1 /* 2 * net/sched/cls_u32.c Ugly (or Universal) 32bit key Packet Classifier. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 10 * 11 * The filters are packed to hash tables of key nodes 12 * with a set of 32bit key/mask pairs at every node. 13 * Nodes reference next level hash tables etc. 14 * 15 * This scheme is the best universal classifier I managed to 16 * invent; it is not super-fast, but it is not slow (provided you 17 * program it correctly), and general enough. And its relative 18 * speed grows as the number of rules becomes larger. 19 * 20 * It seems that it represents the best middle point between 21 * speed and manageability both by human and by machine. 22 * 23 * It is especially useful for link sharing combined with QoS; 24 * pure RSVP doesn't need such a general approach and can use 25 * much simpler (and faster) schemes, sort of cls_rsvp.c. 26 * 27 * JHS: We should remove the CONFIG_NET_CLS_IND from here 28 * eventually when the meta match extension is made available 29 * 30 * nfmark match added by Catalin(ux aka Dino) BOIE <catab at umbrella.ro> 31 */ 32 33 #include <linux/module.h> 34 #include <linux/slab.h> 35 #include <linux/types.h> 36 #include <linux/kernel.h> 37 #include <linux/string.h> 38 #include <linux/errno.h> 39 #include <linux/percpu.h> 40 #include <linux/rtnetlink.h> 41 #include <linux/skbuff.h> 42 #include <linux/bitmap.h> 43 #include <net/netlink.h> 44 #include <net/act_api.h> 45 #include <net/pkt_cls.h> 46 #include <linux/netdevice.h> 47 48 struct tc_u_knode { 49 struct tc_u_knode __rcu *next; 50 u32 handle; 51 struct tc_u_hnode __rcu *ht_up; 52 struct tcf_exts exts; 53 #ifdef CONFIG_NET_CLS_IND 54 int ifindex; 55 #endif 56 u8 fshift; 57 struct tcf_result res; 58 struct tc_u_hnode __rcu *ht_down; 59 #ifdef CONFIG_CLS_U32_PERF 60 struct tc_u32_pcnt __percpu *pf; 61 #endif 62 u32 flags; 63 #ifdef CONFIG_CLS_U32_MARK 64 u32 val; 65 u32 mask; 66 u32 __percpu *pcpu_success; 67 #endif 68 struct tcf_proto *tp; 69 struct rcu_head rcu; 70 /* The 'sel' field MUST be the last field in structure to allow for 71 * tc_u32_keys allocated at end of structure. 72 */ 73 struct tc_u32_sel sel; 74 }; 75 76 struct tc_u_hnode { 77 struct tc_u_hnode __rcu *next; 78 u32 handle; 79 u32 prio; 80 struct tc_u_common *tp_c; 81 int refcnt; 82 unsigned int divisor; 83 struct rcu_head rcu; 84 /* The 'ht' field MUST be the last field in structure to allow for 85 * more entries allocated at end of structure. 86 */ 87 struct tc_u_knode __rcu *ht[1]; 88 }; 89 90 struct tc_u_common { 91 struct tc_u_hnode __rcu *hlist; 92 struct Qdisc *q; 93 int refcnt; 94 u32 hgenerator; 95 struct rcu_head rcu; 96 }; 97 98 static inline unsigned int u32_hash_fold(__be32 key, 99 const struct tc_u32_sel *sel, 100 u8 fshift) 101 { 102 unsigned int h = ntohl(key & sel->hmask) >> fshift; 103 104 return h; 105 } 106 107 static int u32_classify(struct sk_buff *skb, const struct tcf_proto *tp, 108 struct tcf_result *res) 109 { 110 struct { 111 struct tc_u_knode *knode; 112 unsigned int off; 113 } stack[TC_U32_MAXDEPTH]; 114 115 struct tc_u_hnode *ht = rcu_dereference_bh(tp->root); 116 unsigned int off = skb_network_offset(skb); 117 struct tc_u_knode *n; 118 int sdepth = 0; 119 int off2 = 0; 120 int sel = 0; 121 #ifdef CONFIG_CLS_U32_PERF 122 int j; 123 #endif 124 int i, r; 125 126 next_ht: 127 n = rcu_dereference_bh(ht->ht[sel]); 128 129 next_knode: 130 if (n) { 131 struct tc_u32_key *key = n->sel.keys; 132 133 #ifdef CONFIG_CLS_U32_PERF 134 __this_cpu_inc(n->pf->rcnt); 135 j = 0; 136 #endif 137 138 if (tc_skip_sw(n->flags)) { 139 n = rcu_dereference_bh(n->next); 140 goto next_knode; 141 } 142 143 #ifdef CONFIG_CLS_U32_MARK 144 if ((skb->mark & n->mask) != n->val) { 145 n = rcu_dereference_bh(n->next); 146 goto next_knode; 147 } else { 148 __this_cpu_inc(*n->pcpu_success); 149 } 150 #endif 151 152 for (i = n->sel.nkeys; i > 0; i--, key++) { 153 int toff = off + key->off + (off2 & key->offmask); 154 __be32 *data, hdata; 155 156 if (skb_headroom(skb) + toff > INT_MAX) 157 goto out; 158 159 data = skb_header_pointer(skb, toff, 4, &hdata); 160 if (!data) 161 goto out; 162 if ((*data ^ key->val) & key->mask) { 163 n = rcu_dereference_bh(n->next); 164 goto next_knode; 165 } 166 #ifdef CONFIG_CLS_U32_PERF 167 __this_cpu_inc(n->pf->kcnts[j]); 168 j++; 169 #endif 170 } 171 172 ht = rcu_dereference_bh(n->ht_down); 173 if (!ht) { 174 check_terminal: 175 if (n->sel.flags & TC_U32_TERMINAL) { 176 177 *res = n->res; 178 #ifdef CONFIG_NET_CLS_IND 179 if (!tcf_match_indev(skb, n->ifindex)) { 180 n = rcu_dereference_bh(n->next); 181 goto next_knode; 182 } 183 #endif 184 #ifdef CONFIG_CLS_U32_PERF 185 __this_cpu_inc(n->pf->rhit); 186 #endif 187 r = tcf_exts_exec(skb, &n->exts, res); 188 if (r < 0) { 189 n = rcu_dereference_bh(n->next); 190 goto next_knode; 191 } 192 193 return r; 194 } 195 n = rcu_dereference_bh(n->next); 196 goto next_knode; 197 } 198 199 /* PUSH */ 200 if (sdepth >= TC_U32_MAXDEPTH) 201 goto deadloop; 202 stack[sdepth].knode = n; 203 stack[sdepth].off = off; 204 sdepth++; 205 206 ht = rcu_dereference_bh(n->ht_down); 207 sel = 0; 208 if (ht->divisor) { 209 __be32 *data, hdata; 210 211 data = skb_header_pointer(skb, off + n->sel.hoff, 4, 212 &hdata); 213 if (!data) 214 goto out; 215 sel = ht->divisor & u32_hash_fold(*data, &n->sel, 216 n->fshift); 217 } 218 if (!(n->sel.flags & (TC_U32_VAROFFSET | TC_U32_OFFSET | TC_U32_EAT))) 219 goto next_ht; 220 221 if (n->sel.flags & (TC_U32_OFFSET | TC_U32_VAROFFSET)) { 222 off2 = n->sel.off + 3; 223 if (n->sel.flags & TC_U32_VAROFFSET) { 224 __be16 *data, hdata; 225 226 data = skb_header_pointer(skb, 227 off + n->sel.offoff, 228 2, &hdata); 229 if (!data) 230 goto out; 231 off2 += ntohs(n->sel.offmask & *data) >> 232 n->sel.offshift; 233 } 234 off2 &= ~3; 235 } 236 if (n->sel.flags & TC_U32_EAT) { 237 off += off2; 238 off2 = 0; 239 } 240 241 if (off < skb->len) 242 goto next_ht; 243 } 244 245 /* POP */ 246 if (sdepth--) { 247 n = stack[sdepth].knode; 248 ht = rcu_dereference_bh(n->ht_up); 249 off = stack[sdepth].off; 250 goto check_terminal; 251 } 252 out: 253 return -1; 254 255 deadloop: 256 net_warn_ratelimited("cls_u32: dead loop\n"); 257 return -1; 258 } 259 260 static struct tc_u_hnode *u32_lookup_ht(struct tc_u_common *tp_c, u32 handle) 261 { 262 struct tc_u_hnode *ht; 263 264 for (ht = rtnl_dereference(tp_c->hlist); 265 ht; 266 ht = rtnl_dereference(ht->next)) 267 if (ht->handle == handle) 268 break; 269 270 return ht; 271 } 272 273 static struct tc_u_knode *u32_lookup_key(struct tc_u_hnode *ht, u32 handle) 274 { 275 unsigned int sel; 276 struct tc_u_knode *n = NULL; 277 278 sel = TC_U32_HASH(handle); 279 if (sel > ht->divisor) 280 goto out; 281 282 for (n = rtnl_dereference(ht->ht[sel]); 283 n; 284 n = rtnl_dereference(n->next)) 285 if (n->handle == handle) 286 break; 287 out: 288 return n; 289 } 290 291 292 static unsigned long u32_get(struct tcf_proto *tp, u32 handle) 293 { 294 struct tc_u_hnode *ht; 295 struct tc_u_common *tp_c = tp->data; 296 297 if (TC_U32_HTID(handle) == TC_U32_ROOT) 298 ht = rtnl_dereference(tp->root); 299 else 300 ht = u32_lookup_ht(tp_c, TC_U32_HTID(handle)); 301 302 if (!ht) 303 return 0; 304 305 if (TC_U32_KEY(handle) == 0) 306 return (unsigned long)ht; 307 308 return (unsigned long)u32_lookup_key(ht, handle); 309 } 310 311 static u32 gen_new_htid(struct tc_u_common *tp_c) 312 { 313 int i = 0x800; 314 315 /* hgenerator only used inside rtnl lock it is safe to increment 316 * without read _copy_ update semantics 317 */ 318 do { 319 if (++tp_c->hgenerator == 0x7FF) 320 tp_c->hgenerator = 1; 321 } while (--i > 0 && u32_lookup_ht(tp_c, (tp_c->hgenerator|0x800)<<20)); 322 323 return i > 0 ? (tp_c->hgenerator|0x800)<<20 : 0; 324 } 325 326 static int u32_init(struct tcf_proto *tp) 327 { 328 struct tc_u_hnode *root_ht; 329 struct tc_u_common *tp_c; 330 331 tp_c = tp->q->u32_node; 332 333 root_ht = kzalloc(sizeof(*root_ht), GFP_KERNEL); 334 if (root_ht == NULL) 335 return -ENOBUFS; 336 337 root_ht->refcnt++; 338 root_ht->handle = tp_c ? gen_new_htid(tp_c) : 0x80000000; 339 root_ht->prio = tp->prio; 340 341 if (tp_c == NULL) { 342 tp_c = kzalloc(sizeof(*tp_c), GFP_KERNEL); 343 if (tp_c == NULL) { 344 kfree(root_ht); 345 return -ENOBUFS; 346 } 347 tp_c->q = tp->q; 348 tp->q->u32_node = tp_c; 349 } 350 351 tp_c->refcnt++; 352 RCU_INIT_POINTER(root_ht->next, tp_c->hlist); 353 rcu_assign_pointer(tp_c->hlist, root_ht); 354 root_ht->tp_c = tp_c; 355 356 rcu_assign_pointer(tp->root, root_ht); 357 tp->data = tp_c; 358 return 0; 359 } 360 361 static int u32_destroy_key(struct tcf_proto *tp, struct tc_u_knode *n, 362 bool free_pf) 363 { 364 tcf_exts_destroy(&n->exts); 365 if (n->ht_down) 366 n->ht_down->refcnt--; 367 #ifdef CONFIG_CLS_U32_PERF 368 if (free_pf) 369 free_percpu(n->pf); 370 #endif 371 #ifdef CONFIG_CLS_U32_MARK 372 if (free_pf) 373 free_percpu(n->pcpu_success); 374 #endif 375 kfree(n); 376 return 0; 377 } 378 379 /* u32_delete_key_rcu should be called when free'ing a copied 380 * version of a tc_u_knode obtained from u32_init_knode(). When 381 * copies are obtained from u32_init_knode() the statistics are 382 * shared between the old and new copies to allow readers to 383 * continue to update the statistics during the copy. To support 384 * this the u32_delete_key_rcu variant does not free the percpu 385 * statistics. 386 */ 387 static void u32_delete_key_rcu(struct rcu_head *rcu) 388 { 389 struct tc_u_knode *key = container_of(rcu, struct tc_u_knode, rcu); 390 391 u32_destroy_key(key->tp, key, false); 392 } 393 394 /* u32_delete_key_freepf_rcu is the rcu callback variant 395 * that free's the entire structure including the statistics 396 * percpu variables. Only use this if the key is not a copy 397 * returned by u32_init_knode(). See u32_delete_key_rcu() 398 * for the variant that should be used with keys return from 399 * u32_init_knode() 400 */ 401 static void u32_delete_key_freepf_rcu(struct rcu_head *rcu) 402 { 403 struct tc_u_knode *key = container_of(rcu, struct tc_u_knode, rcu); 404 405 u32_destroy_key(key->tp, key, true); 406 } 407 408 static int u32_delete_key(struct tcf_proto *tp, struct tc_u_knode *key) 409 { 410 struct tc_u_knode __rcu **kp; 411 struct tc_u_knode *pkp; 412 struct tc_u_hnode *ht = rtnl_dereference(key->ht_up); 413 414 if (ht) { 415 kp = &ht->ht[TC_U32_HASH(key->handle)]; 416 for (pkp = rtnl_dereference(*kp); pkp; 417 kp = &pkp->next, pkp = rtnl_dereference(*kp)) { 418 if (pkp == key) { 419 RCU_INIT_POINTER(*kp, key->next); 420 421 tcf_unbind_filter(tp, &key->res); 422 call_rcu(&key->rcu, u32_delete_key_freepf_rcu); 423 return 0; 424 } 425 } 426 } 427 WARN_ON(1); 428 return 0; 429 } 430 431 static void u32_remove_hw_knode(struct tcf_proto *tp, u32 handle) 432 { 433 struct net_device *dev = tp->q->dev_queue->dev; 434 struct tc_cls_u32_offload u32_offload = {0}; 435 struct tc_to_netdev offload; 436 437 offload.type = TC_SETUP_CLSU32; 438 offload.cls_u32 = &u32_offload; 439 440 if (tc_should_offload(dev, tp, 0)) { 441 offload.cls_u32->command = TC_CLSU32_DELETE_KNODE; 442 offload.cls_u32->knode.handle = handle; 443 dev->netdev_ops->ndo_setup_tc(dev, tp->q->handle, 444 tp->chain->index, tp->protocol, 445 &offload); 446 } 447 } 448 449 static int u32_replace_hw_hnode(struct tcf_proto *tp, struct tc_u_hnode *h, 450 u32 flags) 451 { 452 struct net_device *dev = tp->q->dev_queue->dev; 453 struct tc_cls_u32_offload u32_offload = {0}; 454 struct tc_to_netdev offload; 455 int err; 456 457 if (!tc_should_offload(dev, tp, flags)) 458 return tc_skip_sw(flags) ? -EINVAL : 0; 459 460 offload.type = TC_SETUP_CLSU32; 461 offload.cls_u32 = &u32_offload; 462 463 offload.cls_u32->command = TC_CLSU32_NEW_HNODE; 464 offload.cls_u32->hnode.divisor = h->divisor; 465 offload.cls_u32->hnode.handle = h->handle; 466 offload.cls_u32->hnode.prio = h->prio; 467 468 err = dev->netdev_ops->ndo_setup_tc(dev, tp->q->handle, 469 tp->chain->index, tp->protocol, 470 &offload); 471 if (tc_skip_sw(flags)) 472 return err; 473 474 return 0; 475 } 476 477 static void u32_clear_hw_hnode(struct tcf_proto *tp, struct tc_u_hnode *h) 478 { 479 struct net_device *dev = tp->q->dev_queue->dev; 480 struct tc_cls_u32_offload u32_offload = {0}; 481 struct tc_to_netdev offload; 482 483 offload.type = TC_SETUP_CLSU32; 484 offload.cls_u32 = &u32_offload; 485 486 if (tc_should_offload(dev, tp, 0)) { 487 offload.cls_u32->command = TC_CLSU32_DELETE_HNODE; 488 offload.cls_u32->hnode.divisor = h->divisor; 489 offload.cls_u32->hnode.handle = h->handle; 490 offload.cls_u32->hnode.prio = h->prio; 491 492 dev->netdev_ops->ndo_setup_tc(dev, tp->q->handle, 493 tp->chain->index, tp->protocol, 494 &offload); 495 } 496 } 497 498 static int u32_replace_hw_knode(struct tcf_proto *tp, struct tc_u_knode *n, 499 u32 flags) 500 { 501 struct net_device *dev = tp->q->dev_queue->dev; 502 struct tc_cls_u32_offload u32_offload = {0}; 503 struct tc_to_netdev offload; 504 int err; 505 506 offload.type = TC_SETUP_CLSU32; 507 offload.cls_u32 = &u32_offload; 508 509 if (!tc_should_offload(dev, tp, flags)) 510 return tc_skip_sw(flags) ? -EINVAL : 0; 511 512 offload.cls_u32->command = TC_CLSU32_REPLACE_KNODE; 513 offload.cls_u32->knode.handle = n->handle; 514 offload.cls_u32->knode.fshift = n->fshift; 515 #ifdef CONFIG_CLS_U32_MARK 516 offload.cls_u32->knode.val = n->val; 517 offload.cls_u32->knode.mask = n->mask; 518 #else 519 offload.cls_u32->knode.val = 0; 520 offload.cls_u32->knode.mask = 0; 521 #endif 522 offload.cls_u32->knode.sel = &n->sel; 523 offload.cls_u32->knode.exts = &n->exts; 524 if (n->ht_down) 525 offload.cls_u32->knode.link_handle = n->ht_down->handle; 526 527 err = dev->netdev_ops->ndo_setup_tc(dev, tp->q->handle, 528 tp->chain->index, tp->protocol, 529 &offload); 530 531 if (!err) 532 n->flags |= TCA_CLS_FLAGS_IN_HW; 533 534 if (tc_skip_sw(flags)) 535 return err; 536 537 return 0; 538 } 539 540 static void u32_clear_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht) 541 { 542 struct tc_u_knode *n; 543 unsigned int h; 544 545 for (h = 0; h <= ht->divisor; h++) { 546 while ((n = rtnl_dereference(ht->ht[h])) != NULL) { 547 RCU_INIT_POINTER(ht->ht[h], 548 rtnl_dereference(n->next)); 549 tcf_unbind_filter(tp, &n->res); 550 u32_remove_hw_knode(tp, n->handle); 551 call_rcu(&n->rcu, u32_delete_key_freepf_rcu); 552 } 553 } 554 } 555 556 static int u32_destroy_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht) 557 { 558 struct tc_u_common *tp_c = tp->data; 559 struct tc_u_hnode __rcu **hn; 560 struct tc_u_hnode *phn; 561 562 WARN_ON(ht->refcnt); 563 564 u32_clear_hnode(tp, ht); 565 566 hn = &tp_c->hlist; 567 for (phn = rtnl_dereference(*hn); 568 phn; 569 hn = &phn->next, phn = rtnl_dereference(*hn)) { 570 if (phn == ht) { 571 u32_clear_hw_hnode(tp, ht); 572 RCU_INIT_POINTER(*hn, ht->next); 573 kfree_rcu(ht, rcu); 574 return 0; 575 } 576 } 577 578 return -ENOENT; 579 } 580 581 static bool ht_empty(struct tc_u_hnode *ht) 582 { 583 unsigned int h; 584 585 for (h = 0; h <= ht->divisor; h++) 586 if (rcu_access_pointer(ht->ht[h])) 587 return false; 588 589 return true; 590 } 591 592 static void u32_destroy(struct tcf_proto *tp) 593 { 594 struct tc_u_common *tp_c = tp->data; 595 struct tc_u_hnode *root_ht = rtnl_dereference(tp->root); 596 597 WARN_ON(root_ht == NULL); 598 599 if (root_ht && --root_ht->refcnt == 0) 600 u32_destroy_hnode(tp, root_ht); 601 602 if (--tp_c->refcnt == 0) { 603 struct tc_u_hnode *ht; 604 605 tp->q->u32_node = NULL; 606 607 for (ht = rtnl_dereference(tp_c->hlist); 608 ht; 609 ht = rtnl_dereference(ht->next)) { 610 ht->refcnt--; 611 u32_clear_hnode(tp, ht); 612 } 613 614 while ((ht = rtnl_dereference(tp_c->hlist)) != NULL) { 615 RCU_INIT_POINTER(tp_c->hlist, ht->next); 616 kfree_rcu(ht, rcu); 617 } 618 619 kfree(tp_c); 620 } 621 622 tp->data = NULL; 623 } 624 625 static int u32_delete(struct tcf_proto *tp, unsigned long arg, bool *last) 626 { 627 struct tc_u_hnode *ht = (struct tc_u_hnode *)arg; 628 struct tc_u_hnode *root_ht = rtnl_dereference(tp->root); 629 struct tc_u_common *tp_c = tp->data; 630 int ret = 0; 631 632 if (ht == NULL) 633 goto out; 634 635 if (TC_U32_KEY(ht->handle)) { 636 u32_remove_hw_knode(tp, ht->handle); 637 ret = u32_delete_key(tp, (struct tc_u_knode *)ht); 638 goto out; 639 } 640 641 if (root_ht == ht) 642 return -EINVAL; 643 644 if (ht->refcnt == 1) { 645 ht->refcnt--; 646 u32_destroy_hnode(tp, ht); 647 } else { 648 return -EBUSY; 649 } 650 651 out: 652 *last = true; 653 if (root_ht) { 654 if (root_ht->refcnt > 1) { 655 *last = false; 656 goto ret; 657 } 658 if (root_ht->refcnt == 1) { 659 if (!ht_empty(root_ht)) { 660 *last = false; 661 goto ret; 662 } 663 } 664 } 665 666 if (tp_c->refcnt > 1) { 667 *last = false; 668 goto ret; 669 } 670 671 if (tp_c->refcnt == 1) { 672 struct tc_u_hnode *ht; 673 674 for (ht = rtnl_dereference(tp_c->hlist); 675 ht; 676 ht = rtnl_dereference(ht->next)) 677 if (!ht_empty(ht)) { 678 *last = false; 679 break; 680 } 681 } 682 683 ret: 684 return ret; 685 } 686 687 #define NR_U32_NODE (1<<12) 688 static u32 gen_new_kid(struct tc_u_hnode *ht, u32 handle) 689 { 690 struct tc_u_knode *n; 691 unsigned long i; 692 unsigned long *bitmap = kzalloc(BITS_TO_LONGS(NR_U32_NODE) * sizeof(unsigned long), 693 GFP_KERNEL); 694 if (!bitmap) 695 return handle | 0xFFF; 696 697 for (n = rtnl_dereference(ht->ht[TC_U32_HASH(handle)]); 698 n; 699 n = rtnl_dereference(n->next)) 700 set_bit(TC_U32_NODE(n->handle), bitmap); 701 702 i = find_next_zero_bit(bitmap, NR_U32_NODE, 0x800); 703 if (i >= NR_U32_NODE) 704 i = find_next_zero_bit(bitmap, NR_U32_NODE, 1); 705 706 kfree(bitmap); 707 return handle | (i >= NR_U32_NODE ? 0xFFF : i); 708 } 709 710 static const struct nla_policy u32_policy[TCA_U32_MAX + 1] = { 711 [TCA_U32_CLASSID] = { .type = NLA_U32 }, 712 [TCA_U32_HASH] = { .type = NLA_U32 }, 713 [TCA_U32_LINK] = { .type = NLA_U32 }, 714 [TCA_U32_DIVISOR] = { .type = NLA_U32 }, 715 [TCA_U32_SEL] = { .len = sizeof(struct tc_u32_sel) }, 716 [TCA_U32_INDEV] = { .type = NLA_STRING, .len = IFNAMSIZ }, 717 [TCA_U32_MARK] = { .len = sizeof(struct tc_u32_mark) }, 718 [TCA_U32_FLAGS] = { .type = NLA_U32 }, 719 }; 720 721 static int u32_set_parms(struct net *net, struct tcf_proto *tp, 722 unsigned long base, struct tc_u_hnode *ht, 723 struct tc_u_knode *n, struct nlattr **tb, 724 struct nlattr *est, bool ovr) 725 { 726 struct tcf_exts e; 727 int err; 728 729 err = tcf_exts_init(&e, TCA_U32_ACT, TCA_U32_POLICE); 730 if (err < 0) 731 return err; 732 err = tcf_exts_validate(net, tp, tb, est, &e, ovr); 733 if (err < 0) 734 goto errout; 735 736 err = -EINVAL; 737 if (tb[TCA_U32_LINK]) { 738 u32 handle = nla_get_u32(tb[TCA_U32_LINK]); 739 struct tc_u_hnode *ht_down = NULL, *ht_old; 740 741 if (TC_U32_KEY(handle)) 742 goto errout; 743 744 if (handle) { 745 ht_down = u32_lookup_ht(ht->tp_c, handle); 746 747 if (ht_down == NULL) 748 goto errout; 749 ht_down->refcnt++; 750 } 751 752 ht_old = rtnl_dereference(n->ht_down); 753 rcu_assign_pointer(n->ht_down, ht_down); 754 755 if (ht_old) 756 ht_old->refcnt--; 757 } 758 if (tb[TCA_U32_CLASSID]) { 759 n->res.classid = nla_get_u32(tb[TCA_U32_CLASSID]); 760 tcf_bind_filter(tp, &n->res, base); 761 } 762 763 #ifdef CONFIG_NET_CLS_IND 764 if (tb[TCA_U32_INDEV]) { 765 int ret; 766 ret = tcf_change_indev(net, tb[TCA_U32_INDEV]); 767 if (ret < 0) 768 goto errout; 769 n->ifindex = ret; 770 } 771 #endif 772 tcf_exts_change(tp, &n->exts, &e); 773 774 return 0; 775 errout: 776 tcf_exts_destroy(&e); 777 return err; 778 } 779 780 static void u32_replace_knode(struct tcf_proto *tp, struct tc_u_common *tp_c, 781 struct tc_u_knode *n) 782 { 783 struct tc_u_knode __rcu **ins; 784 struct tc_u_knode *pins; 785 struct tc_u_hnode *ht; 786 787 if (TC_U32_HTID(n->handle) == TC_U32_ROOT) 788 ht = rtnl_dereference(tp->root); 789 else 790 ht = u32_lookup_ht(tp_c, TC_U32_HTID(n->handle)); 791 792 ins = &ht->ht[TC_U32_HASH(n->handle)]; 793 794 /* The node must always exist for it to be replaced if this is not the 795 * case then something went very wrong elsewhere. 796 */ 797 for (pins = rtnl_dereference(*ins); ; 798 ins = &pins->next, pins = rtnl_dereference(*ins)) 799 if (pins->handle == n->handle) 800 break; 801 802 RCU_INIT_POINTER(n->next, pins->next); 803 rcu_assign_pointer(*ins, n); 804 } 805 806 static struct tc_u_knode *u32_init_knode(struct tcf_proto *tp, 807 struct tc_u_knode *n) 808 { 809 struct tc_u_knode *new; 810 struct tc_u32_sel *s = &n->sel; 811 812 new = kzalloc(sizeof(*n) + s->nkeys*sizeof(struct tc_u32_key), 813 GFP_KERNEL); 814 815 if (!new) 816 return NULL; 817 818 RCU_INIT_POINTER(new->next, n->next); 819 new->handle = n->handle; 820 RCU_INIT_POINTER(new->ht_up, n->ht_up); 821 822 #ifdef CONFIG_NET_CLS_IND 823 new->ifindex = n->ifindex; 824 #endif 825 new->fshift = n->fshift; 826 new->res = n->res; 827 new->flags = n->flags; 828 RCU_INIT_POINTER(new->ht_down, n->ht_down); 829 830 /* bump reference count as long as we hold pointer to structure */ 831 if (new->ht_down) 832 new->ht_down->refcnt++; 833 834 #ifdef CONFIG_CLS_U32_PERF 835 /* Statistics may be incremented by readers during update 836 * so we must keep them in tact. When the node is later destroyed 837 * a special destroy call must be made to not free the pf memory. 838 */ 839 new->pf = n->pf; 840 #endif 841 842 #ifdef CONFIG_CLS_U32_MARK 843 new->val = n->val; 844 new->mask = n->mask; 845 /* Similarly success statistics must be moved as pointers */ 846 new->pcpu_success = n->pcpu_success; 847 #endif 848 new->tp = tp; 849 memcpy(&new->sel, s, sizeof(*s) + s->nkeys*sizeof(struct tc_u32_key)); 850 851 if (tcf_exts_init(&new->exts, TCA_U32_ACT, TCA_U32_POLICE)) { 852 kfree(new); 853 return NULL; 854 } 855 856 return new; 857 } 858 859 static int u32_change(struct net *net, struct sk_buff *in_skb, 860 struct tcf_proto *tp, unsigned long base, u32 handle, 861 struct nlattr **tca, unsigned long *arg, bool ovr) 862 { 863 struct tc_u_common *tp_c = tp->data; 864 struct tc_u_hnode *ht; 865 struct tc_u_knode *n; 866 struct tc_u32_sel *s; 867 struct nlattr *opt = tca[TCA_OPTIONS]; 868 struct nlattr *tb[TCA_U32_MAX + 1]; 869 u32 htid, flags = 0; 870 int err; 871 #ifdef CONFIG_CLS_U32_PERF 872 size_t size; 873 #endif 874 875 if (opt == NULL) 876 return handle ? -EINVAL : 0; 877 878 err = nla_parse_nested(tb, TCA_U32_MAX, opt, u32_policy, NULL); 879 if (err < 0) 880 return err; 881 882 if (tb[TCA_U32_FLAGS]) { 883 flags = nla_get_u32(tb[TCA_U32_FLAGS]); 884 if (!tc_flags_valid(flags)) 885 return -EINVAL; 886 } 887 888 n = (struct tc_u_knode *)*arg; 889 if (n) { 890 struct tc_u_knode *new; 891 892 if (TC_U32_KEY(n->handle) == 0) 893 return -EINVAL; 894 895 if (n->flags != flags) 896 return -EINVAL; 897 898 new = u32_init_knode(tp, n); 899 if (!new) 900 return -ENOMEM; 901 902 err = u32_set_parms(net, tp, base, 903 rtnl_dereference(n->ht_up), new, tb, 904 tca[TCA_RATE], ovr); 905 906 if (err) { 907 u32_destroy_key(tp, new, false); 908 return err; 909 } 910 911 err = u32_replace_hw_knode(tp, new, flags); 912 if (err) { 913 u32_destroy_key(tp, new, false); 914 return err; 915 } 916 917 if (!tc_in_hw(new->flags)) 918 new->flags |= TCA_CLS_FLAGS_NOT_IN_HW; 919 920 u32_replace_knode(tp, tp_c, new); 921 tcf_unbind_filter(tp, &n->res); 922 call_rcu(&n->rcu, u32_delete_key_rcu); 923 return 0; 924 } 925 926 if (tb[TCA_U32_DIVISOR]) { 927 unsigned int divisor = nla_get_u32(tb[TCA_U32_DIVISOR]); 928 929 if (--divisor > 0x100) 930 return -EINVAL; 931 if (TC_U32_KEY(handle)) 932 return -EINVAL; 933 if (handle == 0) { 934 handle = gen_new_htid(tp->data); 935 if (handle == 0) 936 return -ENOMEM; 937 } 938 ht = kzalloc(sizeof(*ht) + divisor*sizeof(void *), GFP_KERNEL); 939 if (ht == NULL) 940 return -ENOBUFS; 941 ht->tp_c = tp_c; 942 ht->refcnt = 1; 943 ht->divisor = divisor; 944 ht->handle = handle; 945 ht->prio = tp->prio; 946 947 err = u32_replace_hw_hnode(tp, ht, flags); 948 if (err) { 949 kfree(ht); 950 return err; 951 } 952 953 RCU_INIT_POINTER(ht->next, tp_c->hlist); 954 rcu_assign_pointer(tp_c->hlist, ht); 955 *arg = (unsigned long)ht; 956 957 return 0; 958 } 959 960 if (tb[TCA_U32_HASH]) { 961 htid = nla_get_u32(tb[TCA_U32_HASH]); 962 if (TC_U32_HTID(htid) == TC_U32_ROOT) { 963 ht = rtnl_dereference(tp->root); 964 htid = ht->handle; 965 } else { 966 ht = u32_lookup_ht(tp->data, TC_U32_HTID(htid)); 967 if (ht == NULL) 968 return -EINVAL; 969 } 970 } else { 971 ht = rtnl_dereference(tp->root); 972 htid = ht->handle; 973 } 974 975 if (ht->divisor < TC_U32_HASH(htid)) 976 return -EINVAL; 977 978 if (handle) { 979 if (TC_U32_HTID(handle) && TC_U32_HTID(handle^htid)) 980 return -EINVAL; 981 handle = htid | TC_U32_NODE(handle); 982 } else 983 handle = gen_new_kid(ht, htid); 984 985 if (tb[TCA_U32_SEL] == NULL) 986 return -EINVAL; 987 988 s = nla_data(tb[TCA_U32_SEL]); 989 990 n = kzalloc(sizeof(*n) + s->nkeys*sizeof(struct tc_u32_key), GFP_KERNEL); 991 if (n == NULL) 992 return -ENOBUFS; 993 994 #ifdef CONFIG_CLS_U32_PERF 995 size = sizeof(struct tc_u32_pcnt) + s->nkeys * sizeof(u64); 996 n->pf = __alloc_percpu(size, __alignof__(struct tc_u32_pcnt)); 997 if (!n->pf) { 998 kfree(n); 999 return -ENOBUFS; 1000 } 1001 #endif 1002 1003 memcpy(&n->sel, s, sizeof(*s) + s->nkeys*sizeof(struct tc_u32_key)); 1004 RCU_INIT_POINTER(n->ht_up, ht); 1005 n->handle = handle; 1006 n->fshift = s->hmask ? ffs(ntohl(s->hmask)) - 1 : 0; 1007 n->flags = flags; 1008 n->tp = tp; 1009 1010 err = tcf_exts_init(&n->exts, TCA_U32_ACT, TCA_U32_POLICE); 1011 if (err < 0) 1012 goto errout; 1013 1014 #ifdef CONFIG_CLS_U32_MARK 1015 n->pcpu_success = alloc_percpu(u32); 1016 if (!n->pcpu_success) { 1017 err = -ENOMEM; 1018 goto errout; 1019 } 1020 1021 if (tb[TCA_U32_MARK]) { 1022 struct tc_u32_mark *mark; 1023 1024 mark = nla_data(tb[TCA_U32_MARK]); 1025 n->val = mark->val; 1026 n->mask = mark->mask; 1027 } 1028 #endif 1029 1030 err = u32_set_parms(net, tp, base, ht, n, tb, tca[TCA_RATE], ovr); 1031 if (err == 0) { 1032 struct tc_u_knode __rcu **ins; 1033 struct tc_u_knode *pins; 1034 1035 err = u32_replace_hw_knode(tp, n, flags); 1036 if (err) 1037 goto errhw; 1038 1039 if (!tc_in_hw(n->flags)) 1040 n->flags |= TCA_CLS_FLAGS_NOT_IN_HW; 1041 1042 ins = &ht->ht[TC_U32_HASH(handle)]; 1043 for (pins = rtnl_dereference(*ins); pins; 1044 ins = &pins->next, pins = rtnl_dereference(*ins)) 1045 if (TC_U32_NODE(handle) < TC_U32_NODE(pins->handle)) 1046 break; 1047 1048 RCU_INIT_POINTER(n->next, pins); 1049 rcu_assign_pointer(*ins, n); 1050 *arg = (unsigned long)n; 1051 return 0; 1052 } 1053 1054 errhw: 1055 #ifdef CONFIG_CLS_U32_MARK 1056 free_percpu(n->pcpu_success); 1057 #endif 1058 1059 errout: 1060 tcf_exts_destroy(&n->exts); 1061 #ifdef CONFIG_CLS_U32_PERF 1062 free_percpu(n->pf); 1063 #endif 1064 kfree(n); 1065 return err; 1066 } 1067 1068 static void u32_walk(struct tcf_proto *tp, struct tcf_walker *arg) 1069 { 1070 struct tc_u_common *tp_c = tp->data; 1071 struct tc_u_hnode *ht; 1072 struct tc_u_knode *n; 1073 unsigned int h; 1074 1075 if (arg->stop) 1076 return; 1077 1078 for (ht = rtnl_dereference(tp_c->hlist); 1079 ht; 1080 ht = rtnl_dereference(ht->next)) { 1081 if (ht->prio != tp->prio) 1082 continue; 1083 if (arg->count >= arg->skip) { 1084 if (arg->fn(tp, (unsigned long)ht, arg) < 0) { 1085 arg->stop = 1; 1086 return; 1087 } 1088 } 1089 arg->count++; 1090 for (h = 0; h <= ht->divisor; h++) { 1091 for (n = rtnl_dereference(ht->ht[h]); 1092 n; 1093 n = rtnl_dereference(n->next)) { 1094 if (arg->count < arg->skip) { 1095 arg->count++; 1096 continue; 1097 } 1098 if (arg->fn(tp, (unsigned long)n, arg) < 0) { 1099 arg->stop = 1; 1100 return; 1101 } 1102 arg->count++; 1103 } 1104 } 1105 } 1106 } 1107 1108 static int u32_dump(struct net *net, struct tcf_proto *tp, unsigned long fh, 1109 struct sk_buff *skb, struct tcmsg *t) 1110 { 1111 struct tc_u_knode *n = (struct tc_u_knode *)fh; 1112 struct tc_u_hnode *ht_up, *ht_down; 1113 struct nlattr *nest; 1114 1115 if (n == NULL) 1116 return skb->len; 1117 1118 t->tcm_handle = n->handle; 1119 1120 nest = nla_nest_start(skb, TCA_OPTIONS); 1121 if (nest == NULL) 1122 goto nla_put_failure; 1123 1124 if (TC_U32_KEY(n->handle) == 0) { 1125 struct tc_u_hnode *ht = (struct tc_u_hnode *)fh; 1126 u32 divisor = ht->divisor + 1; 1127 1128 if (nla_put_u32(skb, TCA_U32_DIVISOR, divisor)) 1129 goto nla_put_failure; 1130 } else { 1131 #ifdef CONFIG_CLS_U32_PERF 1132 struct tc_u32_pcnt *gpf; 1133 int cpu; 1134 #endif 1135 1136 if (nla_put(skb, TCA_U32_SEL, 1137 sizeof(n->sel) + n->sel.nkeys*sizeof(struct tc_u32_key), 1138 &n->sel)) 1139 goto nla_put_failure; 1140 1141 ht_up = rtnl_dereference(n->ht_up); 1142 if (ht_up) { 1143 u32 htid = n->handle & 0xFFFFF000; 1144 if (nla_put_u32(skb, TCA_U32_HASH, htid)) 1145 goto nla_put_failure; 1146 } 1147 if (n->res.classid && 1148 nla_put_u32(skb, TCA_U32_CLASSID, n->res.classid)) 1149 goto nla_put_failure; 1150 1151 ht_down = rtnl_dereference(n->ht_down); 1152 if (ht_down && 1153 nla_put_u32(skb, TCA_U32_LINK, ht_down->handle)) 1154 goto nla_put_failure; 1155 1156 if (n->flags && nla_put_u32(skb, TCA_U32_FLAGS, n->flags)) 1157 goto nla_put_failure; 1158 1159 #ifdef CONFIG_CLS_U32_MARK 1160 if ((n->val || n->mask)) { 1161 struct tc_u32_mark mark = {.val = n->val, 1162 .mask = n->mask, 1163 .success = 0}; 1164 int cpum; 1165 1166 for_each_possible_cpu(cpum) { 1167 __u32 cnt = *per_cpu_ptr(n->pcpu_success, cpum); 1168 1169 mark.success += cnt; 1170 } 1171 1172 if (nla_put(skb, TCA_U32_MARK, sizeof(mark), &mark)) 1173 goto nla_put_failure; 1174 } 1175 #endif 1176 1177 if (tcf_exts_dump(skb, &n->exts) < 0) 1178 goto nla_put_failure; 1179 1180 #ifdef CONFIG_NET_CLS_IND 1181 if (n->ifindex) { 1182 struct net_device *dev; 1183 dev = __dev_get_by_index(net, n->ifindex); 1184 if (dev && nla_put_string(skb, TCA_U32_INDEV, dev->name)) 1185 goto nla_put_failure; 1186 } 1187 #endif 1188 #ifdef CONFIG_CLS_U32_PERF 1189 gpf = kzalloc(sizeof(struct tc_u32_pcnt) + 1190 n->sel.nkeys * sizeof(u64), 1191 GFP_KERNEL); 1192 if (!gpf) 1193 goto nla_put_failure; 1194 1195 for_each_possible_cpu(cpu) { 1196 int i; 1197 struct tc_u32_pcnt *pf = per_cpu_ptr(n->pf, cpu); 1198 1199 gpf->rcnt += pf->rcnt; 1200 gpf->rhit += pf->rhit; 1201 for (i = 0; i < n->sel.nkeys; i++) 1202 gpf->kcnts[i] += pf->kcnts[i]; 1203 } 1204 1205 if (nla_put_64bit(skb, TCA_U32_PCNT, 1206 sizeof(struct tc_u32_pcnt) + 1207 n->sel.nkeys * sizeof(u64), 1208 gpf, TCA_U32_PAD)) { 1209 kfree(gpf); 1210 goto nla_put_failure; 1211 } 1212 kfree(gpf); 1213 #endif 1214 } 1215 1216 nla_nest_end(skb, nest); 1217 1218 if (TC_U32_KEY(n->handle)) 1219 if (tcf_exts_dump_stats(skb, &n->exts) < 0) 1220 goto nla_put_failure; 1221 return skb->len; 1222 1223 nla_put_failure: 1224 nla_nest_cancel(skb, nest); 1225 return -1; 1226 } 1227 1228 static struct tcf_proto_ops cls_u32_ops __read_mostly = { 1229 .kind = "u32", 1230 .classify = u32_classify, 1231 .init = u32_init, 1232 .destroy = u32_destroy, 1233 .get = u32_get, 1234 .change = u32_change, 1235 .delete = u32_delete, 1236 .walk = u32_walk, 1237 .dump = u32_dump, 1238 .owner = THIS_MODULE, 1239 }; 1240 1241 static int __init init_u32(void) 1242 { 1243 pr_info("u32 classifier\n"); 1244 #ifdef CONFIG_CLS_U32_PERF 1245 pr_info(" Performance counters on\n"); 1246 #endif 1247 #ifdef CONFIG_NET_CLS_IND 1248 pr_info(" input device check on\n"); 1249 #endif 1250 #ifdef CONFIG_NET_CLS_ACT 1251 pr_info(" Actions configured\n"); 1252 #endif 1253 return register_tcf_proto_ops(&cls_u32_ops); 1254 } 1255 1256 static void __exit exit_u32(void) 1257 { 1258 unregister_tcf_proto_ops(&cls_u32_ops); 1259 } 1260 1261 module_init(init_u32) 1262 module_exit(exit_u32) 1263 MODULE_LICENSE("GPL"); 1264