1 /* 2 * net/sched/cls_u32.c Ugly (or Universal) 32bit key Packet Classifier. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 10 * 11 * The filters are packed to hash tables of key nodes 12 * with a set of 32bit key/mask pairs at every node. 13 * Nodes reference next level hash tables etc. 14 * 15 * This scheme is the best universal classifier I managed to 16 * invent; it is not super-fast, but it is not slow (provided you 17 * program it correctly), and general enough. And its relative 18 * speed grows as the number of rules becomes larger. 19 * 20 * It seems that it represents the best middle point between 21 * speed and manageability both by human and by machine. 22 * 23 * It is especially useful for link sharing combined with QoS; 24 * pure RSVP doesn't need such a general approach and can use 25 * much simpler (and faster) schemes, sort of cls_rsvp.c. 26 * 27 * JHS: We should remove the CONFIG_NET_CLS_IND from here 28 * eventually when the meta match extension is made available 29 * 30 * nfmark match added by Catalin(ux aka Dino) BOIE <catab at umbrella.ro> 31 */ 32 33 #include <linux/module.h> 34 #include <linux/slab.h> 35 #include <linux/types.h> 36 #include <linux/kernel.h> 37 #include <linux/string.h> 38 #include <linux/errno.h> 39 #include <linux/percpu.h> 40 #include <linux/rtnetlink.h> 41 #include <linux/skbuff.h> 42 #include <linux/bitmap.h> 43 #include <net/netlink.h> 44 #include <net/act_api.h> 45 #include <net/pkt_cls.h> 46 47 struct tc_u_knode { 48 struct tc_u_knode __rcu *next; 49 u32 handle; 50 struct tc_u_hnode __rcu *ht_up; 51 struct tcf_exts exts; 52 #ifdef CONFIG_NET_CLS_IND 53 int ifindex; 54 #endif 55 u8 fshift; 56 struct tcf_result res; 57 struct tc_u_hnode __rcu *ht_down; 58 #ifdef CONFIG_CLS_U32_PERF 59 struct tc_u32_pcnt __percpu *pf; 60 #endif 61 #ifdef CONFIG_CLS_U32_MARK 62 u32 val; 63 u32 mask; 64 u32 __percpu *pcpu_success; 65 #endif 66 struct tcf_proto *tp; 67 struct rcu_head rcu; 68 /* The 'sel' field MUST be the last field in structure to allow for 69 * tc_u32_keys allocated at end of structure. 70 */ 71 struct tc_u32_sel sel; 72 }; 73 74 struct tc_u_hnode { 75 struct tc_u_hnode __rcu *next; 76 u32 handle; 77 u32 prio; 78 struct tc_u_common *tp_c; 79 int refcnt; 80 unsigned int divisor; 81 struct tc_u_knode __rcu *ht[1]; 82 struct rcu_head rcu; 83 }; 84 85 struct tc_u_common { 86 struct tc_u_hnode __rcu *hlist; 87 struct Qdisc *q; 88 int refcnt; 89 u32 hgenerator; 90 struct rcu_head rcu; 91 }; 92 93 static inline unsigned int u32_hash_fold(__be32 key, 94 const struct tc_u32_sel *sel, 95 u8 fshift) 96 { 97 unsigned int h = ntohl(key & sel->hmask) >> fshift; 98 99 return h; 100 } 101 102 static int u32_classify(struct sk_buff *skb, const struct tcf_proto *tp, struct tcf_result *res) 103 { 104 struct { 105 struct tc_u_knode *knode; 106 unsigned int off; 107 } stack[TC_U32_MAXDEPTH]; 108 109 struct tc_u_hnode *ht = rcu_dereference_bh(tp->root); 110 unsigned int off = skb_network_offset(skb); 111 struct tc_u_knode *n; 112 int sdepth = 0; 113 int off2 = 0; 114 int sel = 0; 115 #ifdef CONFIG_CLS_U32_PERF 116 int j; 117 #endif 118 int i, r; 119 120 next_ht: 121 n = rcu_dereference_bh(ht->ht[sel]); 122 123 next_knode: 124 if (n) { 125 struct tc_u32_key *key = n->sel.keys; 126 127 #ifdef CONFIG_CLS_U32_PERF 128 __this_cpu_inc(n->pf->rcnt); 129 j = 0; 130 #endif 131 132 #ifdef CONFIG_CLS_U32_MARK 133 if ((skb->mark & n->mask) != n->val) { 134 n = rcu_dereference_bh(n->next); 135 goto next_knode; 136 } else { 137 __this_cpu_inc(*n->pcpu_success); 138 } 139 #endif 140 141 for (i = n->sel.nkeys; i > 0; i--, key++) { 142 int toff = off + key->off + (off2 & key->offmask); 143 __be32 *data, hdata; 144 145 if (skb_headroom(skb) + toff > INT_MAX) 146 goto out; 147 148 data = skb_header_pointer(skb, toff, 4, &hdata); 149 if (!data) 150 goto out; 151 if ((*data ^ key->val) & key->mask) { 152 n = rcu_dereference_bh(n->next); 153 goto next_knode; 154 } 155 #ifdef CONFIG_CLS_U32_PERF 156 __this_cpu_inc(n->pf->kcnts[j]); 157 j++; 158 #endif 159 } 160 161 ht = rcu_dereference_bh(n->ht_down); 162 if (!ht) { 163 check_terminal: 164 if (n->sel.flags & TC_U32_TERMINAL) { 165 166 *res = n->res; 167 #ifdef CONFIG_NET_CLS_IND 168 if (!tcf_match_indev(skb, n->ifindex)) { 169 n = rcu_dereference_bh(n->next); 170 goto next_knode; 171 } 172 #endif 173 #ifdef CONFIG_CLS_U32_PERF 174 __this_cpu_inc(n->pf->rhit); 175 #endif 176 r = tcf_exts_exec(skb, &n->exts, res); 177 if (r < 0) { 178 n = rcu_dereference_bh(n->next); 179 goto next_knode; 180 } 181 182 return r; 183 } 184 n = rcu_dereference_bh(n->next); 185 goto next_knode; 186 } 187 188 /* PUSH */ 189 if (sdepth >= TC_U32_MAXDEPTH) 190 goto deadloop; 191 stack[sdepth].knode = n; 192 stack[sdepth].off = off; 193 sdepth++; 194 195 ht = rcu_dereference_bh(n->ht_down); 196 sel = 0; 197 if (ht->divisor) { 198 __be32 *data, hdata; 199 200 data = skb_header_pointer(skb, off + n->sel.hoff, 4, 201 &hdata); 202 if (!data) 203 goto out; 204 sel = ht->divisor & u32_hash_fold(*data, &n->sel, 205 n->fshift); 206 } 207 if (!(n->sel.flags & (TC_U32_VAROFFSET | TC_U32_OFFSET | TC_U32_EAT))) 208 goto next_ht; 209 210 if (n->sel.flags & (TC_U32_OFFSET | TC_U32_VAROFFSET)) { 211 off2 = n->sel.off + 3; 212 if (n->sel.flags & TC_U32_VAROFFSET) { 213 __be16 *data, hdata; 214 215 data = skb_header_pointer(skb, 216 off + n->sel.offoff, 217 2, &hdata); 218 if (!data) 219 goto out; 220 off2 += ntohs(n->sel.offmask & *data) >> 221 n->sel.offshift; 222 } 223 off2 &= ~3; 224 } 225 if (n->sel.flags & TC_U32_EAT) { 226 off += off2; 227 off2 = 0; 228 } 229 230 if (off < skb->len) 231 goto next_ht; 232 } 233 234 /* POP */ 235 if (sdepth--) { 236 n = stack[sdepth].knode; 237 ht = rcu_dereference_bh(n->ht_up); 238 off = stack[sdepth].off; 239 goto check_terminal; 240 } 241 out: 242 return -1; 243 244 deadloop: 245 net_warn_ratelimited("cls_u32: dead loop\n"); 246 return -1; 247 } 248 249 static struct tc_u_hnode * 250 u32_lookup_ht(struct tc_u_common *tp_c, u32 handle) 251 { 252 struct tc_u_hnode *ht; 253 254 for (ht = rtnl_dereference(tp_c->hlist); 255 ht; 256 ht = rtnl_dereference(ht->next)) 257 if (ht->handle == handle) 258 break; 259 260 return ht; 261 } 262 263 static struct tc_u_knode * 264 u32_lookup_key(struct tc_u_hnode *ht, u32 handle) 265 { 266 unsigned int sel; 267 struct tc_u_knode *n = NULL; 268 269 sel = TC_U32_HASH(handle); 270 if (sel > ht->divisor) 271 goto out; 272 273 for (n = rtnl_dereference(ht->ht[sel]); 274 n; 275 n = rtnl_dereference(n->next)) 276 if (n->handle == handle) 277 break; 278 out: 279 return n; 280 } 281 282 283 static unsigned long u32_get(struct tcf_proto *tp, u32 handle) 284 { 285 struct tc_u_hnode *ht; 286 struct tc_u_common *tp_c = tp->data; 287 288 if (TC_U32_HTID(handle) == TC_U32_ROOT) 289 ht = rtnl_dereference(tp->root); 290 else 291 ht = u32_lookup_ht(tp_c, TC_U32_HTID(handle)); 292 293 if (!ht) 294 return 0; 295 296 if (TC_U32_KEY(handle) == 0) 297 return (unsigned long)ht; 298 299 return (unsigned long)u32_lookup_key(ht, handle); 300 } 301 302 static u32 gen_new_htid(struct tc_u_common *tp_c) 303 { 304 int i = 0x800; 305 306 /* hgenerator only used inside rtnl lock it is safe to increment 307 * without read _copy_ update semantics 308 */ 309 do { 310 if (++tp_c->hgenerator == 0x7FF) 311 tp_c->hgenerator = 1; 312 } while (--i > 0 && u32_lookup_ht(tp_c, (tp_c->hgenerator|0x800)<<20)); 313 314 return i > 0 ? (tp_c->hgenerator|0x800)<<20 : 0; 315 } 316 317 static int u32_init(struct tcf_proto *tp) 318 { 319 struct tc_u_hnode *root_ht; 320 struct tc_u_common *tp_c; 321 322 tp_c = tp->q->u32_node; 323 324 root_ht = kzalloc(sizeof(*root_ht), GFP_KERNEL); 325 if (root_ht == NULL) 326 return -ENOBUFS; 327 328 root_ht->divisor = 0; 329 root_ht->refcnt++; 330 root_ht->handle = tp_c ? gen_new_htid(tp_c) : 0x80000000; 331 root_ht->prio = tp->prio; 332 333 if (tp_c == NULL) { 334 tp_c = kzalloc(sizeof(*tp_c), GFP_KERNEL); 335 if (tp_c == NULL) { 336 kfree(root_ht); 337 return -ENOBUFS; 338 } 339 tp_c->q = tp->q; 340 tp->q->u32_node = tp_c; 341 } 342 343 tp_c->refcnt++; 344 RCU_INIT_POINTER(root_ht->next, tp_c->hlist); 345 rcu_assign_pointer(tp_c->hlist, root_ht); 346 root_ht->tp_c = tp_c; 347 348 rcu_assign_pointer(tp->root, root_ht); 349 tp->data = tp_c; 350 return 0; 351 } 352 353 static int u32_destroy_key(struct tcf_proto *tp, 354 struct tc_u_knode *n, 355 bool free_pf) 356 { 357 tcf_exts_destroy(&n->exts); 358 if (n->ht_down) 359 n->ht_down->refcnt--; 360 #ifdef CONFIG_CLS_U32_PERF 361 if (free_pf) 362 free_percpu(n->pf); 363 #endif 364 #ifdef CONFIG_CLS_U32_MARK 365 if (free_pf) 366 free_percpu(n->pcpu_success); 367 #endif 368 kfree(n); 369 return 0; 370 } 371 372 /* u32_delete_key_rcu should be called when free'ing a copied 373 * version of a tc_u_knode obtained from u32_init_knode(). When 374 * copies are obtained from u32_init_knode() the statistics are 375 * shared between the old and new copies to allow readers to 376 * continue to update the statistics during the copy. To support 377 * this the u32_delete_key_rcu variant does not free the percpu 378 * statistics. 379 */ 380 static void u32_delete_key_rcu(struct rcu_head *rcu) 381 { 382 struct tc_u_knode *key = container_of(rcu, struct tc_u_knode, rcu); 383 384 u32_destroy_key(key->tp, key, false); 385 } 386 387 /* u32_delete_key_freepf_rcu is the rcu callback variant 388 * that free's the entire structure including the statistics 389 * percpu variables. Only use this if the key is not a copy 390 * returned by u32_init_knode(). See u32_delete_key_rcu() 391 * for the variant that should be used with keys return from 392 * u32_init_knode() 393 */ 394 static void u32_delete_key_freepf_rcu(struct rcu_head *rcu) 395 { 396 struct tc_u_knode *key = container_of(rcu, struct tc_u_knode, rcu); 397 398 u32_destroy_key(key->tp, key, true); 399 } 400 401 static int u32_delete_key(struct tcf_proto *tp, struct tc_u_knode *key) 402 { 403 struct tc_u_knode __rcu **kp; 404 struct tc_u_knode *pkp; 405 struct tc_u_hnode *ht = rtnl_dereference(key->ht_up); 406 407 if (ht) { 408 kp = &ht->ht[TC_U32_HASH(key->handle)]; 409 for (pkp = rtnl_dereference(*kp); pkp; 410 kp = &pkp->next, pkp = rtnl_dereference(*kp)) { 411 if (pkp == key) { 412 RCU_INIT_POINTER(*kp, key->next); 413 414 tcf_unbind_filter(tp, &key->res); 415 call_rcu(&key->rcu, u32_delete_key_freepf_rcu); 416 return 0; 417 } 418 } 419 } 420 WARN_ON(1); 421 return 0; 422 } 423 424 static void u32_clear_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht) 425 { 426 struct tc_u_knode *n; 427 unsigned int h; 428 429 for (h = 0; h <= ht->divisor; h++) { 430 while ((n = rtnl_dereference(ht->ht[h])) != NULL) { 431 RCU_INIT_POINTER(ht->ht[h], 432 rtnl_dereference(n->next)); 433 tcf_unbind_filter(tp, &n->res); 434 call_rcu(&n->rcu, u32_delete_key_freepf_rcu); 435 } 436 } 437 } 438 439 static int u32_destroy_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht) 440 { 441 struct tc_u_common *tp_c = tp->data; 442 struct tc_u_hnode __rcu **hn; 443 struct tc_u_hnode *phn; 444 445 WARN_ON(ht->refcnt); 446 447 u32_clear_hnode(tp, ht); 448 449 hn = &tp_c->hlist; 450 for (phn = rtnl_dereference(*hn); 451 phn; 452 hn = &phn->next, phn = rtnl_dereference(*hn)) { 453 if (phn == ht) { 454 RCU_INIT_POINTER(*hn, ht->next); 455 kfree_rcu(ht, rcu); 456 return 0; 457 } 458 } 459 460 return -ENOENT; 461 } 462 463 static void u32_destroy(struct tcf_proto *tp) 464 { 465 struct tc_u_common *tp_c = tp->data; 466 struct tc_u_hnode *root_ht = rtnl_dereference(tp->root); 467 468 WARN_ON(root_ht == NULL); 469 470 if (root_ht && --root_ht->refcnt == 0) 471 u32_destroy_hnode(tp, root_ht); 472 473 if (--tp_c->refcnt == 0) { 474 struct tc_u_hnode *ht; 475 476 tp->q->u32_node = NULL; 477 478 for (ht = rtnl_dereference(tp_c->hlist); 479 ht; 480 ht = rtnl_dereference(ht->next)) { 481 ht->refcnt--; 482 u32_clear_hnode(tp, ht); 483 } 484 485 while ((ht = rtnl_dereference(tp_c->hlist)) != NULL) { 486 RCU_INIT_POINTER(tp_c->hlist, ht->next); 487 kfree_rcu(ht, rcu); 488 } 489 490 kfree(tp_c); 491 } 492 493 tp->data = NULL; 494 } 495 496 static int u32_delete(struct tcf_proto *tp, unsigned long arg) 497 { 498 struct tc_u_hnode *ht = (struct tc_u_hnode *)arg; 499 struct tc_u_hnode *root_ht = rtnl_dereference(tp->root); 500 501 if (ht == NULL) 502 return 0; 503 504 if (TC_U32_KEY(ht->handle)) 505 return u32_delete_key(tp, (struct tc_u_knode *)ht); 506 507 if (root_ht == ht) 508 return -EINVAL; 509 510 if (ht->refcnt == 1) { 511 ht->refcnt--; 512 u32_destroy_hnode(tp, ht); 513 } else { 514 return -EBUSY; 515 } 516 517 return 0; 518 } 519 520 #define NR_U32_NODE (1<<12) 521 static u32 gen_new_kid(struct tc_u_hnode *ht, u32 handle) 522 { 523 struct tc_u_knode *n; 524 unsigned long i; 525 unsigned long *bitmap = kzalloc(BITS_TO_LONGS(NR_U32_NODE) * sizeof(unsigned long), 526 GFP_KERNEL); 527 if (!bitmap) 528 return handle | 0xFFF; 529 530 for (n = rtnl_dereference(ht->ht[TC_U32_HASH(handle)]); 531 n; 532 n = rtnl_dereference(n->next)) 533 set_bit(TC_U32_NODE(n->handle), bitmap); 534 535 i = find_next_zero_bit(bitmap, NR_U32_NODE, 0x800); 536 if (i >= NR_U32_NODE) 537 i = find_next_zero_bit(bitmap, NR_U32_NODE, 1); 538 539 kfree(bitmap); 540 return handle | (i >= NR_U32_NODE ? 0xFFF : i); 541 } 542 543 static const struct nla_policy u32_policy[TCA_U32_MAX + 1] = { 544 [TCA_U32_CLASSID] = { .type = NLA_U32 }, 545 [TCA_U32_HASH] = { .type = NLA_U32 }, 546 [TCA_U32_LINK] = { .type = NLA_U32 }, 547 [TCA_U32_DIVISOR] = { .type = NLA_U32 }, 548 [TCA_U32_SEL] = { .len = sizeof(struct tc_u32_sel) }, 549 [TCA_U32_INDEV] = { .type = NLA_STRING, .len = IFNAMSIZ }, 550 [TCA_U32_MARK] = { .len = sizeof(struct tc_u32_mark) }, 551 }; 552 553 static int u32_set_parms(struct net *net, struct tcf_proto *tp, 554 unsigned long base, struct tc_u_hnode *ht, 555 struct tc_u_knode *n, struct nlattr **tb, 556 struct nlattr *est, bool ovr) 557 { 558 int err; 559 struct tcf_exts e; 560 561 tcf_exts_init(&e, TCA_U32_ACT, TCA_U32_POLICE); 562 err = tcf_exts_validate(net, tp, tb, est, &e, ovr); 563 if (err < 0) 564 return err; 565 566 err = -EINVAL; 567 if (tb[TCA_U32_LINK]) { 568 u32 handle = nla_get_u32(tb[TCA_U32_LINK]); 569 struct tc_u_hnode *ht_down = NULL, *ht_old; 570 571 if (TC_U32_KEY(handle)) 572 goto errout; 573 574 if (handle) { 575 ht_down = u32_lookup_ht(ht->tp_c, handle); 576 577 if (ht_down == NULL) 578 goto errout; 579 ht_down->refcnt++; 580 } 581 582 ht_old = rtnl_dereference(n->ht_down); 583 rcu_assign_pointer(n->ht_down, ht_down); 584 585 if (ht_old) 586 ht_old->refcnt--; 587 } 588 if (tb[TCA_U32_CLASSID]) { 589 n->res.classid = nla_get_u32(tb[TCA_U32_CLASSID]); 590 tcf_bind_filter(tp, &n->res, base); 591 } 592 593 #ifdef CONFIG_NET_CLS_IND 594 if (tb[TCA_U32_INDEV]) { 595 int ret; 596 ret = tcf_change_indev(net, tb[TCA_U32_INDEV]); 597 if (ret < 0) 598 goto errout; 599 n->ifindex = ret; 600 } 601 #endif 602 tcf_exts_change(tp, &n->exts, &e); 603 604 return 0; 605 errout: 606 tcf_exts_destroy(&e); 607 return err; 608 } 609 610 static void u32_replace_knode(struct tcf_proto *tp, 611 struct tc_u_common *tp_c, 612 struct tc_u_knode *n) 613 { 614 struct tc_u_knode __rcu **ins; 615 struct tc_u_knode *pins; 616 struct tc_u_hnode *ht; 617 618 if (TC_U32_HTID(n->handle) == TC_U32_ROOT) 619 ht = rtnl_dereference(tp->root); 620 else 621 ht = u32_lookup_ht(tp_c, TC_U32_HTID(n->handle)); 622 623 ins = &ht->ht[TC_U32_HASH(n->handle)]; 624 625 /* The node must always exist for it to be replaced if this is not the 626 * case then something went very wrong elsewhere. 627 */ 628 for (pins = rtnl_dereference(*ins); ; 629 ins = &pins->next, pins = rtnl_dereference(*ins)) 630 if (pins->handle == n->handle) 631 break; 632 633 RCU_INIT_POINTER(n->next, pins->next); 634 rcu_assign_pointer(*ins, n); 635 } 636 637 static struct tc_u_knode *u32_init_knode(struct tcf_proto *tp, 638 struct tc_u_knode *n) 639 { 640 struct tc_u_knode *new; 641 struct tc_u32_sel *s = &n->sel; 642 643 new = kzalloc(sizeof(*n) + s->nkeys*sizeof(struct tc_u32_key), 644 GFP_KERNEL); 645 646 if (!new) 647 return NULL; 648 649 RCU_INIT_POINTER(new->next, n->next); 650 new->handle = n->handle; 651 RCU_INIT_POINTER(new->ht_up, n->ht_up); 652 653 #ifdef CONFIG_NET_CLS_IND 654 new->ifindex = n->ifindex; 655 #endif 656 new->fshift = n->fshift; 657 new->res = n->res; 658 RCU_INIT_POINTER(new->ht_down, n->ht_down); 659 660 /* bump reference count as long as we hold pointer to structure */ 661 if (new->ht_down) 662 new->ht_down->refcnt++; 663 664 #ifdef CONFIG_CLS_U32_PERF 665 /* Statistics may be incremented by readers during update 666 * so we must keep them in tact. When the node is later destroyed 667 * a special destroy call must be made to not free the pf memory. 668 */ 669 new->pf = n->pf; 670 #endif 671 672 #ifdef CONFIG_CLS_U32_MARK 673 new->val = n->val; 674 new->mask = n->mask; 675 /* Similarly success statistics must be moved as pointers */ 676 new->pcpu_success = n->pcpu_success; 677 #endif 678 new->tp = tp; 679 memcpy(&new->sel, s, sizeof(*s) + s->nkeys*sizeof(struct tc_u32_key)); 680 681 tcf_exts_init(&new->exts, TCA_U32_ACT, TCA_U32_POLICE); 682 683 return new; 684 } 685 686 static int u32_change(struct net *net, struct sk_buff *in_skb, 687 struct tcf_proto *tp, unsigned long base, u32 handle, 688 struct nlattr **tca, 689 unsigned long *arg, bool ovr) 690 { 691 struct tc_u_common *tp_c = tp->data; 692 struct tc_u_hnode *ht; 693 struct tc_u_knode *n; 694 struct tc_u32_sel *s; 695 struct nlattr *opt = tca[TCA_OPTIONS]; 696 struct nlattr *tb[TCA_U32_MAX + 1]; 697 u32 htid; 698 int err; 699 #ifdef CONFIG_CLS_U32_PERF 700 size_t size; 701 #endif 702 703 if (opt == NULL) 704 return handle ? -EINVAL : 0; 705 706 err = nla_parse_nested(tb, TCA_U32_MAX, opt, u32_policy); 707 if (err < 0) 708 return err; 709 710 n = (struct tc_u_knode *)*arg; 711 if (n) { 712 struct tc_u_knode *new; 713 714 if (TC_U32_KEY(n->handle) == 0) 715 return -EINVAL; 716 717 new = u32_init_knode(tp, n); 718 if (!new) 719 return -ENOMEM; 720 721 err = u32_set_parms(net, tp, base, 722 rtnl_dereference(n->ht_up), new, tb, 723 tca[TCA_RATE], ovr); 724 725 if (err) { 726 u32_destroy_key(tp, new, false); 727 return err; 728 } 729 730 u32_replace_knode(tp, tp_c, new); 731 tcf_unbind_filter(tp, &n->res); 732 call_rcu(&n->rcu, u32_delete_key_rcu); 733 return 0; 734 } 735 736 if (tb[TCA_U32_DIVISOR]) { 737 unsigned int divisor = nla_get_u32(tb[TCA_U32_DIVISOR]); 738 739 if (--divisor > 0x100) 740 return -EINVAL; 741 if (TC_U32_KEY(handle)) 742 return -EINVAL; 743 if (handle == 0) { 744 handle = gen_new_htid(tp->data); 745 if (handle == 0) 746 return -ENOMEM; 747 } 748 ht = kzalloc(sizeof(*ht) + divisor*sizeof(void *), GFP_KERNEL); 749 if (ht == NULL) 750 return -ENOBUFS; 751 ht->tp_c = tp_c; 752 ht->refcnt = 1; 753 ht->divisor = divisor; 754 ht->handle = handle; 755 ht->prio = tp->prio; 756 RCU_INIT_POINTER(ht->next, tp_c->hlist); 757 rcu_assign_pointer(tp_c->hlist, ht); 758 *arg = (unsigned long)ht; 759 return 0; 760 } 761 762 if (tb[TCA_U32_HASH]) { 763 htid = nla_get_u32(tb[TCA_U32_HASH]); 764 if (TC_U32_HTID(htid) == TC_U32_ROOT) { 765 ht = rtnl_dereference(tp->root); 766 htid = ht->handle; 767 } else { 768 ht = u32_lookup_ht(tp->data, TC_U32_HTID(htid)); 769 if (ht == NULL) 770 return -EINVAL; 771 } 772 } else { 773 ht = rtnl_dereference(tp->root); 774 htid = ht->handle; 775 } 776 777 if (ht->divisor < TC_U32_HASH(htid)) 778 return -EINVAL; 779 780 if (handle) { 781 if (TC_U32_HTID(handle) && TC_U32_HTID(handle^htid)) 782 return -EINVAL; 783 handle = htid | TC_U32_NODE(handle); 784 } else 785 handle = gen_new_kid(ht, htid); 786 787 if (tb[TCA_U32_SEL] == NULL) 788 return -EINVAL; 789 790 s = nla_data(tb[TCA_U32_SEL]); 791 792 n = kzalloc(sizeof(*n) + s->nkeys*sizeof(struct tc_u32_key), GFP_KERNEL); 793 if (n == NULL) 794 return -ENOBUFS; 795 796 #ifdef CONFIG_CLS_U32_PERF 797 size = sizeof(struct tc_u32_pcnt) + s->nkeys * sizeof(u64); 798 n->pf = __alloc_percpu(size, __alignof__(struct tc_u32_pcnt)); 799 if (!n->pf) { 800 kfree(n); 801 return -ENOBUFS; 802 } 803 #endif 804 805 memcpy(&n->sel, s, sizeof(*s) + s->nkeys*sizeof(struct tc_u32_key)); 806 RCU_INIT_POINTER(n->ht_up, ht); 807 n->handle = handle; 808 n->fshift = s->hmask ? ffs(ntohl(s->hmask)) - 1 : 0; 809 tcf_exts_init(&n->exts, TCA_U32_ACT, TCA_U32_POLICE); 810 n->tp = tp; 811 812 #ifdef CONFIG_CLS_U32_MARK 813 n->pcpu_success = alloc_percpu(u32); 814 if (!n->pcpu_success) { 815 err = -ENOMEM; 816 goto errout; 817 } 818 819 if (tb[TCA_U32_MARK]) { 820 struct tc_u32_mark *mark; 821 822 mark = nla_data(tb[TCA_U32_MARK]); 823 n->val = mark->val; 824 n->mask = mark->mask; 825 } 826 #endif 827 828 err = u32_set_parms(net, tp, base, ht, n, tb, tca[TCA_RATE], ovr); 829 if (err == 0) { 830 struct tc_u_knode __rcu **ins; 831 struct tc_u_knode *pins; 832 833 ins = &ht->ht[TC_U32_HASH(handle)]; 834 for (pins = rtnl_dereference(*ins); pins; 835 ins = &pins->next, pins = rtnl_dereference(*ins)) 836 if (TC_U32_NODE(handle) < TC_U32_NODE(pins->handle)) 837 break; 838 839 RCU_INIT_POINTER(n->next, pins); 840 rcu_assign_pointer(*ins, n); 841 842 *arg = (unsigned long)n; 843 return 0; 844 } 845 846 #ifdef CONFIG_CLS_U32_MARK 847 free_percpu(n->pcpu_success); 848 errout: 849 #endif 850 851 #ifdef CONFIG_CLS_U32_PERF 852 free_percpu(n->pf); 853 #endif 854 kfree(n); 855 return err; 856 } 857 858 static void u32_walk(struct tcf_proto *tp, struct tcf_walker *arg) 859 { 860 struct tc_u_common *tp_c = tp->data; 861 struct tc_u_hnode *ht; 862 struct tc_u_knode *n; 863 unsigned int h; 864 865 if (arg->stop) 866 return; 867 868 for (ht = rtnl_dereference(tp_c->hlist); 869 ht; 870 ht = rtnl_dereference(ht->next)) { 871 if (ht->prio != tp->prio) 872 continue; 873 if (arg->count >= arg->skip) { 874 if (arg->fn(tp, (unsigned long)ht, arg) < 0) { 875 arg->stop = 1; 876 return; 877 } 878 } 879 arg->count++; 880 for (h = 0; h <= ht->divisor; h++) { 881 for (n = rtnl_dereference(ht->ht[h]); 882 n; 883 n = rtnl_dereference(n->next)) { 884 if (arg->count < arg->skip) { 885 arg->count++; 886 continue; 887 } 888 if (arg->fn(tp, (unsigned long)n, arg) < 0) { 889 arg->stop = 1; 890 return; 891 } 892 arg->count++; 893 } 894 } 895 } 896 } 897 898 static int u32_dump(struct net *net, struct tcf_proto *tp, unsigned long fh, 899 struct sk_buff *skb, struct tcmsg *t) 900 { 901 struct tc_u_knode *n = (struct tc_u_knode *)fh; 902 struct tc_u_hnode *ht_up, *ht_down; 903 struct nlattr *nest; 904 905 if (n == NULL) 906 return skb->len; 907 908 t->tcm_handle = n->handle; 909 910 nest = nla_nest_start(skb, TCA_OPTIONS); 911 if (nest == NULL) 912 goto nla_put_failure; 913 914 if (TC_U32_KEY(n->handle) == 0) { 915 struct tc_u_hnode *ht = (struct tc_u_hnode *)fh; 916 u32 divisor = ht->divisor + 1; 917 918 if (nla_put_u32(skb, TCA_U32_DIVISOR, divisor)) 919 goto nla_put_failure; 920 } else { 921 #ifdef CONFIG_CLS_U32_PERF 922 struct tc_u32_pcnt *gpf; 923 int cpu; 924 #endif 925 926 if (nla_put(skb, TCA_U32_SEL, 927 sizeof(n->sel) + n->sel.nkeys*sizeof(struct tc_u32_key), 928 &n->sel)) 929 goto nla_put_failure; 930 931 ht_up = rtnl_dereference(n->ht_up); 932 if (ht_up) { 933 u32 htid = n->handle & 0xFFFFF000; 934 if (nla_put_u32(skb, TCA_U32_HASH, htid)) 935 goto nla_put_failure; 936 } 937 if (n->res.classid && 938 nla_put_u32(skb, TCA_U32_CLASSID, n->res.classid)) 939 goto nla_put_failure; 940 941 ht_down = rtnl_dereference(n->ht_down); 942 if (ht_down && 943 nla_put_u32(skb, TCA_U32_LINK, ht_down->handle)) 944 goto nla_put_failure; 945 946 #ifdef CONFIG_CLS_U32_MARK 947 if ((n->val || n->mask)) { 948 struct tc_u32_mark mark = {.val = n->val, 949 .mask = n->mask, 950 .success = 0}; 951 int cpum; 952 953 for_each_possible_cpu(cpum) { 954 __u32 cnt = *per_cpu_ptr(n->pcpu_success, cpum); 955 956 mark.success += cnt; 957 } 958 959 if (nla_put(skb, TCA_U32_MARK, sizeof(mark), &mark)) 960 goto nla_put_failure; 961 } 962 #endif 963 964 if (tcf_exts_dump(skb, &n->exts) < 0) 965 goto nla_put_failure; 966 967 #ifdef CONFIG_NET_CLS_IND 968 if (n->ifindex) { 969 struct net_device *dev; 970 dev = __dev_get_by_index(net, n->ifindex); 971 if (dev && nla_put_string(skb, TCA_U32_INDEV, dev->name)) 972 goto nla_put_failure; 973 } 974 #endif 975 #ifdef CONFIG_CLS_U32_PERF 976 gpf = kzalloc(sizeof(struct tc_u32_pcnt) + 977 n->sel.nkeys * sizeof(u64), 978 GFP_KERNEL); 979 if (!gpf) 980 goto nla_put_failure; 981 982 for_each_possible_cpu(cpu) { 983 int i; 984 struct tc_u32_pcnt *pf = per_cpu_ptr(n->pf, cpu); 985 986 gpf->rcnt += pf->rcnt; 987 gpf->rhit += pf->rhit; 988 for (i = 0; i < n->sel.nkeys; i++) 989 gpf->kcnts[i] += pf->kcnts[i]; 990 } 991 992 if (nla_put(skb, TCA_U32_PCNT, 993 sizeof(struct tc_u32_pcnt) + n->sel.nkeys*sizeof(u64), 994 gpf)) { 995 kfree(gpf); 996 goto nla_put_failure; 997 } 998 kfree(gpf); 999 #endif 1000 } 1001 1002 nla_nest_end(skb, nest); 1003 1004 if (TC_U32_KEY(n->handle)) 1005 if (tcf_exts_dump_stats(skb, &n->exts) < 0) 1006 goto nla_put_failure; 1007 return skb->len; 1008 1009 nla_put_failure: 1010 nla_nest_cancel(skb, nest); 1011 return -1; 1012 } 1013 1014 static struct tcf_proto_ops cls_u32_ops __read_mostly = { 1015 .kind = "u32", 1016 .classify = u32_classify, 1017 .init = u32_init, 1018 .destroy = u32_destroy, 1019 .get = u32_get, 1020 .change = u32_change, 1021 .delete = u32_delete, 1022 .walk = u32_walk, 1023 .dump = u32_dump, 1024 .owner = THIS_MODULE, 1025 }; 1026 1027 static int __init init_u32(void) 1028 { 1029 pr_info("u32 classifier\n"); 1030 #ifdef CONFIG_CLS_U32_PERF 1031 pr_info(" Performance counters on\n"); 1032 #endif 1033 #ifdef CONFIG_NET_CLS_IND 1034 pr_info(" input device check on\n"); 1035 #endif 1036 #ifdef CONFIG_NET_CLS_ACT 1037 pr_info(" Actions configured\n"); 1038 #endif 1039 return register_tcf_proto_ops(&cls_u32_ops); 1040 } 1041 1042 static void __exit exit_u32(void) 1043 { 1044 unregister_tcf_proto_ops(&cls_u32_ops); 1045 } 1046 1047 module_init(init_u32) 1048 module_exit(exit_u32) 1049 MODULE_LICENSE("GPL"); 1050