1 /* 2 * net/sched/cls_u32.c Ugly (or Universal) 32bit key Packet Classifier. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 10 * 11 * The filters are packed to hash tables of key nodes 12 * with a set of 32bit key/mask pairs at every node. 13 * Nodes reference next level hash tables etc. 14 * 15 * This scheme is the best universal classifier I managed to 16 * invent; it is not super-fast, but it is not slow (provided you 17 * program it correctly), and general enough. And its relative 18 * speed grows as the number of rules becomes larger. 19 * 20 * It seems that it represents the best middle point between 21 * speed and manageability both by human and by machine. 22 * 23 * It is especially useful for link sharing combined with QoS; 24 * pure RSVP doesn't need such a general approach and can use 25 * much simpler (and faster) schemes, sort of cls_rsvp.c. 26 * 27 * JHS: We should remove the CONFIG_NET_CLS_IND from here 28 * eventually when the meta match extension is made available 29 * 30 * nfmark match added by Catalin(ux aka Dino) BOIE <catab at umbrella.ro> 31 */ 32 33 #include <linux/module.h> 34 #include <linux/slab.h> 35 #include <linux/types.h> 36 #include <linux/kernel.h> 37 #include <linux/string.h> 38 #include <linux/errno.h> 39 #include <linux/percpu.h> 40 #include <linux/rtnetlink.h> 41 #include <linux/skbuff.h> 42 #include <linux/bitmap.h> 43 #include <net/netlink.h> 44 #include <net/act_api.h> 45 #include <net/pkt_cls.h> 46 #include <linux/netdevice.h> 47 48 struct tc_u_knode { 49 struct tc_u_knode __rcu *next; 50 u32 handle; 51 struct tc_u_hnode __rcu *ht_up; 52 struct tcf_exts exts; 53 #ifdef CONFIG_NET_CLS_IND 54 int ifindex; 55 #endif 56 u8 fshift; 57 struct tcf_result res; 58 struct tc_u_hnode __rcu *ht_down; 59 #ifdef CONFIG_CLS_U32_PERF 60 struct tc_u32_pcnt __percpu *pf; 61 #endif 62 u32 flags; 63 #ifdef CONFIG_CLS_U32_MARK 64 u32 val; 65 u32 mask; 66 u32 __percpu *pcpu_success; 67 #endif 68 struct tcf_proto *tp; 69 struct rcu_head rcu; 70 /* The 'sel' field MUST be the last field in structure to allow for 71 * tc_u32_keys allocated at end of structure. 72 */ 73 struct tc_u32_sel sel; 74 }; 75 76 struct tc_u_hnode { 77 struct tc_u_hnode __rcu *next; 78 u32 handle; 79 u32 prio; 80 struct tc_u_common *tp_c; 81 int refcnt; 82 unsigned int divisor; 83 struct rcu_head rcu; 84 /* The 'ht' field MUST be the last field in structure to allow for 85 * more entries allocated at end of structure. 86 */ 87 struct tc_u_knode __rcu *ht[1]; 88 }; 89 90 struct tc_u_common { 91 struct tc_u_hnode __rcu *hlist; 92 struct Qdisc *q; 93 int refcnt; 94 u32 hgenerator; 95 struct rcu_head rcu; 96 }; 97 98 static inline unsigned int u32_hash_fold(__be32 key, 99 const struct tc_u32_sel *sel, 100 u8 fshift) 101 { 102 unsigned int h = ntohl(key & sel->hmask) >> fshift; 103 104 return h; 105 } 106 107 static int u32_classify(struct sk_buff *skb, const struct tcf_proto *tp, 108 struct tcf_result *res) 109 { 110 struct { 111 struct tc_u_knode *knode; 112 unsigned int off; 113 } stack[TC_U32_MAXDEPTH]; 114 115 struct tc_u_hnode *ht = rcu_dereference_bh(tp->root); 116 unsigned int off = skb_network_offset(skb); 117 struct tc_u_knode *n; 118 int sdepth = 0; 119 int off2 = 0; 120 int sel = 0; 121 #ifdef CONFIG_CLS_U32_PERF 122 int j; 123 #endif 124 int i, r; 125 126 next_ht: 127 n = rcu_dereference_bh(ht->ht[sel]); 128 129 next_knode: 130 if (n) { 131 struct tc_u32_key *key = n->sel.keys; 132 133 #ifdef CONFIG_CLS_U32_PERF 134 __this_cpu_inc(n->pf->rcnt); 135 j = 0; 136 #endif 137 138 if (tc_skip_sw(n->flags)) { 139 n = rcu_dereference_bh(n->next); 140 goto next_knode; 141 } 142 143 #ifdef CONFIG_CLS_U32_MARK 144 if ((skb->mark & n->mask) != n->val) { 145 n = rcu_dereference_bh(n->next); 146 goto next_knode; 147 } else { 148 __this_cpu_inc(*n->pcpu_success); 149 } 150 #endif 151 152 for (i = n->sel.nkeys; i > 0; i--, key++) { 153 int toff = off + key->off + (off2 & key->offmask); 154 __be32 *data, hdata; 155 156 if (skb_headroom(skb) + toff > INT_MAX) 157 goto out; 158 159 data = skb_header_pointer(skb, toff, 4, &hdata); 160 if (!data) 161 goto out; 162 if ((*data ^ key->val) & key->mask) { 163 n = rcu_dereference_bh(n->next); 164 goto next_knode; 165 } 166 #ifdef CONFIG_CLS_U32_PERF 167 __this_cpu_inc(n->pf->kcnts[j]); 168 j++; 169 #endif 170 } 171 172 ht = rcu_dereference_bh(n->ht_down); 173 if (!ht) { 174 check_terminal: 175 if (n->sel.flags & TC_U32_TERMINAL) { 176 177 *res = n->res; 178 #ifdef CONFIG_NET_CLS_IND 179 if (!tcf_match_indev(skb, n->ifindex)) { 180 n = rcu_dereference_bh(n->next); 181 goto next_knode; 182 } 183 #endif 184 #ifdef CONFIG_CLS_U32_PERF 185 __this_cpu_inc(n->pf->rhit); 186 #endif 187 r = tcf_exts_exec(skb, &n->exts, res); 188 if (r < 0) { 189 n = rcu_dereference_bh(n->next); 190 goto next_knode; 191 } 192 193 return r; 194 } 195 n = rcu_dereference_bh(n->next); 196 goto next_knode; 197 } 198 199 /* PUSH */ 200 if (sdepth >= TC_U32_MAXDEPTH) 201 goto deadloop; 202 stack[sdepth].knode = n; 203 stack[sdepth].off = off; 204 sdepth++; 205 206 ht = rcu_dereference_bh(n->ht_down); 207 sel = 0; 208 if (ht->divisor) { 209 __be32 *data, hdata; 210 211 data = skb_header_pointer(skb, off + n->sel.hoff, 4, 212 &hdata); 213 if (!data) 214 goto out; 215 sel = ht->divisor & u32_hash_fold(*data, &n->sel, 216 n->fshift); 217 } 218 if (!(n->sel.flags & (TC_U32_VAROFFSET | TC_U32_OFFSET | TC_U32_EAT))) 219 goto next_ht; 220 221 if (n->sel.flags & (TC_U32_OFFSET | TC_U32_VAROFFSET)) { 222 off2 = n->sel.off + 3; 223 if (n->sel.flags & TC_U32_VAROFFSET) { 224 __be16 *data, hdata; 225 226 data = skb_header_pointer(skb, 227 off + n->sel.offoff, 228 2, &hdata); 229 if (!data) 230 goto out; 231 off2 += ntohs(n->sel.offmask & *data) >> 232 n->sel.offshift; 233 } 234 off2 &= ~3; 235 } 236 if (n->sel.flags & TC_U32_EAT) { 237 off += off2; 238 off2 = 0; 239 } 240 241 if (off < skb->len) 242 goto next_ht; 243 } 244 245 /* POP */ 246 if (sdepth--) { 247 n = stack[sdepth].knode; 248 ht = rcu_dereference_bh(n->ht_up); 249 off = stack[sdepth].off; 250 goto check_terminal; 251 } 252 out: 253 return -1; 254 255 deadloop: 256 net_warn_ratelimited("cls_u32: dead loop\n"); 257 return -1; 258 } 259 260 static struct tc_u_hnode *u32_lookup_ht(struct tc_u_common *tp_c, u32 handle) 261 { 262 struct tc_u_hnode *ht; 263 264 for (ht = rtnl_dereference(tp_c->hlist); 265 ht; 266 ht = rtnl_dereference(ht->next)) 267 if (ht->handle == handle) 268 break; 269 270 return ht; 271 } 272 273 static struct tc_u_knode *u32_lookup_key(struct tc_u_hnode *ht, u32 handle) 274 { 275 unsigned int sel; 276 struct tc_u_knode *n = NULL; 277 278 sel = TC_U32_HASH(handle); 279 if (sel > ht->divisor) 280 goto out; 281 282 for (n = rtnl_dereference(ht->ht[sel]); 283 n; 284 n = rtnl_dereference(n->next)) 285 if (n->handle == handle) 286 break; 287 out: 288 return n; 289 } 290 291 292 static unsigned long u32_get(struct tcf_proto *tp, u32 handle) 293 { 294 struct tc_u_hnode *ht; 295 struct tc_u_common *tp_c = tp->data; 296 297 if (TC_U32_HTID(handle) == TC_U32_ROOT) 298 ht = rtnl_dereference(tp->root); 299 else 300 ht = u32_lookup_ht(tp_c, TC_U32_HTID(handle)); 301 302 if (!ht) 303 return 0; 304 305 if (TC_U32_KEY(handle) == 0) 306 return (unsigned long)ht; 307 308 return (unsigned long)u32_lookup_key(ht, handle); 309 } 310 311 static u32 gen_new_htid(struct tc_u_common *tp_c) 312 { 313 int i = 0x800; 314 315 /* hgenerator only used inside rtnl lock it is safe to increment 316 * without read _copy_ update semantics 317 */ 318 do { 319 if (++tp_c->hgenerator == 0x7FF) 320 tp_c->hgenerator = 1; 321 } while (--i > 0 && u32_lookup_ht(tp_c, (tp_c->hgenerator|0x800)<<20)); 322 323 return i > 0 ? (tp_c->hgenerator|0x800)<<20 : 0; 324 } 325 326 static int u32_init(struct tcf_proto *tp) 327 { 328 struct tc_u_hnode *root_ht; 329 struct tc_u_common *tp_c; 330 331 tp_c = tp->q->u32_node; 332 333 root_ht = kzalloc(sizeof(*root_ht), GFP_KERNEL); 334 if (root_ht == NULL) 335 return -ENOBUFS; 336 337 root_ht->refcnt++; 338 root_ht->handle = tp_c ? gen_new_htid(tp_c) : 0x80000000; 339 root_ht->prio = tp->prio; 340 341 if (tp_c == NULL) { 342 tp_c = kzalloc(sizeof(*tp_c), GFP_KERNEL); 343 if (tp_c == NULL) { 344 kfree(root_ht); 345 return -ENOBUFS; 346 } 347 tp_c->q = tp->q; 348 tp->q->u32_node = tp_c; 349 } 350 351 tp_c->refcnt++; 352 RCU_INIT_POINTER(root_ht->next, tp_c->hlist); 353 rcu_assign_pointer(tp_c->hlist, root_ht); 354 root_ht->tp_c = tp_c; 355 356 rcu_assign_pointer(tp->root, root_ht); 357 tp->data = tp_c; 358 return 0; 359 } 360 361 static int u32_destroy_key(struct tcf_proto *tp, struct tc_u_knode *n, 362 bool free_pf) 363 { 364 tcf_exts_destroy(&n->exts); 365 if (n->ht_down) 366 n->ht_down->refcnt--; 367 #ifdef CONFIG_CLS_U32_PERF 368 if (free_pf) 369 free_percpu(n->pf); 370 #endif 371 #ifdef CONFIG_CLS_U32_MARK 372 if (free_pf) 373 free_percpu(n->pcpu_success); 374 #endif 375 kfree(n); 376 return 0; 377 } 378 379 /* u32_delete_key_rcu should be called when free'ing a copied 380 * version of a tc_u_knode obtained from u32_init_knode(). When 381 * copies are obtained from u32_init_knode() the statistics are 382 * shared between the old and new copies to allow readers to 383 * continue to update the statistics during the copy. To support 384 * this the u32_delete_key_rcu variant does not free the percpu 385 * statistics. 386 */ 387 static void u32_delete_key_rcu(struct rcu_head *rcu) 388 { 389 struct tc_u_knode *key = container_of(rcu, struct tc_u_knode, rcu); 390 391 u32_destroy_key(key->tp, key, false); 392 } 393 394 /* u32_delete_key_freepf_rcu is the rcu callback variant 395 * that free's the entire structure including the statistics 396 * percpu variables. Only use this if the key is not a copy 397 * returned by u32_init_knode(). See u32_delete_key_rcu() 398 * for the variant that should be used with keys return from 399 * u32_init_knode() 400 */ 401 static void u32_delete_key_freepf_rcu(struct rcu_head *rcu) 402 { 403 struct tc_u_knode *key = container_of(rcu, struct tc_u_knode, rcu); 404 405 u32_destroy_key(key->tp, key, true); 406 } 407 408 static int u32_delete_key(struct tcf_proto *tp, struct tc_u_knode *key) 409 { 410 struct tc_u_knode __rcu **kp; 411 struct tc_u_knode *pkp; 412 struct tc_u_hnode *ht = rtnl_dereference(key->ht_up); 413 414 if (ht) { 415 kp = &ht->ht[TC_U32_HASH(key->handle)]; 416 for (pkp = rtnl_dereference(*kp); pkp; 417 kp = &pkp->next, pkp = rtnl_dereference(*kp)) { 418 if (pkp == key) { 419 RCU_INIT_POINTER(*kp, key->next); 420 421 tcf_unbind_filter(tp, &key->res); 422 call_rcu(&key->rcu, u32_delete_key_freepf_rcu); 423 return 0; 424 } 425 } 426 } 427 WARN_ON(1); 428 return 0; 429 } 430 431 static void u32_remove_hw_knode(struct tcf_proto *tp, u32 handle) 432 { 433 struct net_device *dev = tp->q->dev_queue->dev; 434 struct tc_cls_u32_offload u32_offload = {0}; 435 struct tc_to_netdev offload; 436 437 offload.type = TC_SETUP_CLSU32; 438 offload.cls_u32 = &u32_offload; 439 440 if (tc_should_offload(dev, tp, 0)) { 441 offload.cls_u32->command = TC_CLSU32_DELETE_KNODE; 442 offload.cls_u32->knode.handle = handle; 443 dev->netdev_ops->ndo_setup_tc(dev, tp->q->handle, 444 tp->protocol, &offload); 445 } 446 } 447 448 static int u32_replace_hw_hnode(struct tcf_proto *tp, struct tc_u_hnode *h, 449 u32 flags) 450 { 451 struct net_device *dev = tp->q->dev_queue->dev; 452 struct tc_cls_u32_offload u32_offload = {0}; 453 struct tc_to_netdev offload; 454 int err; 455 456 if (!tc_should_offload(dev, tp, flags)) 457 return tc_skip_sw(flags) ? -EINVAL : 0; 458 459 offload.type = TC_SETUP_CLSU32; 460 offload.cls_u32 = &u32_offload; 461 462 offload.cls_u32->command = TC_CLSU32_NEW_HNODE; 463 offload.cls_u32->hnode.divisor = h->divisor; 464 offload.cls_u32->hnode.handle = h->handle; 465 offload.cls_u32->hnode.prio = h->prio; 466 467 err = dev->netdev_ops->ndo_setup_tc(dev, tp->q->handle, 468 tp->protocol, &offload); 469 if (tc_skip_sw(flags)) 470 return err; 471 472 return 0; 473 } 474 475 static void u32_clear_hw_hnode(struct tcf_proto *tp, struct tc_u_hnode *h) 476 { 477 struct net_device *dev = tp->q->dev_queue->dev; 478 struct tc_cls_u32_offload u32_offload = {0}; 479 struct tc_to_netdev offload; 480 481 offload.type = TC_SETUP_CLSU32; 482 offload.cls_u32 = &u32_offload; 483 484 if (tc_should_offload(dev, tp, 0)) { 485 offload.cls_u32->command = TC_CLSU32_DELETE_HNODE; 486 offload.cls_u32->hnode.divisor = h->divisor; 487 offload.cls_u32->hnode.handle = h->handle; 488 offload.cls_u32->hnode.prio = h->prio; 489 490 dev->netdev_ops->ndo_setup_tc(dev, tp->q->handle, 491 tp->protocol, &offload); 492 } 493 } 494 495 static int u32_replace_hw_knode(struct tcf_proto *tp, struct tc_u_knode *n, 496 u32 flags) 497 { 498 struct net_device *dev = tp->q->dev_queue->dev; 499 struct tc_cls_u32_offload u32_offload = {0}; 500 struct tc_to_netdev offload; 501 int err; 502 503 offload.type = TC_SETUP_CLSU32; 504 offload.cls_u32 = &u32_offload; 505 506 if (!tc_should_offload(dev, tp, flags)) 507 return tc_skip_sw(flags) ? -EINVAL : 0; 508 509 offload.cls_u32->command = TC_CLSU32_REPLACE_KNODE; 510 offload.cls_u32->knode.handle = n->handle; 511 offload.cls_u32->knode.fshift = n->fshift; 512 #ifdef CONFIG_CLS_U32_MARK 513 offload.cls_u32->knode.val = n->val; 514 offload.cls_u32->knode.mask = n->mask; 515 #else 516 offload.cls_u32->knode.val = 0; 517 offload.cls_u32->knode.mask = 0; 518 #endif 519 offload.cls_u32->knode.sel = &n->sel; 520 offload.cls_u32->knode.exts = &n->exts; 521 if (n->ht_down) 522 offload.cls_u32->knode.link_handle = n->ht_down->handle; 523 524 err = dev->netdev_ops->ndo_setup_tc(dev, tp->q->handle, 525 tp->protocol, &offload); 526 527 if (!err) 528 n->flags |= TCA_CLS_FLAGS_IN_HW; 529 530 if (tc_skip_sw(flags)) 531 return err; 532 533 return 0; 534 } 535 536 static void u32_clear_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht) 537 { 538 struct tc_u_knode *n; 539 unsigned int h; 540 541 for (h = 0; h <= ht->divisor; h++) { 542 while ((n = rtnl_dereference(ht->ht[h])) != NULL) { 543 RCU_INIT_POINTER(ht->ht[h], 544 rtnl_dereference(n->next)); 545 tcf_unbind_filter(tp, &n->res); 546 u32_remove_hw_knode(tp, n->handle); 547 call_rcu(&n->rcu, u32_delete_key_freepf_rcu); 548 } 549 } 550 } 551 552 static int u32_destroy_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht) 553 { 554 struct tc_u_common *tp_c = tp->data; 555 struct tc_u_hnode __rcu **hn; 556 struct tc_u_hnode *phn; 557 558 WARN_ON(ht->refcnt); 559 560 u32_clear_hnode(tp, ht); 561 562 hn = &tp_c->hlist; 563 for (phn = rtnl_dereference(*hn); 564 phn; 565 hn = &phn->next, phn = rtnl_dereference(*hn)) { 566 if (phn == ht) { 567 u32_clear_hw_hnode(tp, ht); 568 RCU_INIT_POINTER(*hn, ht->next); 569 kfree_rcu(ht, rcu); 570 return 0; 571 } 572 } 573 574 return -ENOENT; 575 } 576 577 static bool ht_empty(struct tc_u_hnode *ht) 578 { 579 unsigned int h; 580 581 for (h = 0; h <= ht->divisor; h++) 582 if (rcu_access_pointer(ht->ht[h])) 583 return false; 584 585 return true; 586 } 587 588 static void u32_destroy(struct tcf_proto *tp) 589 { 590 struct tc_u_common *tp_c = tp->data; 591 struct tc_u_hnode *root_ht = rtnl_dereference(tp->root); 592 593 WARN_ON(root_ht == NULL); 594 595 if (root_ht && --root_ht->refcnt == 0) 596 u32_destroy_hnode(tp, root_ht); 597 598 if (--tp_c->refcnt == 0) { 599 struct tc_u_hnode *ht; 600 601 tp->q->u32_node = NULL; 602 603 for (ht = rtnl_dereference(tp_c->hlist); 604 ht; 605 ht = rtnl_dereference(ht->next)) { 606 ht->refcnt--; 607 u32_clear_hnode(tp, ht); 608 } 609 610 while ((ht = rtnl_dereference(tp_c->hlist)) != NULL) { 611 RCU_INIT_POINTER(tp_c->hlist, ht->next); 612 kfree_rcu(ht, rcu); 613 } 614 615 kfree(tp_c); 616 } 617 618 tp->data = NULL; 619 } 620 621 static int u32_delete(struct tcf_proto *tp, unsigned long arg, bool *last) 622 { 623 struct tc_u_hnode *ht = (struct tc_u_hnode *)arg; 624 struct tc_u_hnode *root_ht = rtnl_dereference(tp->root); 625 struct tc_u_common *tp_c = tp->data; 626 int ret = 0; 627 628 if (ht == NULL) 629 goto out; 630 631 if (TC_U32_KEY(ht->handle)) { 632 u32_remove_hw_knode(tp, ht->handle); 633 ret = u32_delete_key(tp, (struct tc_u_knode *)ht); 634 goto out; 635 } 636 637 if (root_ht == ht) 638 return -EINVAL; 639 640 if (ht->refcnt == 1) { 641 ht->refcnt--; 642 u32_destroy_hnode(tp, ht); 643 } else { 644 return -EBUSY; 645 } 646 647 out: 648 *last = true; 649 if (root_ht) { 650 if (root_ht->refcnt > 1) { 651 *last = false; 652 goto ret; 653 } 654 if (root_ht->refcnt == 1) { 655 if (!ht_empty(root_ht)) { 656 *last = false; 657 goto ret; 658 } 659 } 660 } 661 662 if (tp_c->refcnt > 1) { 663 *last = false; 664 goto ret; 665 } 666 667 if (tp_c->refcnt == 1) { 668 struct tc_u_hnode *ht; 669 670 for (ht = rtnl_dereference(tp_c->hlist); 671 ht; 672 ht = rtnl_dereference(ht->next)) 673 if (!ht_empty(ht)) { 674 *last = false; 675 break; 676 } 677 } 678 679 ret: 680 return ret; 681 } 682 683 #define NR_U32_NODE (1<<12) 684 static u32 gen_new_kid(struct tc_u_hnode *ht, u32 handle) 685 { 686 struct tc_u_knode *n; 687 unsigned long i; 688 unsigned long *bitmap = kzalloc(BITS_TO_LONGS(NR_U32_NODE) * sizeof(unsigned long), 689 GFP_KERNEL); 690 if (!bitmap) 691 return handle | 0xFFF; 692 693 for (n = rtnl_dereference(ht->ht[TC_U32_HASH(handle)]); 694 n; 695 n = rtnl_dereference(n->next)) 696 set_bit(TC_U32_NODE(n->handle), bitmap); 697 698 i = find_next_zero_bit(bitmap, NR_U32_NODE, 0x800); 699 if (i >= NR_U32_NODE) 700 i = find_next_zero_bit(bitmap, NR_U32_NODE, 1); 701 702 kfree(bitmap); 703 return handle | (i >= NR_U32_NODE ? 0xFFF : i); 704 } 705 706 static const struct nla_policy u32_policy[TCA_U32_MAX + 1] = { 707 [TCA_U32_CLASSID] = { .type = NLA_U32 }, 708 [TCA_U32_HASH] = { .type = NLA_U32 }, 709 [TCA_U32_LINK] = { .type = NLA_U32 }, 710 [TCA_U32_DIVISOR] = { .type = NLA_U32 }, 711 [TCA_U32_SEL] = { .len = sizeof(struct tc_u32_sel) }, 712 [TCA_U32_INDEV] = { .type = NLA_STRING, .len = IFNAMSIZ }, 713 [TCA_U32_MARK] = { .len = sizeof(struct tc_u32_mark) }, 714 [TCA_U32_FLAGS] = { .type = NLA_U32 }, 715 }; 716 717 static int u32_set_parms(struct net *net, struct tcf_proto *tp, 718 unsigned long base, struct tc_u_hnode *ht, 719 struct tc_u_knode *n, struct nlattr **tb, 720 struct nlattr *est, bool ovr) 721 { 722 struct tcf_exts e; 723 int err; 724 725 err = tcf_exts_init(&e, TCA_U32_ACT, TCA_U32_POLICE); 726 if (err < 0) 727 return err; 728 err = tcf_exts_validate(net, tp, tb, est, &e, ovr); 729 if (err < 0) 730 goto errout; 731 732 err = -EINVAL; 733 if (tb[TCA_U32_LINK]) { 734 u32 handle = nla_get_u32(tb[TCA_U32_LINK]); 735 struct tc_u_hnode *ht_down = NULL, *ht_old; 736 737 if (TC_U32_KEY(handle)) 738 goto errout; 739 740 if (handle) { 741 ht_down = u32_lookup_ht(ht->tp_c, handle); 742 743 if (ht_down == NULL) 744 goto errout; 745 ht_down->refcnt++; 746 } 747 748 ht_old = rtnl_dereference(n->ht_down); 749 rcu_assign_pointer(n->ht_down, ht_down); 750 751 if (ht_old) 752 ht_old->refcnt--; 753 } 754 if (tb[TCA_U32_CLASSID]) { 755 n->res.classid = nla_get_u32(tb[TCA_U32_CLASSID]); 756 tcf_bind_filter(tp, &n->res, base); 757 } 758 759 #ifdef CONFIG_NET_CLS_IND 760 if (tb[TCA_U32_INDEV]) { 761 int ret; 762 ret = tcf_change_indev(net, tb[TCA_U32_INDEV]); 763 if (ret < 0) 764 goto errout; 765 n->ifindex = ret; 766 } 767 #endif 768 tcf_exts_change(tp, &n->exts, &e); 769 770 return 0; 771 errout: 772 tcf_exts_destroy(&e); 773 return err; 774 } 775 776 static void u32_replace_knode(struct tcf_proto *tp, struct tc_u_common *tp_c, 777 struct tc_u_knode *n) 778 { 779 struct tc_u_knode __rcu **ins; 780 struct tc_u_knode *pins; 781 struct tc_u_hnode *ht; 782 783 if (TC_U32_HTID(n->handle) == TC_U32_ROOT) 784 ht = rtnl_dereference(tp->root); 785 else 786 ht = u32_lookup_ht(tp_c, TC_U32_HTID(n->handle)); 787 788 ins = &ht->ht[TC_U32_HASH(n->handle)]; 789 790 /* The node must always exist for it to be replaced if this is not the 791 * case then something went very wrong elsewhere. 792 */ 793 for (pins = rtnl_dereference(*ins); ; 794 ins = &pins->next, pins = rtnl_dereference(*ins)) 795 if (pins->handle == n->handle) 796 break; 797 798 RCU_INIT_POINTER(n->next, pins->next); 799 rcu_assign_pointer(*ins, n); 800 } 801 802 static struct tc_u_knode *u32_init_knode(struct tcf_proto *tp, 803 struct tc_u_knode *n) 804 { 805 struct tc_u_knode *new; 806 struct tc_u32_sel *s = &n->sel; 807 808 new = kzalloc(sizeof(*n) + s->nkeys*sizeof(struct tc_u32_key), 809 GFP_KERNEL); 810 811 if (!new) 812 return NULL; 813 814 RCU_INIT_POINTER(new->next, n->next); 815 new->handle = n->handle; 816 RCU_INIT_POINTER(new->ht_up, n->ht_up); 817 818 #ifdef CONFIG_NET_CLS_IND 819 new->ifindex = n->ifindex; 820 #endif 821 new->fshift = n->fshift; 822 new->res = n->res; 823 new->flags = n->flags; 824 RCU_INIT_POINTER(new->ht_down, n->ht_down); 825 826 /* bump reference count as long as we hold pointer to structure */ 827 if (new->ht_down) 828 new->ht_down->refcnt++; 829 830 #ifdef CONFIG_CLS_U32_PERF 831 /* Statistics may be incremented by readers during update 832 * so we must keep them in tact. When the node is later destroyed 833 * a special destroy call must be made to not free the pf memory. 834 */ 835 new->pf = n->pf; 836 #endif 837 838 #ifdef CONFIG_CLS_U32_MARK 839 new->val = n->val; 840 new->mask = n->mask; 841 /* Similarly success statistics must be moved as pointers */ 842 new->pcpu_success = n->pcpu_success; 843 #endif 844 new->tp = tp; 845 memcpy(&new->sel, s, sizeof(*s) + s->nkeys*sizeof(struct tc_u32_key)); 846 847 if (tcf_exts_init(&new->exts, TCA_U32_ACT, TCA_U32_POLICE)) { 848 kfree(new); 849 return NULL; 850 } 851 852 return new; 853 } 854 855 static int u32_change(struct net *net, struct sk_buff *in_skb, 856 struct tcf_proto *tp, unsigned long base, u32 handle, 857 struct nlattr **tca, unsigned long *arg, bool ovr) 858 { 859 struct tc_u_common *tp_c = tp->data; 860 struct tc_u_hnode *ht; 861 struct tc_u_knode *n; 862 struct tc_u32_sel *s; 863 struct nlattr *opt = tca[TCA_OPTIONS]; 864 struct nlattr *tb[TCA_U32_MAX + 1]; 865 u32 htid, flags = 0; 866 int err; 867 #ifdef CONFIG_CLS_U32_PERF 868 size_t size; 869 #endif 870 871 if (opt == NULL) 872 return handle ? -EINVAL : 0; 873 874 err = nla_parse_nested(tb, TCA_U32_MAX, opt, u32_policy, NULL); 875 if (err < 0) 876 return err; 877 878 if (tb[TCA_U32_FLAGS]) { 879 flags = nla_get_u32(tb[TCA_U32_FLAGS]); 880 if (!tc_flags_valid(flags)) 881 return -EINVAL; 882 } 883 884 n = (struct tc_u_knode *)*arg; 885 if (n) { 886 struct tc_u_knode *new; 887 888 if (TC_U32_KEY(n->handle) == 0) 889 return -EINVAL; 890 891 if (n->flags != flags) 892 return -EINVAL; 893 894 new = u32_init_knode(tp, n); 895 if (!new) 896 return -ENOMEM; 897 898 err = u32_set_parms(net, tp, base, 899 rtnl_dereference(n->ht_up), new, tb, 900 tca[TCA_RATE], ovr); 901 902 if (err) { 903 u32_destroy_key(tp, new, false); 904 return err; 905 } 906 907 err = u32_replace_hw_knode(tp, new, flags); 908 if (err) { 909 u32_destroy_key(tp, new, false); 910 return err; 911 } 912 913 if (!tc_in_hw(new->flags)) 914 new->flags |= TCA_CLS_FLAGS_NOT_IN_HW; 915 916 u32_replace_knode(tp, tp_c, new); 917 tcf_unbind_filter(tp, &n->res); 918 call_rcu(&n->rcu, u32_delete_key_rcu); 919 return 0; 920 } 921 922 if (tb[TCA_U32_DIVISOR]) { 923 unsigned int divisor = nla_get_u32(tb[TCA_U32_DIVISOR]); 924 925 if (--divisor > 0x100) 926 return -EINVAL; 927 if (TC_U32_KEY(handle)) 928 return -EINVAL; 929 if (handle == 0) { 930 handle = gen_new_htid(tp->data); 931 if (handle == 0) 932 return -ENOMEM; 933 } 934 ht = kzalloc(sizeof(*ht) + divisor*sizeof(void *), GFP_KERNEL); 935 if (ht == NULL) 936 return -ENOBUFS; 937 ht->tp_c = tp_c; 938 ht->refcnt = 1; 939 ht->divisor = divisor; 940 ht->handle = handle; 941 ht->prio = tp->prio; 942 943 err = u32_replace_hw_hnode(tp, ht, flags); 944 if (err) { 945 kfree(ht); 946 return err; 947 } 948 949 RCU_INIT_POINTER(ht->next, tp_c->hlist); 950 rcu_assign_pointer(tp_c->hlist, ht); 951 *arg = (unsigned long)ht; 952 953 return 0; 954 } 955 956 if (tb[TCA_U32_HASH]) { 957 htid = nla_get_u32(tb[TCA_U32_HASH]); 958 if (TC_U32_HTID(htid) == TC_U32_ROOT) { 959 ht = rtnl_dereference(tp->root); 960 htid = ht->handle; 961 } else { 962 ht = u32_lookup_ht(tp->data, TC_U32_HTID(htid)); 963 if (ht == NULL) 964 return -EINVAL; 965 } 966 } else { 967 ht = rtnl_dereference(tp->root); 968 htid = ht->handle; 969 } 970 971 if (ht->divisor < TC_U32_HASH(htid)) 972 return -EINVAL; 973 974 if (handle) { 975 if (TC_U32_HTID(handle) && TC_U32_HTID(handle^htid)) 976 return -EINVAL; 977 handle = htid | TC_U32_NODE(handle); 978 } else 979 handle = gen_new_kid(ht, htid); 980 981 if (tb[TCA_U32_SEL] == NULL) 982 return -EINVAL; 983 984 s = nla_data(tb[TCA_U32_SEL]); 985 986 n = kzalloc(sizeof(*n) + s->nkeys*sizeof(struct tc_u32_key), GFP_KERNEL); 987 if (n == NULL) 988 return -ENOBUFS; 989 990 #ifdef CONFIG_CLS_U32_PERF 991 size = sizeof(struct tc_u32_pcnt) + s->nkeys * sizeof(u64); 992 n->pf = __alloc_percpu(size, __alignof__(struct tc_u32_pcnt)); 993 if (!n->pf) { 994 kfree(n); 995 return -ENOBUFS; 996 } 997 #endif 998 999 memcpy(&n->sel, s, sizeof(*s) + s->nkeys*sizeof(struct tc_u32_key)); 1000 RCU_INIT_POINTER(n->ht_up, ht); 1001 n->handle = handle; 1002 n->fshift = s->hmask ? ffs(ntohl(s->hmask)) - 1 : 0; 1003 n->flags = flags; 1004 n->tp = tp; 1005 1006 err = tcf_exts_init(&n->exts, TCA_U32_ACT, TCA_U32_POLICE); 1007 if (err < 0) 1008 goto errout; 1009 1010 #ifdef CONFIG_CLS_U32_MARK 1011 n->pcpu_success = alloc_percpu(u32); 1012 if (!n->pcpu_success) { 1013 err = -ENOMEM; 1014 goto errout; 1015 } 1016 1017 if (tb[TCA_U32_MARK]) { 1018 struct tc_u32_mark *mark; 1019 1020 mark = nla_data(tb[TCA_U32_MARK]); 1021 n->val = mark->val; 1022 n->mask = mark->mask; 1023 } 1024 #endif 1025 1026 err = u32_set_parms(net, tp, base, ht, n, tb, tca[TCA_RATE], ovr); 1027 if (err == 0) { 1028 struct tc_u_knode __rcu **ins; 1029 struct tc_u_knode *pins; 1030 1031 err = u32_replace_hw_knode(tp, n, flags); 1032 if (err) 1033 goto errhw; 1034 1035 if (!tc_in_hw(n->flags)) 1036 n->flags |= TCA_CLS_FLAGS_NOT_IN_HW; 1037 1038 ins = &ht->ht[TC_U32_HASH(handle)]; 1039 for (pins = rtnl_dereference(*ins); pins; 1040 ins = &pins->next, pins = rtnl_dereference(*ins)) 1041 if (TC_U32_NODE(handle) < TC_U32_NODE(pins->handle)) 1042 break; 1043 1044 RCU_INIT_POINTER(n->next, pins); 1045 rcu_assign_pointer(*ins, n); 1046 *arg = (unsigned long)n; 1047 return 0; 1048 } 1049 1050 errhw: 1051 #ifdef CONFIG_CLS_U32_MARK 1052 free_percpu(n->pcpu_success); 1053 #endif 1054 1055 errout: 1056 tcf_exts_destroy(&n->exts); 1057 #ifdef CONFIG_CLS_U32_PERF 1058 free_percpu(n->pf); 1059 #endif 1060 kfree(n); 1061 return err; 1062 } 1063 1064 static void u32_walk(struct tcf_proto *tp, struct tcf_walker *arg) 1065 { 1066 struct tc_u_common *tp_c = tp->data; 1067 struct tc_u_hnode *ht; 1068 struct tc_u_knode *n; 1069 unsigned int h; 1070 1071 if (arg->stop) 1072 return; 1073 1074 for (ht = rtnl_dereference(tp_c->hlist); 1075 ht; 1076 ht = rtnl_dereference(ht->next)) { 1077 if (ht->prio != tp->prio) 1078 continue; 1079 if (arg->count >= arg->skip) { 1080 if (arg->fn(tp, (unsigned long)ht, arg) < 0) { 1081 arg->stop = 1; 1082 return; 1083 } 1084 } 1085 arg->count++; 1086 for (h = 0; h <= ht->divisor; h++) { 1087 for (n = rtnl_dereference(ht->ht[h]); 1088 n; 1089 n = rtnl_dereference(n->next)) { 1090 if (arg->count < arg->skip) { 1091 arg->count++; 1092 continue; 1093 } 1094 if (arg->fn(tp, (unsigned long)n, arg) < 0) { 1095 arg->stop = 1; 1096 return; 1097 } 1098 arg->count++; 1099 } 1100 } 1101 } 1102 } 1103 1104 static int u32_dump(struct net *net, struct tcf_proto *tp, unsigned long fh, 1105 struct sk_buff *skb, struct tcmsg *t) 1106 { 1107 struct tc_u_knode *n = (struct tc_u_knode *)fh; 1108 struct tc_u_hnode *ht_up, *ht_down; 1109 struct nlattr *nest; 1110 1111 if (n == NULL) 1112 return skb->len; 1113 1114 t->tcm_handle = n->handle; 1115 1116 nest = nla_nest_start(skb, TCA_OPTIONS); 1117 if (nest == NULL) 1118 goto nla_put_failure; 1119 1120 if (TC_U32_KEY(n->handle) == 0) { 1121 struct tc_u_hnode *ht = (struct tc_u_hnode *)fh; 1122 u32 divisor = ht->divisor + 1; 1123 1124 if (nla_put_u32(skb, TCA_U32_DIVISOR, divisor)) 1125 goto nla_put_failure; 1126 } else { 1127 #ifdef CONFIG_CLS_U32_PERF 1128 struct tc_u32_pcnt *gpf; 1129 int cpu; 1130 #endif 1131 1132 if (nla_put(skb, TCA_U32_SEL, 1133 sizeof(n->sel) + n->sel.nkeys*sizeof(struct tc_u32_key), 1134 &n->sel)) 1135 goto nla_put_failure; 1136 1137 ht_up = rtnl_dereference(n->ht_up); 1138 if (ht_up) { 1139 u32 htid = n->handle & 0xFFFFF000; 1140 if (nla_put_u32(skb, TCA_U32_HASH, htid)) 1141 goto nla_put_failure; 1142 } 1143 if (n->res.classid && 1144 nla_put_u32(skb, TCA_U32_CLASSID, n->res.classid)) 1145 goto nla_put_failure; 1146 1147 ht_down = rtnl_dereference(n->ht_down); 1148 if (ht_down && 1149 nla_put_u32(skb, TCA_U32_LINK, ht_down->handle)) 1150 goto nla_put_failure; 1151 1152 if (n->flags && nla_put_u32(skb, TCA_U32_FLAGS, n->flags)) 1153 goto nla_put_failure; 1154 1155 #ifdef CONFIG_CLS_U32_MARK 1156 if ((n->val || n->mask)) { 1157 struct tc_u32_mark mark = {.val = n->val, 1158 .mask = n->mask, 1159 .success = 0}; 1160 int cpum; 1161 1162 for_each_possible_cpu(cpum) { 1163 __u32 cnt = *per_cpu_ptr(n->pcpu_success, cpum); 1164 1165 mark.success += cnt; 1166 } 1167 1168 if (nla_put(skb, TCA_U32_MARK, sizeof(mark), &mark)) 1169 goto nla_put_failure; 1170 } 1171 #endif 1172 1173 if (tcf_exts_dump(skb, &n->exts) < 0) 1174 goto nla_put_failure; 1175 1176 #ifdef CONFIG_NET_CLS_IND 1177 if (n->ifindex) { 1178 struct net_device *dev; 1179 dev = __dev_get_by_index(net, n->ifindex); 1180 if (dev && nla_put_string(skb, TCA_U32_INDEV, dev->name)) 1181 goto nla_put_failure; 1182 } 1183 #endif 1184 #ifdef CONFIG_CLS_U32_PERF 1185 gpf = kzalloc(sizeof(struct tc_u32_pcnt) + 1186 n->sel.nkeys * sizeof(u64), 1187 GFP_KERNEL); 1188 if (!gpf) 1189 goto nla_put_failure; 1190 1191 for_each_possible_cpu(cpu) { 1192 int i; 1193 struct tc_u32_pcnt *pf = per_cpu_ptr(n->pf, cpu); 1194 1195 gpf->rcnt += pf->rcnt; 1196 gpf->rhit += pf->rhit; 1197 for (i = 0; i < n->sel.nkeys; i++) 1198 gpf->kcnts[i] += pf->kcnts[i]; 1199 } 1200 1201 if (nla_put_64bit(skb, TCA_U32_PCNT, 1202 sizeof(struct tc_u32_pcnt) + 1203 n->sel.nkeys * sizeof(u64), 1204 gpf, TCA_U32_PAD)) { 1205 kfree(gpf); 1206 goto nla_put_failure; 1207 } 1208 kfree(gpf); 1209 #endif 1210 } 1211 1212 nla_nest_end(skb, nest); 1213 1214 if (TC_U32_KEY(n->handle)) 1215 if (tcf_exts_dump_stats(skb, &n->exts) < 0) 1216 goto nla_put_failure; 1217 return skb->len; 1218 1219 nla_put_failure: 1220 nla_nest_cancel(skb, nest); 1221 return -1; 1222 } 1223 1224 static struct tcf_proto_ops cls_u32_ops __read_mostly = { 1225 .kind = "u32", 1226 .classify = u32_classify, 1227 .init = u32_init, 1228 .destroy = u32_destroy, 1229 .get = u32_get, 1230 .change = u32_change, 1231 .delete = u32_delete, 1232 .walk = u32_walk, 1233 .dump = u32_dump, 1234 .owner = THIS_MODULE, 1235 }; 1236 1237 static int __init init_u32(void) 1238 { 1239 pr_info("u32 classifier\n"); 1240 #ifdef CONFIG_CLS_U32_PERF 1241 pr_info(" Performance counters on\n"); 1242 #endif 1243 #ifdef CONFIG_NET_CLS_IND 1244 pr_info(" input device check on\n"); 1245 #endif 1246 #ifdef CONFIG_NET_CLS_ACT 1247 pr_info(" Actions configured\n"); 1248 #endif 1249 return register_tcf_proto_ops(&cls_u32_ops); 1250 } 1251 1252 static void __exit exit_u32(void) 1253 { 1254 unregister_tcf_proto_ops(&cls_u32_ops); 1255 } 1256 1257 module_init(init_u32) 1258 module_exit(exit_u32) 1259 MODULE_LICENSE("GPL"); 1260