1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * net/sched/cls_u32.c Ugly (or Universal) 32bit key Packet Classifier. 4 * 5 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 6 * 7 * The filters are packed to hash tables of key nodes 8 * with a set of 32bit key/mask pairs at every node. 9 * Nodes reference next level hash tables etc. 10 * 11 * This scheme is the best universal classifier I managed to 12 * invent; it is not super-fast, but it is not slow (provided you 13 * program it correctly), and general enough. And its relative 14 * speed grows as the number of rules becomes larger. 15 * 16 * It seems that it represents the best middle point between 17 * speed and manageability both by human and by machine. 18 * 19 * It is especially useful for link sharing combined with QoS; 20 * pure RSVP doesn't need such a general approach and can use 21 * much simpler (and faster) schemes, sort of cls_rsvp.c. 22 * 23 * nfmark match added by Catalin(ux aka Dino) BOIE <catab at umbrella.ro> 24 */ 25 26 #include <linux/module.h> 27 #include <linux/slab.h> 28 #include <linux/types.h> 29 #include <linux/kernel.h> 30 #include <linux/string.h> 31 #include <linux/errno.h> 32 #include <linux/percpu.h> 33 #include <linux/rtnetlink.h> 34 #include <linux/skbuff.h> 35 #include <linux/bitmap.h> 36 #include <linux/netdevice.h> 37 #include <linux/hash.h> 38 #include <net/netlink.h> 39 #include <net/act_api.h> 40 #include <net/pkt_cls.h> 41 #include <linux/idr.h> 42 #include <net/tc_wrapper.h> 43 44 struct tc_u_knode { 45 struct tc_u_knode __rcu *next; 46 u32 handle; 47 struct tc_u_hnode __rcu *ht_up; 48 struct tcf_exts exts; 49 int ifindex; 50 u8 fshift; 51 struct tcf_result res; 52 struct tc_u_hnode __rcu *ht_down; 53 #ifdef CONFIG_CLS_U32_PERF 54 struct tc_u32_pcnt __percpu *pf; 55 #endif 56 u32 flags; 57 unsigned int in_hw_count; 58 #ifdef CONFIG_CLS_U32_MARK 59 u32 val; 60 u32 mask; 61 u32 __percpu *pcpu_success; 62 #endif 63 struct rcu_work rwork; 64 /* The 'sel' field MUST be the last field in structure to allow for 65 * tc_u32_keys allocated at end of structure. 66 */ 67 struct tc_u32_sel sel; 68 }; 69 70 struct tc_u_hnode { 71 struct tc_u_hnode __rcu *next; 72 u32 handle; 73 u32 prio; 74 refcount_t refcnt; 75 unsigned int divisor; 76 struct idr handle_idr; 77 bool is_root; 78 struct rcu_head rcu; 79 u32 flags; 80 /* The 'ht' field MUST be the last field in structure to allow for 81 * more entries allocated at end of structure. 82 */ 83 struct tc_u_knode __rcu *ht[]; 84 }; 85 86 struct tc_u_common { 87 struct tc_u_hnode __rcu *hlist; 88 void *ptr; 89 refcount_t refcnt; 90 struct idr handle_idr; 91 struct hlist_node hnode; 92 long knodes; 93 }; 94 95 static u32 handle2id(u32 h) 96 { 97 return ((h & 0x80000000) ? ((h >> 20) & 0x7FF) : h); 98 } 99 100 static u32 id2handle(u32 id) 101 { 102 return (id | 0x800U) << 20; 103 } 104 105 static inline unsigned int u32_hash_fold(__be32 key, 106 const struct tc_u32_sel *sel, 107 u8 fshift) 108 { 109 unsigned int h = ntohl(key & sel->hmask) >> fshift; 110 111 return h; 112 } 113 114 TC_INDIRECT_SCOPE int u32_classify(struct sk_buff *skb, 115 const struct tcf_proto *tp, 116 struct tcf_result *res) 117 { 118 struct { 119 struct tc_u_knode *knode; 120 unsigned int off; 121 } stack[TC_U32_MAXDEPTH]; 122 123 struct tc_u_hnode *ht = rcu_dereference_bh(tp->root); 124 unsigned int off = skb_network_offset(skb); 125 struct tc_u_knode *n; 126 int sdepth = 0; 127 int off2 = 0; 128 int sel = 0; 129 #ifdef CONFIG_CLS_U32_PERF 130 int j; 131 #endif 132 int i, r; 133 134 next_ht: 135 n = rcu_dereference_bh(ht->ht[sel]); 136 137 next_knode: 138 if (n) { 139 struct tc_u32_key *key = n->sel.keys; 140 141 #ifdef CONFIG_CLS_U32_PERF 142 __this_cpu_inc(n->pf->rcnt); 143 j = 0; 144 #endif 145 146 if (tc_skip_sw(n->flags)) { 147 n = rcu_dereference_bh(n->next); 148 goto next_knode; 149 } 150 151 #ifdef CONFIG_CLS_U32_MARK 152 if ((skb->mark & n->mask) != n->val) { 153 n = rcu_dereference_bh(n->next); 154 goto next_knode; 155 } else { 156 __this_cpu_inc(*n->pcpu_success); 157 } 158 #endif 159 160 for (i = n->sel.nkeys; i > 0; i--, key++) { 161 int toff = off + key->off + (off2 & key->offmask); 162 __be32 *data, hdata; 163 164 if (skb_headroom(skb) + toff > INT_MAX) 165 goto out; 166 167 data = skb_header_pointer(skb, toff, 4, &hdata); 168 if (!data) 169 goto out; 170 if ((*data ^ key->val) & key->mask) { 171 n = rcu_dereference_bh(n->next); 172 goto next_knode; 173 } 174 #ifdef CONFIG_CLS_U32_PERF 175 __this_cpu_inc(n->pf->kcnts[j]); 176 j++; 177 #endif 178 } 179 180 ht = rcu_dereference_bh(n->ht_down); 181 if (!ht) { 182 check_terminal: 183 if (n->sel.flags & TC_U32_TERMINAL) { 184 185 *res = n->res; 186 if (!tcf_match_indev(skb, n->ifindex)) { 187 n = rcu_dereference_bh(n->next); 188 goto next_knode; 189 } 190 #ifdef CONFIG_CLS_U32_PERF 191 __this_cpu_inc(n->pf->rhit); 192 #endif 193 r = tcf_exts_exec(skb, &n->exts, res); 194 if (r < 0) { 195 n = rcu_dereference_bh(n->next); 196 goto next_knode; 197 } 198 199 return r; 200 } 201 n = rcu_dereference_bh(n->next); 202 goto next_knode; 203 } 204 205 /* PUSH */ 206 if (sdepth >= TC_U32_MAXDEPTH) 207 goto deadloop; 208 stack[sdepth].knode = n; 209 stack[sdepth].off = off; 210 sdepth++; 211 212 ht = rcu_dereference_bh(n->ht_down); 213 sel = 0; 214 if (ht->divisor) { 215 __be32 *data, hdata; 216 217 data = skb_header_pointer(skb, off + n->sel.hoff, 4, 218 &hdata); 219 if (!data) 220 goto out; 221 sel = ht->divisor & u32_hash_fold(*data, &n->sel, 222 n->fshift); 223 } 224 if (!(n->sel.flags & (TC_U32_VAROFFSET | TC_U32_OFFSET | TC_U32_EAT))) 225 goto next_ht; 226 227 if (n->sel.flags & (TC_U32_OFFSET | TC_U32_VAROFFSET)) { 228 off2 = n->sel.off + 3; 229 if (n->sel.flags & TC_U32_VAROFFSET) { 230 __be16 *data, hdata; 231 232 data = skb_header_pointer(skb, 233 off + n->sel.offoff, 234 2, &hdata); 235 if (!data) 236 goto out; 237 off2 += ntohs(n->sel.offmask & *data) >> 238 n->sel.offshift; 239 } 240 off2 &= ~3; 241 } 242 if (n->sel.flags & TC_U32_EAT) { 243 off += off2; 244 off2 = 0; 245 } 246 247 if (off < skb->len) 248 goto next_ht; 249 } 250 251 /* POP */ 252 if (sdepth--) { 253 n = stack[sdepth].knode; 254 ht = rcu_dereference_bh(n->ht_up); 255 off = stack[sdepth].off; 256 goto check_terminal; 257 } 258 out: 259 return -1; 260 261 deadloop: 262 net_warn_ratelimited("cls_u32: dead loop\n"); 263 return -1; 264 } 265 266 static struct tc_u_hnode *u32_lookup_ht(struct tc_u_common *tp_c, u32 handle) 267 { 268 struct tc_u_hnode *ht; 269 270 for (ht = rtnl_dereference(tp_c->hlist); 271 ht; 272 ht = rtnl_dereference(ht->next)) 273 if (ht->handle == handle) 274 break; 275 276 return ht; 277 } 278 279 static struct tc_u_knode *u32_lookup_key(struct tc_u_hnode *ht, u32 handle) 280 { 281 unsigned int sel; 282 struct tc_u_knode *n = NULL; 283 284 sel = TC_U32_HASH(handle); 285 if (sel > ht->divisor) 286 goto out; 287 288 for (n = rtnl_dereference(ht->ht[sel]); 289 n; 290 n = rtnl_dereference(n->next)) 291 if (n->handle == handle) 292 break; 293 out: 294 return n; 295 } 296 297 298 static void *u32_get(struct tcf_proto *tp, u32 handle) 299 { 300 struct tc_u_hnode *ht; 301 struct tc_u_common *tp_c = tp->data; 302 303 if (TC_U32_HTID(handle) == TC_U32_ROOT) 304 ht = rtnl_dereference(tp->root); 305 else 306 ht = u32_lookup_ht(tp_c, TC_U32_HTID(handle)); 307 308 if (!ht) 309 return NULL; 310 311 if (TC_U32_KEY(handle) == 0) 312 return ht; 313 314 return u32_lookup_key(ht, handle); 315 } 316 317 /* Protected by rtnl lock */ 318 static u32 gen_new_htid(struct tc_u_common *tp_c, struct tc_u_hnode *ptr) 319 { 320 int id = idr_alloc_cyclic(&tp_c->handle_idr, ptr, 1, 0x7FF, GFP_KERNEL); 321 if (id < 0) 322 return 0; 323 return id2handle(id); 324 } 325 326 static struct hlist_head *tc_u_common_hash; 327 328 #define U32_HASH_SHIFT 10 329 #define U32_HASH_SIZE (1 << U32_HASH_SHIFT) 330 331 static void *tc_u_common_ptr(const struct tcf_proto *tp) 332 { 333 struct tcf_block *block = tp->chain->block; 334 335 /* The block sharing is currently supported only 336 * for classless qdiscs. In that case we use block 337 * for tc_u_common identification. In case the 338 * block is not shared, block->q is a valid pointer 339 * and we can use that. That works for classful qdiscs. 340 */ 341 if (tcf_block_shared(block)) 342 return block; 343 else 344 return block->q; 345 } 346 347 static struct hlist_head *tc_u_hash(void *key) 348 { 349 return tc_u_common_hash + hash_ptr(key, U32_HASH_SHIFT); 350 } 351 352 static struct tc_u_common *tc_u_common_find(void *key) 353 { 354 struct tc_u_common *tc; 355 hlist_for_each_entry(tc, tc_u_hash(key), hnode) { 356 if (tc->ptr == key) 357 return tc; 358 } 359 return NULL; 360 } 361 362 static int u32_init(struct tcf_proto *tp) 363 { 364 struct tc_u_hnode *root_ht; 365 void *key = tc_u_common_ptr(tp); 366 struct tc_u_common *tp_c = tc_u_common_find(key); 367 368 root_ht = kzalloc(struct_size(root_ht, ht, 1), GFP_KERNEL); 369 if (root_ht == NULL) 370 return -ENOBUFS; 371 372 refcount_set(&root_ht->refcnt, 1); 373 root_ht->handle = tp_c ? gen_new_htid(tp_c, root_ht) : id2handle(0); 374 root_ht->prio = tp->prio; 375 root_ht->is_root = true; 376 idr_init(&root_ht->handle_idr); 377 378 if (tp_c == NULL) { 379 tp_c = kzalloc(sizeof(*tp_c), GFP_KERNEL); 380 if (tp_c == NULL) { 381 kfree(root_ht); 382 return -ENOBUFS; 383 } 384 refcount_set(&tp_c->refcnt, 1); 385 tp_c->ptr = key; 386 INIT_HLIST_NODE(&tp_c->hnode); 387 idr_init(&tp_c->handle_idr); 388 389 hlist_add_head(&tp_c->hnode, tc_u_hash(key)); 390 } else { 391 refcount_inc(&tp_c->refcnt); 392 } 393 394 RCU_INIT_POINTER(root_ht->next, tp_c->hlist); 395 rcu_assign_pointer(tp_c->hlist, root_ht); 396 397 /* root_ht must be destroyed when tcf_proto is destroyed */ 398 rcu_assign_pointer(tp->root, root_ht); 399 tp->data = tp_c; 400 return 0; 401 } 402 403 static void __u32_destroy_key(struct tc_u_knode *n) 404 { 405 struct tc_u_hnode *ht = rtnl_dereference(n->ht_down); 406 407 tcf_exts_destroy(&n->exts); 408 if (ht && refcount_dec_and_test(&ht->refcnt)) 409 kfree(ht); 410 kfree(n); 411 } 412 413 static void u32_destroy_key(struct tc_u_knode *n, bool free_pf) 414 { 415 tcf_exts_put_net(&n->exts); 416 #ifdef CONFIG_CLS_U32_PERF 417 if (free_pf) 418 free_percpu(n->pf); 419 #endif 420 #ifdef CONFIG_CLS_U32_MARK 421 if (free_pf) 422 free_percpu(n->pcpu_success); 423 #endif 424 __u32_destroy_key(n); 425 } 426 427 /* u32_delete_key_rcu should be called when free'ing a copied 428 * version of a tc_u_knode obtained from u32_init_knode(). When 429 * copies are obtained from u32_init_knode() the statistics are 430 * shared between the old and new copies to allow readers to 431 * continue to update the statistics during the copy. To support 432 * this the u32_delete_key_rcu variant does not free the percpu 433 * statistics. 434 */ 435 static void u32_delete_key_work(struct work_struct *work) 436 { 437 struct tc_u_knode *key = container_of(to_rcu_work(work), 438 struct tc_u_knode, 439 rwork); 440 rtnl_lock(); 441 u32_destroy_key(key, false); 442 rtnl_unlock(); 443 } 444 445 /* u32_delete_key_freepf_rcu is the rcu callback variant 446 * that free's the entire structure including the statistics 447 * percpu variables. Only use this if the key is not a copy 448 * returned by u32_init_knode(). See u32_delete_key_rcu() 449 * for the variant that should be used with keys return from 450 * u32_init_knode() 451 */ 452 static void u32_delete_key_freepf_work(struct work_struct *work) 453 { 454 struct tc_u_knode *key = container_of(to_rcu_work(work), 455 struct tc_u_knode, 456 rwork); 457 rtnl_lock(); 458 u32_destroy_key(key, true); 459 rtnl_unlock(); 460 } 461 462 static int u32_delete_key(struct tcf_proto *tp, struct tc_u_knode *key) 463 { 464 struct tc_u_common *tp_c = tp->data; 465 struct tc_u_knode __rcu **kp; 466 struct tc_u_knode *pkp; 467 struct tc_u_hnode *ht = rtnl_dereference(key->ht_up); 468 469 if (ht) { 470 kp = &ht->ht[TC_U32_HASH(key->handle)]; 471 for (pkp = rtnl_dereference(*kp); pkp; 472 kp = &pkp->next, pkp = rtnl_dereference(*kp)) { 473 if (pkp == key) { 474 RCU_INIT_POINTER(*kp, key->next); 475 tp_c->knodes--; 476 477 tcf_unbind_filter(tp, &key->res); 478 idr_remove(&ht->handle_idr, key->handle); 479 tcf_exts_get_net(&key->exts); 480 tcf_queue_work(&key->rwork, u32_delete_key_freepf_work); 481 return 0; 482 } 483 } 484 } 485 WARN_ON(1); 486 return 0; 487 } 488 489 static void u32_clear_hw_hnode(struct tcf_proto *tp, struct tc_u_hnode *h, 490 struct netlink_ext_ack *extack) 491 { 492 struct tcf_block *block = tp->chain->block; 493 struct tc_cls_u32_offload cls_u32 = {}; 494 495 tc_cls_common_offload_init(&cls_u32.common, tp, h->flags, extack); 496 cls_u32.command = TC_CLSU32_DELETE_HNODE; 497 cls_u32.hnode.divisor = h->divisor; 498 cls_u32.hnode.handle = h->handle; 499 cls_u32.hnode.prio = h->prio; 500 501 tc_setup_cb_call(block, TC_SETUP_CLSU32, &cls_u32, false, true); 502 } 503 504 static int u32_replace_hw_hnode(struct tcf_proto *tp, struct tc_u_hnode *h, 505 u32 flags, struct netlink_ext_ack *extack) 506 { 507 struct tcf_block *block = tp->chain->block; 508 struct tc_cls_u32_offload cls_u32 = {}; 509 bool skip_sw = tc_skip_sw(flags); 510 bool offloaded = false; 511 int err; 512 513 tc_cls_common_offload_init(&cls_u32.common, tp, flags, extack); 514 cls_u32.command = TC_CLSU32_NEW_HNODE; 515 cls_u32.hnode.divisor = h->divisor; 516 cls_u32.hnode.handle = h->handle; 517 cls_u32.hnode.prio = h->prio; 518 519 err = tc_setup_cb_call(block, TC_SETUP_CLSU32, &cls_u32, skip_sw, true); 520 if (err < 0) { 521 u32_clear_hw_hnode(tp, h, NULL); 522 return err; 523 } else if (err > 0) { 524 offloaded = true; 525 } 526 527 if (skip_sw && !offloaded) 528 return -EINVAL; 529 530 return 0; 531 } 532 533 static void u32_remove_hw_knode(struct tcf_proto *tp, struct tc_u_knode *n, 534 struct netlink_ext_ack *extack) 535 { 536 struct tcf_block *block = tp->chain->block; 537 struct tc_cls_u32_offload cls_u32 = {}; 538 539 tc_cls_common_offload_init(&cls_u32.common, tp, n->flags, extack); 540 cls_u32.command = TC_CLSU32_DELETE_KNODE; 541 cls_u32.knode.handle = n->handle; 542 543 tc_setup_cb_destroy(block, tp, TC_SETUP_CLSU32, &cls_u32, false, 544 &n->flags, &n->in_hw_count, true); 545 } 546 547 static int u32_replace_hw_knode(struct tcf_proto *tp, struct tc_u_knode *n, 548 u32 flags, struct netlink_ext_ack *extack) 549 { 550 struct tc_u_hnode *ht = rtnl_dereference(n->ht_down); 551 struct tcf_block *block = tp->chain->block; 552 struct tc_cls_u32_offload cls_u32 = {}; 553 bool skip_sw = tc_skip_sw(flags); 554 int err; 555 556 tc_cls_common_offload_init(&cls_u32.common, tp, flags, extack); 557 cls_u32.command = TC_CLSU32_REPLACE_KNODE; 558 cls_u32.knode.handle = n->handle; 559 cls_u32.knode.fshift = n->fshift; 560 #ifdef CONFIG_CLS_U32_MARK 561 cls_u32.knode.val = n->val; 562 cls_u32.knode.mask = n->mask; 563 #else 564 cls_u32.knode.val = 0; 565 cls_u32.knode.mask = 0; 566 #endif 567 cls_u32.knode.sel = &n->sel; 568 cls_u32.knode.res = &n->res; 569 cls_u32.knode.exts = &n->exts; 570 if (n->ht_down) 571 cls_u32.knode.link_handle = ht->handle; 572 573 err = tc_setup_cb_add(block, tp, TC_SETUP_CLSU32, &cls_u32, skip_sw, 574 &n->flags, &n->in_hw_count, true); 575 if (err) { 576 u32_remove_hw_knode(tp, n, NULL); 577 return err; 578 } 579 580 if (skip_sw && !(n->flags & TCA_CLS_FLAGS_IN_HW)) 581 return -EINVAL; 582 583 return 0; 584 } 585 586 static void u32_clear_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht, 587 struct netlink_ext_ack *extack) 588 { 589 struct tc_u_common *tp_c = tp->data; 590 struct tc_u_knode *n; 591 unsigned int h; 592 593 for (h = 0; h <= ht->divisor; h++) { 594 while ((n = rtnl_dereference(ht->ht[h])) != NULL) { 595 RCU_INIT_POINTER(ht->ht[h], 596 rtnl_dereference(n->next)); 597 tp_c->knodes--; 598 tcf_unbind_filter(tp, &n->res); 599 u32_remove_hw_knode(tp, n, extack); 600 idr_remove(&ht->handle_idr, n->handle); 601 if (tcf_exts_get_net(&n->exts)) 602 tcf_queue_work(&n->rwork, u32_delete_key_freepf_work); 603 else 604 u32_destroy_key(n, true); 605 } 606 } 607 } 608 609 static int u32_destroy_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht, 610 struct netlink_ext_ack *extack) 611 { 612 struct tc_u_common *tp_c = tp->data; 613 struct tc_u_hnode __rcu **hn; 614 struct tc_u_hnode *phn; 615 616 u32_clear_hnode(tp, ht, extack); 617 618 hn = &tp_c->hlist; 619 for (phn = rtnl_dereference(*hn); 620 phn; 621 hn = &phn->next, phn = rtnl_dereference(*hn)) { 622 if (phn == ht) { 623 u32_clear_hw_hnode(tp, ht, extack); 624 idr_destroy(&ht->handle_idr); 625 idr_remove(&tp_c->handle_idr, handle2id(ht->handle)); 626 RCU_INIT_POINTER(*hn, ht->next); 627 kfree_rcu(ht, rcu); 628 return 0; 629 } 630 } 631 632 return -ENOENT; 633 } 634 635 static void u32_destroy(struct tcf_proto *tp, bool rtnl_held, 636 struct netlink_ext_ack *extack) 637 { 638 struct tc_u_common *tp_c = tp->data; 639 struct tc_u_hnode *root_ht = rtnl_dereference(tp->root); 640 641 WARN_ON(root_ht == NULL); 642 643 if (root_ht && refcount_dec_and_test(&root_ht->refcnt)) 644 u32_destroy_hnode(tp, root_ht, extack); 645 646 if (refcount_dec_and_test(&tp_c->refcnt)) { 647 struct tc_u_hnode *ht; 648 649 hlist_del(&tp_c->hnode); 650 651 while ((ht = rtnl_dereference(tp_c->hlist)) != NULL) { 652 u32_clear_hnode(tp, ht, extack); 653 RCU_INIT_POINTER(tp_c->hlist, ht->next); 654 655 /* u32_destroy_key() will later free ht for us, if it's 656 * still referenced by some knode 657 */ 658 if (refcount_dec_and_test(&ht->refcnt)) 659 kfree_rcu(ht, rcu); 660 } 661 662 idr_destroy(&tp_c->handle_idr); 663 kfree(tp_c); 664 } 665 666 tp->data = NULL; 667 } 668 669 static int u32_delete(struct tcf_proto *tp, void *arg, bool *last, 670 bool rtnl_held, struct netlink_ext_ack *extack) 671 { 672 struct tc_u_hnode *ht = arg; 673 struct tc_u_common *tp_c = tp->data; 674 int ret = 0; 675 676 if (TC_U32_KEY(ht->handle)) { 677 u32_remove_hw_knode(tp, (struct tc_u_knode *)ht, extack); 678 ret = u32_delete_key(tp, (struct tc_u_knode *)ht); 679 goto out; 680 } 681 682 if (ht->is_root) { 683 NL_SET_ERR_MSG_MOD(extack, "Not allowed to delete root node"); 684 return -EINVAL; 685 } 686 687 if (refcount_dec_if_one(&ht->refcnt)) { 688 u32_destroy_hnode(tp, ht, extack); 689 } else { 690 NL_SET_ERR_MSG_MOD(extack, "Can not delete in-use filter"); 691 return -EBUSY; 692 } 693 694 out: 695 *last = refcount_read(&tp_c->refcnt) == 1 && tp_c->knodes == 0; 696 return ret; 697 } 698 699 static u32 gen_new_kid(struct tc_u_hnode *ht, u32 htid) 700 { 701 u32 index = htid | 0x800; 702 u32 max = htid | 0xFFF; 703 704 if (idr_alloc_u32(&ht->handle_idr, NULL, &index, max, GFP_KERNEL)) { 705 index = htid + 1; 706 if (idr_alloc_u32(&ht->handle_idr, NULL, &index, max, 707 GFP_KERNEL)) 708 index = max; 709 } 710 711 return index; 712 } 713 714 static const struct nla_policy u32_policy[TCA_U32_MAX + 1] = { 715 [TCA_U32_CLASSID] = { .type = NLA_U32 }, 716 [TCA_U32_HASH] = { .type = NLA_U32 }, 717 [TCA_U32_LINK] = { .type = NLA_U32 }, 718 [TCA_U32_DIVISOR] = { .type = NLA_U32 }, 719 [TCA_U32_SEL] = { .len = sizeof(struct tc_u32_sel) }, 720 [TCA_U32_INDEV] = { .type = NLA_STRING, .len = IFNAMSIZ }, 721 [TCA_U32_MARK] = { .len = sizeof(struct tc_u32_mark) }, 722 [TCA_U32_FLAGS] = { .type = NLA_U32 }, 723 }; 724 725 static void u32_unbind_filter(struct tcf_proto *tp, struct tc_u_knode *n, 726 struct nlattr **tb) 727 { 728 if (tb[TCA_U32_CLASSID]) 729 tcf_unbind_filter(tp, &n->res); 730 } 731 732 static void u32_bind_filter(struct tcf_proto *tp, struct tc_u_knode *n, 733 unsigned long base, struct nlattr **tb) 734 { 735 if (tb[TCA_U32_CLASSID]) { 736 n->res.classid = nla_get_u32(tb[TCA_U32_CLASSID]); 737 tcf_bind_filter(tp, &n->res, base); 738 } 739 } 740 741 static int u32_set_parms(struct net *net, struct tcf_proto *tp, 742 struct tc_u_knode *n, struct nlattr **tb, 743 struct nlattr *est, u32 flags, u32 fl_flags, 744 struct netlink_ext_ack *extack) 745 { 746 int err, ifindex = -1; 747 748 err = tcf_exts_validate_ex(net, tp, tb, est, &n->exts, flags, 749 fl_flags, extack); 750 if (err < 0) 751 return err; 752 753 if (tb[TCA_U32_INDEV]) { 754 ifindex = tcf_change_indev(net, tb[TCA_U32_INDEV], extack); 755 if (ifindex < 0) 756 return -EINVAL; 757 } 758 759 if (tb[TCA_U32_LINK]) { 760 u32 handle = nla_get_u32(tb[TCA_U32_LINK]); 761 struct tc_u_hnode *ht_down = NULL, *ht_old; 762 763 if (TC_U32_KEY(handle)) { 764 NL_SET_ERR_MSG_MOD(extack, "u32 Link handle must be a hash table"); 765 return -EINVAL; 766 } 767 768 if (handle) { 769 ht_down = u32_lookup_ht(tp->data, handle); 770 771 if (!ht_down) { 772 NL_SET_ERR_MSG_MOD(extack, "Link hash table not found"); 773 return -EINVAL; 774 } 775 if (ht_down->is_root) { 776 NL_SET_ERR_MSG_MOD(extack, "Not linking to root node"); 777 return -EINVAL; 778 } 779 refcount_inc(&ht_down->refcnt); 780 } 781 782 ht_old = rtnl_dereference(n->ht_down); 783 rcu_assign_pointer(n->ht_down, ht_down); 784 785 if (ht_old) 786 refcount_dec(&ht_old->refcnt); 787 } 788 789 if (ifindex >= 0) 790 n->ifindex = ifindex; 791 792 return 0; 793 } 794 795 static void u32_replace_knode(struct tcf_proto *tp, struct tc_u_common *tp_c, 796 struct tc_u_knode *n) 797 { 798 struct tc_u_knode __rcu **ins; 799 struct tc_u_knode *pins; 800 struct tc_u_hnode *ht; 801 802 if (TC_U32_HTID(n->handle) == TC_U32_ROOT) 803 ht = rtnl_dereference(tp->root); 804 else 805 ht = u32_lookup_ht(tp_c, TC_U32_HTID(n->handle)); 806 807 ins = &ht->ht[TC_U32_HASH(n->handle)]; 808 809 /* The node must always exist for it to be replaced if this is not the 810 * case then something went very wrong elsewhere. 811 */ 812 for (pins = rtnl_dereference(*ins); ; 813 ins = &pins->next, pins = rtnl_dereference(*ins)) 814 if (pins->handle == n->handle) 815 break; 816 817 idr_replace(&ht->handle_idr, n, n->handle); 818 RCU_INIT_POINTER(n->next, pins->next); 819 rcu_assign_pointer(*ins, n); 820 } 821 822 static struct tc_u_knode *u32_init_knode(struct net *net, struct tcf_proto *tp, 823 struct tc_u_knode *n) 824 { 825 struct tc_u_hnode *ht = rtnl_dereference(n->ht_down); 826 struct tc_u32_sel *s = &n->sel; 827 struct tc_u_knode *new; 828 829 new = kzalloc(struct_size(new, sel.keys, s->nkeys), GFP_KERNEL); 830 if (!new) 831 return NULL; 832 833 RCU_INIT_POINTER(new->next, n->next); 834 new->handle = n->handle; 835 RCU_INIT_POINTER(new->ht_up, n->ht_up); 836 837 new->ifindex = n->ifindex; 838 new->fshift = n->fshift; 839 new->flags = n->flags; 840 RCU_INIT_POINTER(new->ht_down, ht); 841 842 #ifdef CONFIG_CLS_U32_PERF 843 /* Statistics may be incremented by readers during update 844 * so we must keep them in tact. When the node is later destroyed 845 * a special destroy call must be made to not free the pf memory. 846 */ 847 new->pf = n->pf; 848 #endif 849 850 #ifdef CONFIG_CLS_U32_MARK 851 new->val = n->val; 852 new->mask = n->mask; 853 /* Similarly success statistics must be moved as pointers */ 854 new->pcpu_success = n->pcpu_success; 855 #endif 856 memcpy(&new->sel, s, struct_size(s, keys, s->nkeys)); 857 858 if (tcf_exts_init(&new->exts, net, TCA_U32_ACT, TCA_U32_POLICE)) { 859 kfree(new); 860 return NULL; 861 } 862 863 /* bump reference count as long as we hold pointer to structure */ 864 if (ht) 865 refcount_inc(&ht->refcnt); 866 867 return new; 868 } 869 870 static int u32_change(struct net *net, struct sk_buff *in_skb, 871 struct tcf_proto *tp, unsigned long base, u32 handle, 872 struct nlattr **tca, void **arg, u32 flags, 873 struct netlink_ext_ack *extack) 874 { 875 struct tc_u_common *tp_c = tp->data; 876 struct tc_u_hnode *ht; 877 struct tc_u_knode *n; 878 struct tc_u32_sel *s; 879 struct nlattr *opt = tca[TCA_OPTIONS]; 880 struct nlattr *tb[TCA_U32_MAX + 1]; 881 u32 htid, userflags = 0; 882 size_t sel_size; 883 int err; 884 885 if (!opt) { 886 if (handle) { 887 NL_SET_ERR_MSG_MOD(extack, "Filter handle requires options"); 888 return -EINVAL; 889 } else { 890 return 0; 891 } 892 } 893 894 err = nla_parse_nested_deprecated(tb, TCA_U32_MAX, opt, u32_policy, 895 extack); 896 if (err < 0) 897 return err; 898 899 if (tb[TCA_U32_FLAGS]) { 900 userflags = nla_get_u32(tb[TCA_U32_FLAGS]); 901 if (!tc_flags_valid(userflags)) { 902 NL_SET_ERR_MSG_MOD(extack, "Invalid filter flags"); 903 return -EINVAL; 904 } 905 } 906 907 n = *arg; 908 if (n) { 909 struct tc_u_knode *new; 910 911 if (TC_U32_KEY(n->handle) == 0) { 912 NL_SET_ERR_MSG_MOD(extack, "Key node id cannot be zero"); 913 return -EINVAL; 914 } 915 916 if ((n->flags ^ userflags) & 917 ~(TCA_CLS_FLAGS_IN_HW | TCA_CLS_FLAGS_NOT_IN_HW)) { 918 NL_SET_ERR_MSG_MOD(extack, "Key node flags do not match passed flags"); 919 return -EINVAL; 920 } 921 922 new = u32_init_knode(net, tp, n); 923 if (!new) 924 return -ENOMEM; 925 926 err = u32_set_parms(net, tp, new, tb, tca[TCA_RATE], 927 flags, new->flags, extack); 928 929 if (err) { 930 __u32_destroy_key(new); 931 return err; 932 } 933 934 u32_bind_filter(tp, new, base, tb); 935 936 err = u32_replace_hw_knode(tp, new, flags, extack); 937 if (err) { 938 u32_unbind_filter(tp, new, tb); 939 940 if (tb[TCA_U32_LINK]) { 941 struct tc_u_hnode *ht_old; 942 943 ht_old = rtnl_dereference(n->ht_down); 944 if (ht_old) 945 refcount_inc(&ht_old->refcnt); 946 } 947 __u32_destroy_key(new); 948 return err; 949 } 950 951 if (!tc_in_hw(new->flags)) 952 new->flags |= TCA_CLS_FLAGS_NOT_IN_HW; 953 954 u32_replace_knode(tp, tp_c, new); 955 tcf_unbind_filter(tp, &n->res); 956 tcf_exts_get_net(&n->exts); 957 tcf_queue_work(&n->rwork, u32_delete_key_work); 958 return 0; 959 } 960 961 if (tb[TCA_U32_DIVISOR]) { 962 unsigned int divisor = nla_get_u32(tb[TCA_U32_DIVISOR]); 963 964 if (!is_power_of_2(divisor)) { 965 NL_SET_ERR_MSG_MOD(extack, "Divisor is not a power of 2"); 966 return -EINVAL; 967 } 968 if (divisor-- > 0x100) { 969 NL_SET_ERR_MSG_MOD(extack, "Exceeded maximum 256 hash buckets"); 970 return -EINVAL; 971 } 972 if (TC_U32_KEY(handle)) { 973 NL_SET_ERR_MSG_MOD(extack, "Divisor can only be used on a hash table"); 974 return -EINVAL; 975 } 976 ht = kzalloc(struct_size(ht, ht, divisor + 1), GFP_KERNEL); 977 if (ht == NULL) 978 return -ENOBUFS; 979 if (handle == 0) { 980 handle = gen_new_htid(tp->data, ht); 981 if (handle == 0) { 982 kfree(ht); 983 return -ENOMEM; 984 } 985 } else { 986 err = idr_alloc_u32(&tp_c->handle_idr, ht, &handle, 987 handle, GFP_KERNEL); 988 if (err) { 989 kfree(ht); 990 return err; 991 } 992 } 993 refcount_set(&ht->refcnt, 1); 994 ht->divisor = divisor; 995 ht->handle = handle; 996 ht->prio = tp->prio; 997 idr_init(&ht->handle_idr); 998 ht->flags = userflags; 999 1000 err = u32_replace_hw_hnode(tp, ht, userflags, extack); 1001 if (err) { 1002 idr_remove(&tp_c->handle_idr, handle2id(handle)); 1003 kfree(ht); 1004 return err; 1005 } 1006 1007 RCU_INIT_POINTER(ht->next, tp_c->hlist); 1008 rcu_assign_pointer(tp_c->hlist, ht); 1009 *arg = ht; 1010 1011 return 0; 1012 } 1013 1014 if (tb[TCA_U32_HASH]) { 1015 htid = nla_get_u32(tb[TCA_U32_HASH]); 1016 if (TC_U32_HTID(htid) == TC_U32_ROOT) { 1017 ht = rtnl_dereference(tp->root); 1018 htid = ht->handle; 1019 } else { 1020 ht = u32_lookup_ht(tp->data, TC_U32_HTID(htid)); 1021 if (!ht) { 1022 NL_SET_ERR_MSG_MOD(extack, "Specified hash table not found"); 1023 return -EINVAL; 1024 } 1025 } 1026 } else { 1027 ht = rtnl_dereference(tp->root); 1028 htid = ht->handle; 1029 } 1030 1031 if (ht->divisor < TC_U32_HASH(htid)) { 1032 NL_SET_ERR_MSG_MOD(extack, "Specified hash table buckets exceed configured value"); 1033 return -EINVAL; 1034 } 1035 1036 /* At this point, we need to derive the new handle that will be used to 1037 * uniquely map the identity of this table match entry. The 1038 * identity of the entry that we need to construct is 32 bits made of: 1039 * htid(12b):bucketid(8b):node/entryid(12b) 1040 * 1041 * At this point _we have the table(ht)_ in which we will insert this 1042 * entry. We carry the table's id in variable "htid". 1043 * Note that earlier code picked the ht selection either by a) the user 1044 * providing the htid specified via TCA_U32_HASH attribute or b) when 1045 * no such attribute is passed then the root ht, is default to at ID 1046 * 0x[800][00][000]. Rule: the root table has a single bucket with ID 0. 1047 * If OTOH the user passed us the htid, they may also pass a bucketid of 1048 * choice. 0 is fine. For example a user htid is 0x[600][01][000] it is 1049 * indicating hash bucketid of 1. Rule: the entry/node ID _cannot_ be 1050 * passed via the htid, so even if it was non-zero it will be ignored. 1051 * 1052 * We may also have a handle, if the user passed one. The handle also 1053 * carries the same addressing of htid(12b):bucketid(8b):node/entryid(12b). 1054 * Rule: the bucketid on the handle is ignored even if one was passed; 1055 * rather the value on "htid" is always assumed to be the bucketid. 1056 */ 1057 if (handle) { 1058 /* Rule: The htid from handle and tableid from htid must match */ 1059 if (TC_U32_HTID(handle) && TC_U32_HTID(handle ^ htid)) { 1060 NL_SET_ERR_MSG_MOD(extack, "Handle specified hash table address mismatch"); 1061 return -EINVAL; 1062 } 1063 /* Ok, so far we have a valid htid(12b):bucketid(8b) but we 1064 * need to finalize the table entry identification with the last 1065 * part - the node/entryid(12b)). Rule: Nodeid _cannot be 0_ for 1066 * entries. Rule: nodeid of 0 is reserved only for tables(see 1067 * earlier code which processes TC_U32_DIVISOR attribute). 1068 * Rule: The nodeid can only be derived from the handle (and not 1069 * htid). 1070 * Rule: if the handle specified zero for the node id example 1071 * 0x60000000, then pick a new nodeid from the pool of IDs 1072 * this hash table has been allocating from. 1073 * If OTOH it is specified (i.e for example the user passed a 1074 * handle such as 0x60000123), then we use it generate our final 1075 * handle which is used to uniquely identify the match entry. 1076 */ 1077 if (!TC_U32_NODE(handle)) { 1078 handle = gen_new_kid(ht, htid); 1079 } else { 1080 handle = htid | TC_U32_NODE(handle); 1081 err = idr_alloc_u32(&ht->handle_idr, NULL, &handle, 1082 handle, GFP_KERNEL); 1083 if (err) 1084 return err; 1085 } 1086 } else { 1087 /* The user did not give us a handle; lets just generate one 1088 * from the table's pool of nodeids. 1089 */ 1090 handle = gen_new_kid(ht, htid); 1091 } 1092 1093 if (tb[TCA_U32_SEL] == NULL) { 1094 NL_SET_ERR_MSG_MOD(extack, "Selector not specified"); 1095 err = -EINVAL; 1096 goto erridr; 1097 } 1098 1099 s = nla_data(tb[TCA_U32_SEL]); 1100 sel_size = struct_size(s, keys, s->nkeys); 1101 if (nla_len(tb[TCA_U32_SEL]) < sel_size) { 1102 err = -EINVAL; 1103 goto erridr; 1104 } 1105 1106 n = kzalloc(struct_size(n, sel.keys, s->nkeys), GFP_KERNEL); 1107 if (n == NULL) { 1108 err = -ENOBUFS; 1109 goto erridr; 1110 } 1111 1112 #ifdef CONFIG_CLS_U32_PERF 1113 n->pf = __alloc_percpu(struct_size(n->pf, kcnts, s->nkeys), 1114 __alignof__(struct tc_u32_pcnt)); 1115 if (!n->pf) { 1116 err = -ENOBUFS; 1117 goto errfree; 1118 } 1119 #endif 1120 1121 unsafe_memcpy(&n->sel, s, sel_size, 1122 /* A composite flex-array structure destination, 1123 * which was correctly sized with struct_size(), 1124 * bounds-checked against nla_len(), and allocated 1125 * above. */); 1126 RCU_INIT_POINTER(n->ht_up, ht); 1127 n->handle = handle; 1128 n->fshift = s->hmask ? ffs(ntohl(s->hmask)) - 1 : 0; 1129 n->flags = userflags; 1130 1131 err = tcf_exts_init(&n->exts, net, TCA_U32_ACT, TCA_U32_POLICE); 1132 if (err < 0) 1133 goto errout; 1134 1135 #ifdef CONFIG_CLS_U32_MARK 1136 n->pcpu_success = alloc_percpu(u32); 1137 if (!n->pcpu_success) { 1138 err = -ENOMEM; 1139 goto errout; 1140 } 1141 1142 if (tb[TCA_U32_MARK]) { 1143 struct tc_u32_mark *mark; 1144 1145 mark = nla_data(tb[TCA_U32_MARK]); 1146 n->val = mark->val; 1147 n->mask = mark->mask; 1148 } 1149 #endif 1150 1151 err = u32_set_parms(net, tp, n, tb, tca[TCA_RATE], 1152 flags, n->flags, extack); 1153 1154 u32_bind_filter(tp, n, base, tb); 1155 1156 if (err == 0) { 1157 struct tc_u_knode __rcu **ins; 1158 struct tc_u_knode *pins; 1159 1160 err = u32_replace_hw_knode(tp, n, flags, extack); 1161 if (err) 1162 goto errunbind; 1163 1164 if (!tc_in_hw(n->flags)) 1165 n->flags |= TCA_CLS_FLAGS_NOT_IN_HW; 1166 1167 ins = &ht->ht[TC_U32_HASH(handle)]; 1168 for (pins = rtnl_dereference(*ins); pins; 1169 ins = &pins->next, pins = rtnl_dereference(*ins)) 1170 if (TC_U32_NODE(handle) < TC_U32_NODE(pins->handle)) 1171 break; 1172 1173 RCU_INIT_POINTER(n->next, pins); 1174 rcu_assign_pointer(*ins, n); 1175 tp_c->knodes++; 1176 *arg = n; 1177 return 0; 1178 } 1179 1180 errunbind: 1181 u32_unbind_filter(tp, n, tb); 1182 1183 #ifdef CONFIG_CLS_U32_MARK 1184 free_percpu(n->pcpu_success); 1185 #endif 1186 1187 errout: 1188 tcf_exts_destroy(&n->exts); 1189 #ifdef CONFIG_CLS_U32_PERF 1190 errfree: 1191 free_percpu(n->pf); 1192 #endif 1193 kfree(n); 1194 erridr: 1195 idr_remove(&ht->handle_idr, handle); 1196 return err; 1197 } 1198 1199 static void u32_walk(struct tcf_proto *tp, struct tcf_walker *arg, 1200 bool rtnl_held) 1201 { 1202 struct tc_u_common *tp_c = tp->data; 1203 struct tc_u_hnode *ht; 1204 struct tc_u_knode *n; 1205 unsigned int h; 1206 1207 if (arg->stop) 1208 return; 1209 1210 for (ht = rtnl_dereference(tp_c->hlist); 1211 ht; 1212 ht = rtnl_dereference(ht->next)) { 1213 if (ht->prio != tp->prio) 1214 continue; 1215 1216 if (!tc_cls_stats_dump(tp, arg, ht)) 1217 return; 1218 1219 for (h = 0; h <= ht->divisor; h++) { 1220 for (n = rtnl_dereference(ht->ht[h]); 1221 n; 1222 n = rtnl_dereference(n->next)) { 1223 if (!tc_cls_stats_dump(tp, arg, n)) 1224 return; 1225 } 1226 } 1227 } 1228 } 1229 1230 static int u32_reoffload_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht, 1231 bool add, flow_setup_cb_t *cb, void *cb_priv, 1232 struct netlink_ext_ack *extack) 1233 { 1234 struct tc_cls_u32_offload cls_u32 = {}; 1235 int err; 1236 1237 tc_cls_common_offload_init(&cls_u32.common, tp, ht->flags, extack); 1238 cls_u32.command = add ? TC_CLSU32_NEW_HNODE : TC_CLSU32_DELETE_HNODE; 1239 cls_u32.hnode.divisor = ht->divisor; 1240 cls_u32.hnode.handle = ht->handle; 1241 cls_u32.hnode.prio = ht->prio; 1242 1243 err = cb(TC_SETUP_CLSU32, &cls_u32, cb_priv); 1244 if (err && add && tc_skip_sw(ht->flags)) 1245 return err; 1246 1247 return 0; 1248 } 1249 1250 static int u32_reoffload_knode(struct tcf_proto *tp, struct tc_u_knode *n, 1251 bool add, flow_setup_cb_t *cb, void *cb_priv, 1252 struct netlink_ext_ack *extack) 1253 { 1254 struct tc_u_hnode *ht = rtnl_dereference(n->ht_down); 1255 struct tcf_block *block = tp->chain->block; 1256 struct tc_cls_u32_offload cls_u32 = {}; 1257 1258 tc_cls_common_offload_init(&cls_u32.common, tp, n->flags, extack); 1259 cls_u32.command = add ? 1260 TC_CLSU32_REPLACE_KNODE : TC_CLSU32_DELETE_KNODE; 1261 cls_u32.knode.handle = n->handle; 1262 1263 if (add) { 1264 cls_u32.knode.fshift = n->fshift; 1265 #ifdef CONFIG_CLS_U32_MARK 1266 cls_u32.knode.val = n->val; 1267 cls_u32.knode.mask = n->mask; 1268 #else 1269 cls_u32.knode.val = 0; 1270 cls_u32.knode.mask = 0; 1271 #endif 1272 cls_u32.knode.sel = &n->sel; 1273 cls_u32.knode.res = &n->res; 1274 cls_u32.knode.exts = &n->exts; 1275 if (n->ht_down) 1276 cls_u32.knode.link_handle = ht->handle; 1277 } 1278 1279 return tc_setup_cb_reoffload(block, tp, add, cb, TC_SETUP_CLSU32, 1280 &cls_u32, cb_priv, &n->flags, 1281 &n->in_hw_count); 1282 } 1283 1284 static int u32_reoffload(struct tcf_proto *tp, bool add, flow_setup_cb_t *cb, 1285 void *cb_priv, struct netlink_ext_ack *extack) 1286 { 1287 struct tc_u_common *tp_c = tp->data; 1288 struct tc_u_hnode *ht; 1289 struct tc_u_knode *n; 1290 unsigned int h; 1291 int err; 1292 1293 for (ht = rtnl_dereference(tp_c->hlist); 1294 ht; 1295 ht = rtnl_dereference(ht->next)) { 1296 if (ht->prio != tp->prio) 1297 continue; 1298 1299 /* When adding filters to a new dev, try to offload the 1300 * hashtable first. When removing, do the filters before the 1301 * hashtable. 1302 */ 1303 if (add && !tc_skip_hw(ht->flags)) { 1304 err = u32_reoffload_hnode(tp, ht, add, cb, cb_priv, 1305 extack); 1306 if (err) 1307 return err; 1308 } 1309 1310 for (h = 0; h <= ht->divisor; h++) { 1311 for (n = rtnl_dereference(ht->ht[h]); 1312 n; 1313 n = rtnl_dereference(n->next)) { 1314 if (tc_skip_hw(n->flags)) 1315 continue; 1316 1317 err = u32_reoffload_knode(tp, n, add, cb, 1318 cb_priv, extack); 1319 if (err) 1320 return err; 1321 } 1322 } 1323 1324 if (!add && !tc_skip_hw(ht->flags)) 1325 u32_reoffload_hnode(tp, ht, add, cb, cb_priv, extack); 1326 } 1327 1328 return 0; 1329 } 1330 1331 static void u32_bind_class(void *fh, u32 classid, unsigned long cl, void *q, 1332 unsigned long base) 1333 { 1334 struct tc_u_knode *n = fh; 1335 1336 tc_cls_bind_class(classid, cl, q, &n->res, base); 1337 } 1338 1339 static int u32_dump(struct net *net, struct tcf_proto *tp, void *fh, 1340 struct sk_buff *skb, struct tcmsg *t, bool rtnl_held) 1341 { 1342 struct tc_u_knode *n = fh; 1343 struct tc_u_hnode *ht_up, *ht_down; 1344 struct nlattr *nest; 1345 1346 if (n == NULL) 1347 return skb->len; 1348 1349 t->tcm_handle = n->handle; 1350 1351 nest = nla_nest_start_noflag(skb, TCA_OPTIONS); 1352 if (nest == NULL) 1353 goto nla_put_failure; 1354 1355 if (TC_U32_KEY(n->handle) == 0) { 1356 struct tc_u_hnode *ht = fh; 1357 u32 divisor = ht->divisor + 1; 1358 1359 if (nla_put_u32(skb, TCA_U32_DIVISOR, divisor)) 1360 goto nla_put_failure; 1361 } else { 1362 #ifdef CONFIG_CLS_U32_PERF 1363 struct tc_u32_pcnt *gpf; 1364 int cpu; 1365 #endif 1366 1367 if (nla_put(skb, TCA_U32_SEL, struct_size(&n->sel, keys, n->sel.nkeys), 1368 &n->sel)) 1369 goto nla_put_failure; 1370 1371 ht_up = rtnl_dereference(n->ht_up); 1372 if (ht_up) { 1373 u32 htid = n->handle & 0xFFFFF000; 1374 if (nla_put_u32(skb, TCA_U32_HASH, htid)) 1375 goto nla_put_failure; 1376 } 1377 if (n->res.classid && 1378 nla_put_u32(skb, TCA_U32_CLASSID, n->res.classid)) 1379 goto nla_put_failure; 1380 1381 ht_down = rtnl_dereference(n->ht_down); 1382 if (ht_down && 1383 nla_put_u32(skb, TCA_U32_LINK, ht_down->handle)) 1384 goto nla_put_failure; 1385 1386 if (n->flags && nla_put_u32(skb, TCA_U32_FLAGS, n->flags)) 1387 goto nla_put_failure; 1388 1389 #ifdef CONFIG_CLS_U32_MARK 1390 if ((n->val || n->mask)) { 1391 struct tc_u32_mark mark = {.val = n->val, 1392 .mask = n->mask, 1393 .success = 0}; 1394 int cpum; 1395 1396 for_each_possible_cpu(cpum) { 1397 __u32 cnt = *per_cpu_ptr(n->pcpu_success, cpum); 1398 1399 mark.success += cnt; 1400 } 1401 1402 if (nla_put(skb, TCA_U32_MARK, sizeof(mark), &mark)) 1403 goto nla_put_failure; 1404 } 1405 #endif 1406 1407 if (tcf_exts_dump(skb, &n->exts) < 0) 1408 goto nla_put_failure; 1409 1410 if (n->ifindex) { 1411 struct net_device *dev; 1412 dev = __dev_get_by_index(net, n->ifindex); 1413 if (dev && nla_put_string(skb, TCA_U32_INDEV, dev->name)) 1414 goto nla_put_failure; 1415 } 1416 #ifdef CONFIG_CLS_U32_PERF 1417 gpf = kzalloc(struct_size(gpf, kcnts, n->sel.nkeys), GFP_KERNEL); 1418 if (!gpf) 1419 goto nla_put_failure; 1420 1421 for_each_possible_cpu(cpu) { 1422 int i; 1423 struct tc_u32_pcnt *pf = per_cpu_ptr(n->pf, cpu); 1424 1425 gpf->rcnt += pf->rcnt; 1426 gpf->rhit += pf->rhit; 1427 for (i = 0; i < n->sel.nkeys; i++) 1428 gpf->kcnts[i] += pf->kcnts[i]; 1429 } 1430 1431 if (nla_put_64bit(skb, TCA_U32_PCNT, struct_size(gpf, kcnts, n->sel.nkeys), 1432 gpf, TCA_U32_PAD)) { 1433 kfree(gpf); 1434 goto nla_put_failure; 1435 } 1436 kfree(gpf); 1437 #endif 1438 } 1439 1440 nla_nest_end(skb, nest); 1441 1442 if (TC_U32_KEY(n->handle)) 1443 if (tcf_exts_dump_stats(skb, &n->exts) < 0) 1444 goto nla_put_failure; 1445 return skb->len; 1446 1447 nla_put_failure: 1448 nla_nest_cancel(skb, nest); 1449 return -1; 1450 } 1451 1452 static struct tcf_proto_ops cls_u32_ops __read_mostly = { 1453 .kind = "u32", 1454 .classify = u32_classify, 1455 .init = u32_init, 1456 .destroy = u32_destroy, 1457 .get = u32_get, 1458 .change = u32_change, 1459 .delete = u32_delete, 1460 .walk = u32_walk, 1461 .reoffload = u32_reoffload, 1462 .dump = u32_dump, 1463 .bind_class = u32_bind_class, 1464 .owner = THIS_MODULE, 1465 }; 1466 1467 static int __init init_u32(void) 1468 { 1469 int i, ret; 1470 1471 pr_info("u32 classifier\n"); 1472 #ifdef CONFIG_CLS_U32_PERF 1473 pr_info(" Performance counters on\n"); 1474 #endif 1475 pr_info(" input device check on\n"); 1476 #ifdef CONFIG_NET_CLS_ACT 1477 pr_info(" Actions configured\n"); 1478 #endif 1479 tc_u_common_hash = kvmalloc_array(U32_HASH_SIZE, 1480 sizeof(struct hlist_head), 1481 GFP_KERNEL); 1482 if (!tc_u_common_hash) 1483 return -ENOMEM; 1484 1485 for (i = 0; i < U32_HASH_SIZE; i++) 1486 INIT_HLIST_HEAD(&tc_u_common_hash[i]); 1487 1488 ret = register_tcf_proto_ops(&cls_u32_ops); 1489 if (ret) 1490 kvfree(tc_u_common_hash); 1491 return ret; 1492 } 1493 1494 static void __exit exit_u32(void) 1495 { 1496 unregister_tcf_proto_ops(&cls_u32_ops); 1497 kvfree(tc_u_common_hash); 1498 } 1499 1500 module_init(init_u32) 1501 module_exit(exit_u32) 1502 MODULE_LICENSE("GPL"); 1503