_TARGET]);
2591 
2592 		if (!q->target)
2593 			q->target = 1;
2594 	}
2595 
2596 	if (tb[TCA_CAKE_AUTORATE]) {
2597 		if (!!nla_get_u32(tb[TCA_CAKE_AUTORATE]))
2598 			q->rate_flags |= CAKE_FLAG_AUTORATE_INGRESS;
2599 		else
2600 			q->rate_flags &= ~CAKE_FLAG_AUTORATE_INGRESS;
2601 	}
2602 
2603 	if (tb[TCA_CAKE_INGRESS]) {
2604 		if (!!nla_get_u32(tb[TCA_CAKE_INGRESS]))
2605 			q->rate_flags |= CAKE_FLAG_INGRESS;
2606 		else
2607 			q->rate_flags &= ~CAKE_FLAG_INGRESS;
2608 	}
2609 
2610 	if (tb[TCA_CAKE_ACK_FILTER])
2611 		q->ack_filter = nla_get_u32(tb[TCA_CAKE_ACK_FILTER]);
2612 
2613 	if (tb[TCA_CAKE_MEMORY])
2614 		q->buffer_config_limit = nla_get_u32(tb[TCA_CAKE_MEMORY]);
2615 
2616 	if (tb[TCA_CAKE_SPLIT_GSO]) {
2617 		if (!!nla_get_u32(tb[TCA_CAKE_SPLIT_GSO]))
2618 			q->rate_flags |= CAKE_FLAG_SPLIT_GSO;
2619 		else
2620 			q->rate_flags &= ~CAKE_FLAG_SPLIT_GSO;
2621 	}
2622 
2623 	if (tb[TCA_CAKE_FWMARK]) {
2624 		q->fwmark_mask = nla_get_u32(tb[TCA_CAKE_FWMARK]);
2625 		q->fwmark_shft = q->fwmark_mask ? __ffs(q->fwmark_mask) : 0;
2626 	}
2627 
2628 	if (q->tins) {
2629 		sch_tree_lock(sch);
2630 		cake_reconfigure(sch);
2631 		sch_tree_unlock(sch);
2632 	}
2633 
2634 	return 0;
2635 }
2636 
2637 static void cake_destroy(struct Qdisc *sch)
2638 {
2639 	struct cake_sched_data *q = qdisc_priv(sch);
2640 
2641 	qdisc_watchdog_cancel(&q->watchdog);
2642 	tcf_block_put(q->block);
2643 	kvfree(q->tins);
2644 }
2645 
2646 static int cake_init(struct Qdisc *sch, struct nlattr *opt,
2647 		     struct netlink_ext_ack *extack)
2648 {
2649 	struct cake_sched_data *q = qdisc_priv(sch);
2650 	int i, j, err;
2651 
2652 	sch->limit = 10240;
2653 	q->tin_mode = CAKE_DIFFSERV_DIFFSERV3;
2654 	q->flow_mode  = CAKE_FLOW_TRIPLE;
2655 
2656 	q->rate_bps = 0; /* unlimited by default */
2657 
2658 	q->interval = 100000; /* 100ms default */
2659 	q->target   =   5000; /* 5ms: codel RFC argues
2660 			       * for 5 to 10% of interval
2661 			       */
2662 	q->rate_flags |= CAKE_FLAG_SPLIT_GSO;
2663 	q->cur_tin = 0;
2664 	q->cur_flow  = 0;
2665 
2666 	qdisc_watchdog_init(&q->watchdog, sch);
2667 
2668 	if (opt) {
2669 		int err = cake_change(sch, opt, extack);
2670 
2671 		if (err)
2672 			return err;
2673 	}
2674 
2675 	err = tcf_block_get(&q->block, &q->filter_list, sch, extack);
2676 	if (err)
2677 		return err;
2678 
2679 	quantum_div[0] = ~0;
2680 	for (i = 1; i <= CAKE_QUEUES; i++)
2681 		quantum_div[i] = 65535 / i;
2682 
2683 	q->tins = kvcalloc(CAKE_MAX_TINS, sizeof(struct cake_tin_data),
2684 			   GFP_KERNEL);
2685 	if (!q->tins)
2686 		goto nomem;
2687 
2688 	for (i = 0; i < CAKE_MAX_TINS; i++) {
2689 		struct cake_tin_data *b = q->tins + i;
2690 
2691 		INIT_LIST_HEAD(&b->new_flows);
2692 		INIT_LIST_HEAD(&b->old_flows);
2693 		INIT_LIST_HEAD(&b->decaying_flows);
2694 		b->sparse_flow_count = 0;
2695 		b->bulk_flow_count = 0;
2696 		b->decaying_flow_count = 0;
2697 
2698 		for (j = 0; j < CAKE_QUEUES; j++) {
2699 			struct cake_flow *flow = b->flows + j;
2700 			u32 k = j * CAKE_MAX_TINS + i;
2701 
2702 			INIT_LIST_HEAD(&flow->flowchain);
2703 			cobalt_vars_init(&flow->cvars);
2704 
2705 			q->overflow_heap[k].t = i;
2706 			q->overflow_heap[k].b = j;
2707 			b->overflow_idx[j] = k;
2708 		}
2709 	}
2710 
2711 	cake_reconfigure(sch);
2712 	q->avg_peak_bandwidth = q->rate_bps;
2713 	q->min_netlen = ~0;
2714 	q->min_adjlen = ~0;
2715 	return 0;
2716 
2717 nomem:
2718 	cake_destroy(sch);
2719 	return -ENOMEM;
2720 }
2721 
2722 static int cake_dump(struct Qdisc *sch, struct sk_buff *skb)
2723 {
2724 	struct cake_sched_data *q = qdisc_priv(sch);
2725 	struct nlattr *opts;
2726 
2727 	opts = nla_nest_start(skb, TCA_OPTIONS);
2728 	if (!opts)
2729 		goto nla_put_failure;
2730 
2731 	if (nla_put_u64_64bit(skb, TCA_CAKE_BASE_RATE64, q->rate_bps,
2732 			      TCA_CAKE_PAD))
2733 		goto nla_put_failure;
2734 
2735 	if (nla_put_u32(skb, TCA_CAKE_FLOW_MODE,
2736 			q->flow_mode & CAKE_FLOW_MASK))
2737 		goto nla_put_failure;
2738 
2739 	if (nla_put_u32(skb, TCA_CAKE_RTT, q->interval))
2740 		goto nla_put_failure;
2741 
2742 	if (nla_put_u32(skb, TCA_CAKE_TARGET, q->target))
2743 		goto nla_put_failure;
2744 
2745 	if (nla_put_u32(skb, TCA_CAKE_MEMORY, q->buffer_config_limit))
2746 		goto nla_put_failure;
2747 
2748 	if (nla_put_u32(skb, TCA_CAKE_AUTORATE,
2749 			!!(q->rate_flags & CAKE_FLAG_AUTORATE_INGRESS)))
2750 		goto nla_put_failure;
2751 
2752 	if (nla_put_u32(skb, TCA_CAKE_INGRESS,
2753 			!!(q->rate_flags & CAKE_FLAG_INGRESS)))
2754 		goto nla_put_failure;
2755 
2756 	if (nla_put_u32(skb, TCA_CAKE_ACK_FILTER, q->ack_filter))
2757 		goto nla_put_failure;
2758 
2759 	if (nla_put_u32(skb, TCA_CAKE_NAT,
2760 			!!(q->flow_mode & CAKE_FLOW_NAT_FLAG)))
2761 		goto nla_put_failure;
2762 
2763 	if (nla_put_u32(skb, TCA_CAKE_DIFFSERV_MODE, q->tin_mode))
2764 		goto nla_put_failure;
2765 
2766 	if (nla_put_u32(skb, TCA_CAKE_WASH,
2767 			!!(q->rate_flags & CAKE_FLAG_WASH)))
2768 		goto nla_put_failure;
2769 
2770 	if (nla_put_u32(skb, TCA_CAKE_OVERHEAD, q->rate_overhead))
2771 		goto nla_put_failure;
2772 
2773 	if (!(q->rate_flags & CAKE_FLAG_OVERHEAD))
2774 		if (nla_put_u32(skb, TCA_CAKE_RAW, 0))
2775 			goto nla_put_failure;
2776 
2777 	if (nla_put_u32(skb, TCA_CAKE_ATM, q->atm_mode))
2778 		goto nla_put_failure;
2779 
2780 	if (nla_put_u32(skb, TCA_CAKE_MPU, q->rate_mpu))
2781 		goto nla_put_failure;
2782 
2783 	if (nla_put_u32(skb, TCA_CAKE_SPLIT_GSO,
2784 			!!(q->rate_flags & CAKE_FLAG_SPLIT_GSO)))
2785 		goto nla_put_failure;
2786 
2787 	if (nla_put_u32(skb, TCA_CAKE_FWMARK, q->fwmark_mask))
2788 		goto nla_put_failure;
2789 
2790 	return nla_nest_end(skb, opts);
2791 
2792 nla_put_failure:
2793 	return -1;
2794 }
2795 
2796 static int cake_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
2797 {
2798 	struct nlattr *stats = nla_nest_start(d->skb, TCA_STATS_APP);
2799 	struct cake_sched_data *q = qdisc_priv(sch);
2800 	struct nlattr *tstats, *ts;
2801 	int i;
2802 
2803 	if (!stats)
2804 		return -1;
2805 
2806 #define PUT_STAT_U32(attr, data) do {				       \
2807 		if (nla_put_u32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
2808 			goto nla_put_failure;			       \
2809 	} while (0)
2810 #define PUT_STAT_U64(attr, data) do {				       \
2811 		if (nla_put_u64_64bit(d->skb, TCA_CAKE_STATS_ ## attr, \
2812 					data, TCA_CAKE_STATS_PAD)) \
2813 			goto nla_put_failure;			       \
2814 	} while (0)
2815 
2816 	PUT_STAT_U64(CAPACITY_ESTIMATE64, q->avg_peak_bandwidth);
2817 	PUT_STAT_U32(MEMORY_LIMIT, q->buffer_limit);
2818 	PUT_STAT_U32(MEMORY_USED, q->buffer_max_used);
2819 	PUT_STAT_U32(AVG_NETOFF, ((q->avg_netoff + 0x8000) >> 16));
2820 	PUT_STAT_U32(MAX_NETLEN, q->max_netlen);
2821 	PUT_STAT_U32(MAX_ADJLEN, q->max_adjlen);
2822 	PUT_STAT_U32(MIN_NETLEN, q->min_netlen);
2823 	PUT_STAT_U32(MIN_ADJLEN, q->min_adjlen);
2824 
2825 #undef PUT_STAT_U32
2826 #undef PUT_STAT_U64
2827 
2828 	tstats = nla_nest_start(d->skb, TCA_CAKE_STATS_TIN_STATS);
2829 	if (!tstats)
2830 		goto nla_put_failure;
2831 
2832 #define PUT_TSTAT_U32(attr, data) do {					\
2833 		if (nla_put_u32(d->skb, TCA_CAKE_TIN_STATS_ ## attr, data)) \
2834 			goto nla_put_failure;				\
2835 	} while (0)
2836 #define PUT_TSTAT_U64(attr, data) do {					\
2837 		if (nla_put_u64_64bit(d->skb, TCA_CAKE_TIN_STATS_ ## attr, \
2838 					data, TCA_CAKE_TIN_STATS_PAD))	\
2839 			goto nla_put_failure;				\
2840 	} while (0)
2841 
2842 	for (i = 0; i < q->tin_cnt; i++) {
2843 		struct cake_tin_data *b = &q->tins[q->tin_order[i]];
2844 
2845 		ts = nla_nest_start(d->skb, i + 1);
2846 		if (!ts)
2847 			goto nla_put_failure;
2848 
2849 		PUT_TSTAT_U64(THRESHOLD_RATE64, b->tin_rate_bps);
2850 		PUT_TSTAT_U64(SENT_BYTES64, b->bytes);
2851 		PUT_TSTAT_U32(BACKLOG_BYTES, b->tin_backlog);
2852 
2853 		PUT_TSTAT_U32(TARGET_US,
2854 			      ktime_to_us(ns_to_ktime(b->cparams.target)));
2855 		PUT_TSTAT_U32(INTERVAL_US,
2856 			      ktime_to_us(ns_to_ktime(b->cparams.interval)));
2857 
2858 		PUT_TSTAT_U32(SENT_PACKETS, b->packets);
2859 		PUT_TSTAT_U32(DROPPED_PACKETS, b->tin_dropped);
2860 		PUT_TSTAT_U32(ECN_MARKED_PACKETS, b->tin_ecn_mark);
2861 		PUT_TSTAT_U32(ACKS_DROPPED_PACKETS, b->ack_drops);
2862 
2863 		PUT_TSTAT_U32(PEAK_DELAY_US,
2864 			      ktime_to_us(ns_to_ktime(b->peak_delay)));
2865 		PUT_TSTAT_U32(AVG_DELAY_US,
2866 			      ktime_to_us(ns_to_ktime(b->avge_delay)));
2867 		PUT_TSTAT_U32(BASE_DELAY_US,
2868 			      ktime_to_us(ns_to_ktime(b->base_delay)));
2869 
2870 		PUT_TSTAT_U32(WAY_INDIRECT_HITS, b->way_hits);
2871 		PUT_TSTAT_U32(WAY_MISSES, b->way_misses);
2872 		PUT_TSTAT_U32(WAY_COLLISIONS, b->way_collisions);
2873 
2874 		PUT_TSTAT_U32(SPARSE_FLOWS, b->sparse_flow_count +
2875 					    b->decaying_flow_count);
2876 		PUT_TSTAT_U32(BULK_FLOWS, b->bulk_flow_count);
2877 		PUT_TSTAT_U32(UNRESPONSIVE_FLOWS, b->unresponsive_flow_count);
2878 		PUT_TSTAT_U32(MAX_SKBLEN, b->max_skblen);
2879 
2880 		PUT_TSTAT_U32(FLOW_QUANTUM, b->flow_quantum);
2881 		nla_nest_end(d->skb, ts);
2882 	}
2883 
2884 #undef PUT_TSTAT_U32
2885 #undef PUT_TSTAT_U64
2886 
2887 	nla_nest_end(d->skb, tstats);
2888 	return nla_nest_end(d->skb, stats);
2889 
2890 nla_put_failure:
2891 	nla_nest_cancel(d->skb, stats);
2892 	return -1;
2893 }
2894 
2895 static struct Qdisc *cake_leaf(struct Qdisc *sch, unsigned long arg)
2896 {
2897 	return NULL;
2898 }
2899 
2900 static unsigned long cake_find(struct Qdisc *sch, u32 classid)
2901 {
2902 	return 0;
2903 }
2904 
2905 static unsigned long cake_bind(struct Qdisc *sch, unsigned long parent,
2906 			       u32 classid)
2907 {
2908 	return 0;
2909 }
2910 
2911 static void cake_unbind(struct Qdisc *q, unsigned long cl)
2912 {
2913 }
2914 
2915 static struct tcf_block *cake_tcf_block(struct Qdisc *sch, unsigned long cl,
2916 					struct netlink_ext_ack *extack)
2917 {
2918 	struct cake_sched_data *q = qdisc_priv(sch);
2919 
2920 	if (cl)
2921 		return NULL;
2922 	return q->block;
2923 }
2924 
2925 static int cake_dump_class(struct Qdisc *sch, unsigned long cl,
2926 			   struct sk_buff *skb, struct tcmsg *tcm)
2927 {
2928 	tcm->tcm_handle |= TC_H_MIN(cl);
2929 	return 0;
2930 }
2931 
2932 static int cake_dump_class_stats(struct Qdisc *sch, unsigned long cl,
2933 				 struct gnet_dump *d)
2934 {
2935 	struct cake_sched_data *q = qdisc_priv(sch);
2936 	const struct cake_flow *flow = NULL;
2937 	struct gnet_stats_queue qs = { 0 };
2938 	struct nlattr *stats;
2939 	u32 idx = cl - 1;
2940 
2941 	if (idx < CAKE_QUEUES * q->tin_cnt) {
2942 		const struct cake_tin_data *b = \
2943 			&q->tins[q->tin_order[idx / CAKE_QUEUES]];
2944 		const struct sk_buff *skb;
2945 
2946 		flow = &b->flows[idx % CAKE_QUEUES];
2947 
2948 		if (flow->head) {
2949 			sch_tree_lock(sch);
2950 			skb = flow->head;
2951 			while (skb) {
2952 				qs.qlen++;
2953 				skb = skb->next;
2954 			}
2955 			sch_tree_unlock(sch);
2956 		}
2957 		qs.backlog = b->backlogs[idx % CAKE_QUEUES];
2958 		qs.drops = flow->dropped;
2959 	}
2960 	if (gnet_stats_copy_queue(d, NULL, &qs, qs.qlen) < 0)
2961 		return -1;
2962 	if (flow) {
2963 		ktime_t now = ktime_get();
2964 
2965 		stats = nla_nest_start(d->skb, TCA_STATS_APP);
2966 		if (!stats)
2967 			return -1;
2968 
2969 #define PUT_STAT_U32(attr, data) do {				       \
2970 		if (nla_put_u32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
2971 			goto nla_put_failure;			       \
2972 	} while (0)
2973 #define PUT_STAT_S32(attr, data) do {				       \
2974 		if (nla_put_s32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
2975 			goto nla_put_failure;			       \
2976 	} while (0)
2977 
2978 		PUT_STAT_S32(DEFICIT, flow->deficit);
2979 		PUT_STAT_U32(DROPPING, flow->cvars.dropping);
2980 		PUT_STAT_U32(COBALT_COUNT, flow->cvars.count);
2981 		PUT_STAT_U32(P_DROP, flow->cvars.p_drop);
2982 		if (flow->cvars.p_drop) {
2983 			PUT_STAT_S32(BLUE_TIMER_US,
2984 				     ktime_to_us(
2985 					     ktime_sub(now,
2986 						     flow->cvars.blue_timer)));
2987 		}
2988 		if (flow->cvars.dropping) {
2989 			PUT_STAT_S32(DROP_NEXT_US,
2990 				     ktime_to_us(
2991 					     ktime_sub(now,
2992 						       flow->cvars.drop_next)));
2993 		}
2994 
2995 		if (nla_nest_end(d->skb, stats) < 0)
2996 			return -1;
2997 	}
2998 
2999 	return 0;
3000 
3001 nla_put_failure:
3002 	nla_nest_cancel(d->skb, stats);
3003 	return -1;
3004 }
3005 
3006 static void cake_walk(struct Qdisc *sch, struct qdisc_walker *arg)
3007 {
3008 	struct cake_sched_data *q = qdisc_priv(sch);
3009 	unsigned int i, j;
3010 
3011 	if (arg->stop)
3012 		return;
3013 
3014 	for (i = 0; i < q->tin_cnt; i++) {
3015 		struct cake_tin_data *b = &q->tins[q->tin_order[i]];
3016 
3017 		for (j = 0; j < CAKE_QUEUES; j++) {
3018 			if (list_empty(&b->flows[j].flowchain) ||
3019 			    arg->count < arg->skip) {
3020 				arg->count++;
3021 				continue;
3022 			}
3023 			if (arg->fn(sch, i * CAKE_QUEUES + j + 1, arg) < 0) {
3024 				arg->stop = 1;
3025 				break;
3026 			}
3027 			arg->count++;
3028 		}
3029 	}
3030 }
3031 
3032 static const struct Qdisc_class_ops cake_class_ops = {
3033 	.leaf		=	cake_leaf,
3034 	.find		=	cake_find,
3035 	.tcf_block	=	cake_tcf_block,
3036 	.bind_tcf	=	cake_bind,
3037 	.unbind_tcf	=	cake_unbind,
3038 	.dump		=	cake_dump_class,
3039 	.dump_stats	=	cake_dump_class_stats,
3040 	.walk		=	cake_walk,
3041 };
3042 
3043 static struct Qdisc_ops cake_qdisc_ops __read_mostly = {
3044 	.cl_ops		=	&cake_class_ops,
3045 	.id		=	"cake",
3046 	.priv_size	=	sizeof(struct cake_sched_data),
3047 	.enqueue	=	cake_enqueue,
3048 	.dequeue	=	cake_dequeue,
3049 	.peek		=	qdisc_peek_dequeued,
3050 	.init		=	cake_init,
3051 	.reset		=	cake_reset,
3052 	.destroy	=	cake_destroy,
3053 	.change		=	cake_change,
3054 	.dump		=	cake_dump,
3055 	.dump_stats	=	cake_dump_stats,
3056 	.owner		=	THIS_MODULE,
3057 };
3058 
3059 static int __init cake_module_init(void)
3060 {
3061 	return register_qdisc(&cake_qdisc_ops);
3062 }
3063 
3064 static void __exit cake_module_exit(void)
3065 {
3066 	unregister_qdisc(&cake_qdisc_ops);
3067 }
3068 
3069 module_init(cake_module_init)
3070 module_exit(cake_module_exit)
3071 MODULE_AUTHOR("Jonathan Morton");
3072 MODULE_LICENSE("Dual BSD/GPL");
3073 MODULE_DESCRIPTION("The CAKE shaper.");
3074