1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * net/sched/cls_u32.c Ugly (or Universal) 32bit key Packet Classifier. 4 * 5 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 6 * 7 * The filters are packed to hash tables of key nodes 8 * with a set of 32bit key/mask pairs at every node. 9 * Nodes reference next level hash tables etc. 10 * 11 * This scheme is the best universal classifier I managed to 12 * invent; it is not super-fast, but it is not slow (provided you 13 * program it correctly), and general enough. And its relative 14 * speed grows as the number of rules becomes larger. 15 * 16 * It seems that it represents the best middle point between 17 * speed and manageability both by human and by machine. 18 * 19 * It is especially useful for link sharing combined with QoS; 20 * pure RSVP doesn't need such a general approach and can use 21 * much simpler (and faster) schemes, sort of cls_rsvp.c. 22 * 23 * nfmark match added by Catalin(ux aka Dino) BOIE <catab at umbrella.ro> 24 */ 25 26 #include <linux/module.h> 27 #include <linux/slab.h> 28 #include <linux/types.h> 29 #include <linux/kernel.h> 30 #include <linux/string.h> 31 #include <linux/errno.h> 32 #include <linux/percpu.h> 33 #include <linux/rtnetlink.h> 34 #include <linux/skbuff.h> 35 #include <linux/bitmap.h> 36 #include <linux/netdevice.h> 37 #include <linux/hash.h> 38 #include <net/netlink.h> 39 #include <net/act_api.h> 40 #include <net/pkt_cls.h> 41 #include <linux/idr.h> 42 #include <net/tc_wrapper.h> 43 44 struct tc_u_knode { 45 struct tc_u_knode __rcu *next; 46 u32 handle; 47 struct tc_u_hnode __rcu *ht_up; 48 struct tcf_exts exts; 49 int ifindex; 50 u8 fshift; 51 struct tcf_result res; 52 struct tc_u_hnode __rcu *ht_down; 53 #ifdef CONFIG_CLS_U32_PERF 54 struct tc_u32_pcnt __percpu *pf; 55 #endif 56 u32 flags; 57 unsigned int in_hw_count; 58 #ifdef CONFIG_CLS_U32_MARK 59 u32 val; 60 u32 mask; 61 u32 __percpu *pcpu_success; 62 #endif 63 struct rcu_work rwork; 64 /* The 'sel' field MUST be the last field in structure to allow for 65 * tc_u32_keys allocated at end of structure. 66 */ 67 struct tc_u32_sel sel; 68 }; 69 70 struct tc_u_hnode { 71 struct tc_u_hnode __rcu *next; 72 u32 handle; 73 u32 prio; 74 int refcnt; 75 unsigned int divisor; 76 struct idr handle_idr; 77 bool is_root; 78 struct rcu_head rcu; 79 u32 flags; 80 /* The 'ht' field MUST be the last field in structure to allow for 81 * more entries allocated at end of structure. 82 */ 83 struct tc_u_knode __rcu *ht[]; 84 }; 85 86 struct tc_u_common { 87 struct tc_u_hnode __rcu *hlist; 88 void *ptr; 89 int refcnt; 90 struct idr handle_idr; 91 struct hlist_node hnode; 92 long knodes; 93 }; 94 95 static inline unsigned int u32_hash_fold(__be32 key, 96 const struct tc_u32_sel *sel, 97 u8 fshift) 98 { 99 unsigned int h = ntohl(key & sel->hmask) >> fshift; 100 101 return h; 102 } 103 104 TC_INDIRECT_SCOPE int u32_classify(struct sk_buff *skb, 105 const struct tcf_proto *tp, 106 struct tcf_result *res) 107 { 108 struct { 109 struct tc_u_knode *knode; 110 unsigned int off; 111 } stack[TC_U32_MAXDEPTH]; 112 113 struct tc_u_hnode *ht = rcu_dereference_bh(tp->root); 114 unsigned int off = skb_network_offset(skb); 115 struct tc_u_knode *n; 116 int sdepth = 0; 117 int off2 = 0; 118 int sel = 0; 119 #ifdef CONFIG_CLS_U32_PERF 120 int j; 121 #endif 122 int i, r; 123 124 next_ht: 125 n = rcu_dereference_bh(ht->ht[sel]); 126 127 next_knode: 128 if (n) { 129 struct tc_u32_key *key = n->sel.keys; 130 131 #ifdef CONFIG_CLS_U32_PERF 132 __this_cpu_inc(n->pf->rcnt); 133 j = 0; 134 #endif 135 136 if (tc_skip_sw(n->flags)) { 137 n = rcu_dereference_bh(n->next); 138 goto next_knode; 139 } 140 141 #ifdef CONFIG_CLS_U32_MARK 142 if ((skb->mark & n->mask) != n->val) { 143 n = rcu_dereference_bh(n->next); 144 goto next_knode; 145 } else { 146 __this_cpu_inc(*n->pcpu_success); 147 } 148 #endif 149 150 for (i = n->sel.nkeys; i > 0; i--, key++) { 151 int toff = off + key->off + (off2 & key->offmask); 152 __be32 *data, hdata; 153 154 if (skb_headroom(skb) + toff > INT_MAX) 155 goto out; 156 157 data = skb_header_pointer(skb, toff, 4, &hdata); 158 if (!data) 159 goto out; 160 if ((*data ^ key->val) & key->mask) { 161 n = rcu_dereference_bh(n->next); 162 goto next_knode; 163 } 164 #ifdef CONFIG_CLS_U32_PERF 165 __this_cpu_inc(n->pf->kcnts[j]); 166 j++; 167 #endif 168 } 169 170 ht = rcu_dereference_bh(n->ht_down); 171 if (!ht) { 172 check_terminal: 173 if (n->sel.flags & TC_U32_TERMINAL) { 174 175 *res = n->res; 176 if (!tcf_match_indev(skb, n->ifindex)) { 177 n = rcu_dereference_bh(n->next); 178 goto next_knode; 179 } 180 #ifdef CONFIG_CLS_U32_PERF 181 __this_cpu_inc(n->pf->rhit); 182 #endif 183 r = tcf_exts_exec(skb, &n->exts, res); 184 if (r < 0) { 185 n = rcu_dereference_bh(n->next); 186 goto next_knode; 187 } 188 189 return r; 190 } 191 n = rcu_dereference_bh(n->next); 192 goto next_knode; 193 } 194 195 /* PUSH */ 196 if (sdepth >= TC_U32_MAXDEPTH) 197 goto deadloop; 198 stack[sdepth].knode = n; 199 stack[sdepth].off = off; 200 sdepth++; 201 202 ht = rcu_dereference_bh(n->ht_down); 203 sel = 0; 204 if (ht->divisor) { 205 __be32 *data, hdata; 206 207 data = skb_header_pointer(skb, off + n->sel.hoff, 4, 208 &hdata); 209 if (!data) 210 goto out; 211 sel = ht->divisor & u32_hash_fold(*data, &n->sel, 212 n->fshift); 213 } 214 if (!(n->sel.flags & (TC_U32_VAROFFSET | TC_U32_OFFSET | TC_U32_EAT))) 215 goto next_ht; 216 217 if (n->sel.flags & (TC_U32_OFFSET | TC_U32_VAROFFSET)) { 218 off2 = n->sel.off + 3; 219 if (n->sel.flags & TC_U32_VAROFFSET) { 220 __be16 *data, hdata; 221 222 data = skb_header_pointer(skb, 223 off + n->sel.offoff, 224 2, &hdata); 225 if (!data) 226 goto out; 227 off2 += ntohs(n->sel.offmask & *data) >> 228 n->sel.offshift; 229 } 230 off2 &= ~3; 231 } 232 if (n->sel.flags & TC_U32_EAT) { 233 off += off2; 234 off2 = 0; 235 } 236 237 if (off < skb->len) 238 goto next_ht; 239 } 240 241 /* POP */ 242 if (sdepth--) { 243 n = stack[sdepth].knode; 244 ht = rcu_dereference_bh(n->ht_up); 245 off = stack[sdepth].off; 246 goto check_terminal; 247 } 248 out: 249 return -1; 250 251 deadloop: 252 net_warn_ratelimited("cls_u32: dead loop\n"); 253 return -1; 254 } 255 256 static struct tc_u_hnode *u32_lookup_ht(struct tc_u_common *tp_c, u32 handle) 257 { 258 struct tc_u_hnode *ht; 259 260 for (ht = rtnl_dereference(tp_c->hlist); 261 ht; 262 ht = rtnl_dereference(ht->next)) 263 if (ht->handle == handle) 264 break; 265 266 return ht; 267 } 268 269 static struct tc_u_knode *u32_lookup_key(struct tc_u_hnode *ht, u32 handle) 270 { 271 unsigned int sel; 272 struct tc_u_knode *n = NULL; 273 274 sel = TC_U32_HASH(handle); 275 if (sel > ht->divisor) 276 goto out; 277 278 for (n = rtnl_dereference(ht->ht[sel]); 279 n; 280 n = rtnl_dereference(n->next)) 281 if (n->handle == handle) 282 break; 283 out: 284 return n; 285 } 286 287 288 static void *u32_get(struct tcf_proto *tp, u32 handle) 289 { 290 struct tc_u_hnode *ht; 291 struct tc_u_common *tp_c = tp->data; 292 293 if (TC_U32_HTID(handle) == TC_U32_ROOT) 294 ht = rtnl_dereference(tp->root); 295 else 296 ht = u32_lookup_ht(tp_c, TC_U32_HTID(handle)); 297 298 if (!ht) 299 return NULL; 300 301 if (TC_U32_KEY(handle) == 0) 302 return ht; 303 304 return u32_lookup_key(ht, handle); 305 } 306 307 /* Protected by rtnl lock */ 308 static u32 gen_new_htid(struct tc_u_common *tp_c, struct tc_u_hnode *ptr) 309 { 310 int id = idr_alloc_cyclic(&tp_c->handle_idr, ptr, 1, 0x7FF, GFP_KERNEL); 311 if (id < 0) 312 return 0; 313 return (id | 0x800U) << 20; 314 } 315 316 static struct hlist_head *tc_u_common_hash; 317 318 #define U32_HASH_SHIFT 10 319 #define U32_HASH_SIZE (1 << U32_HASH_SHIFT) 320 321 static void *tc_u_common_ptr(const struct tcf_proto *tp) 322 { 323 struct tcf_block *block = tp->chain->block; 324 325 /* The block sharing is currently supported only 326 * for classless qdiscs. In that case we use block 327 * for tc_u_common identification. In case the 328 * block is not shared, block->q is a valid pointer 329 * and we can use that. That works for classful qdiscs. 330 */ 331 if (tcf_block_shared(block)) 332 return block; 333 else 334 return block->q; 335 } 336 337 static struct hlist_head *tc_u_hash(void *key) 338 { 339 return tc_u_common_hash + hash_ptr(key, U32_HASH_SHIFT); 340 } 341 342 static struct tc_u_common *tc_u_common_find(void *key) 343 { 344 struct tc_u_common *tc; 345 hlist_for_each_entry(tc, tc_u_hash(key), hnode) { 346 if (tc->ptr == key) 347 return tc; 348 } 349 return NULL; 350 } 351 352 static int u32_init(struct tcf_proto *tp) 353 { 354 struct tc_u_hnode *root_ht; 355 void *key = tc_u_common_ptr(tp); 356 struct tc_u_common *tp_c = tc_u_common_find(key); 357 358 root_ht = kzalloc(struct_size(root_ht, ht, 1), GFP_KERNEL); 359 if (root_ht == NULL) 360 return -ENOBUFS; 361 362 root_ht->refcnt++; 363 root_ht->handle = tp_c ? gen_new_htid(tp_c, root_ht) : 0x80000000; 364 root_ht->prio = tp->prio; 365 root_ht->is_root = true; 366 idr_init(&root_ht->handle_idr); 367 368 if (tp_c == NULL) { 369 tp_c = kzalloc(sizeof(*tp_c), GFP_KERNEL); 370 if (tp_c == NULL) { 371 kfree(root_ht); 372 return -ENOBUFS; 373 } 374 tp_c->ptr = key; 375 INIT_HLIST_NODE(&tp_c->hnode); 376 idr_init(&tp_c->handle_idr); 377 378 hlist_add_head(&tp_c->hnode, tc_u_hash(key)); 379 } 380 381 tp_c->refcnt++; 382 RCU_INIT_POINTER(root_ht->next, tp_c->hlist); 383 rcu_assign_pointer(tp_c->hlist, root_ht); 384 385 root_ht->refcnt++; 386 rcu_assign_pointer(tp->root, root_ht); 387 tp->data = tp_c; 388 return 0; 389 } 390 391 static void __u32_destroy_key(struct tc_u_knode *n) 392 { 393 struct tc_u_hnode *ht = rtnl_dereference(n->ht_down); 394 395 tcf_exts_destroy(&n->exts); 396 if (ht && --ht->refcnt == 0) 397 kfree(ht); 398 kfree(n); 399 } 400 401 static void u32_destroy_key(struct tc_u_knode *n, bool free_pf) 402 { 403 tcf_exts_put_net(&n->exts); 404 #ifdef CONFIG_CLS_U32_PERF 405 if (free_pf) 406 free_percpu(n->pf); 407 #endif 408 #ifdef CONFIG_CLS_U32_MARK 409 if (free_pf) 410 free_percpu(n->pcpu_success); 411 #endif 412 __u32_destroy_key(n); 413 } 414 415 /* u32_delete_key_rcu should be called when free'ing a copied 416 * version of a tc_u_knode obtained from u32_init_knode(). When 417 * copies are obtained from u32_init_knode() the statistics are 418 * shared between the old and new copies to allow readers to 419 * continue to update the statistics during the copy. To support 420 * this the u32_delete_key_rcu variant does not free the percpu 421 * statistics. 422 */ 423 static void u32_delete_key_work(struct work_struct *work) 424 { 425 struct tc_u_knode *key = container_of(to_rcu_work(work), 426 struct tc_u_knode, 427 rwork); 428 rtnl_lock(); 429 u32_destroy_key(key, false); 430 rtnl_unlock(); 431 } 432 433 /* u32_delete_key_freepf_rcu is the rcu callback variant 434 * that free's the entire structure including the statistics 435 * percpu variables. Only use this if the key is not a copy 436 * returned by u32_init_knode(). See u32_delete_key_rcu() 437 * for the variant that should be used with keys return from 438 * u32_init_knode() 439 */ 440 static void u32_delete_key_freepf_work(struct work_struct *work) 441 { 442 struct tc_u_knode *key = container_of(to_rcu_work(work), 443 struct tc_u_knode, 444 rwork); 445 rtnl_lock(); 446 u32_destroy_key(key, true); 447 rtnl_unlock(); 448 } 449 450 static int u32_delete_key(struct tcf_proto *tp, struct tc_u_knode *key) 451 { 452 struct tc_u_common *tp_c = tp->data; 453 struct tc_u_knode __rcu **kp; 454 struct tc_u_knode *pkp; 455 struct tc_u_hnode *ht = rtnl_dereference(key->ht_up); 456 457 if (ht) { 458 kp = &ht->ht[TC_U32_HASH(key->handle)]; 459 for (pkp = rtnl_dereference(*kp); pkp; 460 kp = &pkp->next, pkp = rtnl_dereference(*kp)) { 461 if (pkp == key) { 462 RCU_INIT_POINTER(*kp, key->next); 463 tp_c->knodes--; 464 465 tcf_unbind_filter(tp, &key->res); 466 idr_remove(&ht->handle_idr, key->handle); 467 tcf_exts_get_net(&key->exts); 468 tcf_queue_work(&key->rwork, u32_delete_key_freepf_work); 469 return 0; 470 } 471 } 472 } 473 WARN_ON(1); 474 return 0; 475 } 476 477 static void u32_clear_hw_hnode(struct tcf_proto *tp, struct tc_u_hnode *h, 478 struct netlink_ext_ack *extack) 479 { 480 struct tcf_block *block = tp->chain->block; 481 struct tc_cls_u32_offload cls_u32 = {}; 482 483 tc_cls_common_offload_init(&cls_u32.common, tp, h->flags, extack); 484 cls_u32.command = TC_CLSU32_DELETE_HNODE; 485 cls_u32.hnode.divisor = h->divisor; 486 cls_u32.hnode.handle = h->handle; 487 cls_u32.hnode.prio = h->prio; 488 489 tc_setup_cb_call(block, TC_SETUP_CLSU32, &cls_u32, false, true); 490 } 491 492 static int u32_replace_hw_hnode(struct tcf_proto *tp, struct tc_u_hnode *h, 493 u32 flags, struct netlink_ext_ack *extack) 494 { 495 struct tcf_block *block = tp->chain->block; 496 struct tc_cls_u32_offload cls_u32 = {}; 497 bool skip_sw = tc_skip_sw(flags); 498 bool offloaded = false; 499 int err; 500 501 tc_cls_common_offload_init(&cls_u32.common, tp, flags, extack); 502 cls_u32.command = TC_CLSU32_NEW_HNODE; 503 cls_u32.hnode.divisor = h->divisor; 504 cls_u32.hnode.handle = h->handle; 505 cls_u32.hnode.prio = h->prio; 506 507 err = tc_setup_cb_call(block, TC_SETUP_CLSU32, &cls_u32, skip_sw, true); 508 if (err < 0) { 509 u32_clear_hw_hnode(tp, h, NULL); 510 return err; 511 } else if (err > 0) { 512 offloaded = true; 513 } 514 515 if (skip_sw && !offloaded) 516 return -EINVAL; 517 518 return 0; 519 } 520 521 static void u32_remove_hw_knode(struct tcf_proto *tp, struct tc_u_knode *n, 522 struct netlink_ext_ack *extack) 523 { 524 struct tcf_block *block = tp->chain->block; 525 struct tc_cls_u32_offload cls_u32 = {}; 526 527 tc_cls_common_offload_init(&cls_u32.common, tp, n->flags, extack); 528 cls_u32.command = TC_CLSU32_DELETE_KNODE; 529 cls_u32.knode.handle = n->handle; 530 531 tc_setup_cb_destroy(block, tp, TC_SETUP_CLSU32, &cls_u32, false, 532 &n->flags, &n->in_hw_count, true); 533 } 534 535 static int u32_replace_hw_knode(struct tcf_proto *tp, struct tc_u_knode *n, 536 u32 flags, struct netlink_ext_ack *extack) 537 { 538 struct tc_u_hnode *ht = rtnl_dereference(n->ht_down); 539 struct tcf_block *block = tp->chain->block; 540 struct tc_cls_u32_offload cls_u32 = {}; 541 bool skip_sw = tc_skip_sw(flags); 542 int err; 543 544 tc_cls_common_offload_init(&cls_u32.common, tp, flags, extack); 545 cls_u32.command = TC_CLSU32_REPLACE_KNODE; 546 cls_u32.knode.handle = n->handle; 547 cls_u32.knode.fshift = n->fshift; 548 #ifdef CONFIG_CLS_U32_MARK 549 cls_u32.knode.val = n->val; 550 cls_u32.knode.mask = n->mask; 551 #else 552 cls_u32.knode.val = 0; 553 cls_u32.knode.mask = 0; 554 #endif 555 cls_u32.knode.sel = &n->sel; 556 cls_u32.knode.res = &n->res; 557 cls_u32.knode.exts = &n->exts; 558 if (n->ht_down) 559 cls_u32.knode.link_handle = ht->handle; 560 561 err = tc_setup_cb_add(block, tp, TC_SETUP_CLSU32, &cls_u32, skip_sw, 562 &n->flags, &n->in_hw_count, true); 563 if (err) { 564 u32_remove_hw_knode(tp, n, NULL); 565 return err; 566 } 567 568 if (skip_sw && !(n->flags & TCA_CLS_FLAGS_IN_HW)) 569 return -EINVAL; 570 571 return 0; 572 } 573 574 static void u32_clear_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht, 575 struct netlink_ext_ack *extack) 576 { 577 struct tc_u_common *tp_c = tp->data; 578 struct tc_u_knode *n; 579 unsigned int h; 580 581 for (h = 0; h <= ht->divisor; h++) { 582 while ((n = rtnl_dereference(ht->ht[h])) != NULL) { 583 RCU_INIT_POINTER(ht->ht[h], 584 rtnl_dereference(n->next)); 585 tp_c->knodes--; 586 tcf_unbind_filter(tp, &n->res); 587 u32_remove_hw_knode(tp, n, extack); 588 idr_remove(&ht->handle_idr, n->handle); 589 if (tcf_exts_get_net(&n->exts)) 590 tcf_queue_work(&n->rwork, u32_delete_key_freepf_work); 591 else 592 u32_destroy_key(n, true); 593 } 594 } 595 } 596 597 static int u32_destroy_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht, 598 struct netlink_ext_ack *extack) 599 { 600 struct tc_u_common *tp_c = tp->data; 601 struct tc_u_hnode __rcu **hn; 602 struct tc_u_hnode *phn; 603 604 WARN_ON(--ht->refcnt); 605 606 u32_clear_hnode(tp, ht, extack); 607 608 hn = &tp_c->hlist; 609 for (phn = rtnl_dereference(*hn); 610 phn; 611 hn = &phn->next, phn = rtnl_dereference(*hn)) { 612 if (phn == ht) { 613 u32_clear_hw_hnode(tp, ht, extack); 614 idr_destroy(&ht->handle_idr); 615 idr_remove(&tp_c->handle_idr, ht->handle); 616 RCU_INIT_POINTER(*hn, ht->next); 617 kfree_rcu(ht, rcu); 618 return 0; 619 } 620 } 621 622 return -ENOENT; 623 } 624 625 static void u32_destroy(struct tcf_proto *tp, bool rtnl_held, 626 struct netlink_ext_ack *extack) 627 { 628 struct tc_u_common *tp_c = tp->data; 629 struct tc_u_hnode *root_ht = rtnl_dereference(tp->root); 630 631 WARN_ON(root_ht == NULL); 632 633 if (root_ht && --root_ht->refcnt == 1) 634 u32_destroy_hnode(tp, root_ht, extack); 635 636 if (--tp_c->refcnt == 0) { 637 struct tc_u_hnode *ht; 638 639 hlist_del(&tp_c->hnode); 640 641 while ((ht = rtnl_dereference(tp_c->hlist)) != NULL) { 642 u32_clear_hnode(tp, ht, extack); 643 RCU_INIT_POINTER(tp_c->hlist, ht->next); 644 645 /* u32_destroy_key() will later free ht for us, if it's 646 * still referenced by some knode 647 */ 648 if (--ht->refcnt == 0) 649 kfree_rcu(ht, rcu); 650 } 651 652 idr_destroy(&tp_c->handle_idr); 653 kfree(tp_c); 654 } 655 656 tp->data = NULL; 657 } 658 659 static int u32_delete(struct tcf_proto *tp, void *arg, bool *last, 660 bool rtnl_held, struct netlink_ext_ack *extack) 661 { 662 struct tc_u_hnode *ht = arg; 663 struct tc_u_common *tp_c = tp->data; 664 int ret = 0; 665 666 if (TC_U32_KEY(ht->handle)) { 667 u32_remove_hw_knode(tp, (struct tc_u_knode *)ht, extack); 668 ret = u32_delete_key(tp, (struct tc_u_knode *)ht); 669 goto out; 670 } 671 672 if (ht->is_root) { 673 NL_SET_ERR_MSG_MOD(extack, "Not allowed to delete root node"); 674 return -EINVAL; 675 } 676 677 if (ht->refcnt == 1) { 678 u32_destroy_hnode(tp, ht, extack); 679 } else { 680 NL_SET_ERR_MSG_MOD(extack, "Can not delete in-use filter"); 681 return -EBUSY; 682 } 683 684 out: 685 *last = tp_c->refcnt == 1 && tp_c->knodes == 0; 686 return ret; 687 } 688 689 static u32 gen_new_kid(struct tc_u_hnode *ht, u32 htid) 690 { 691 u32 index = htid | 0x800; 692 u32 max = htid | 0xFFF; 693 694 if (idr_alloc_u32(&ht->handle_idr, NULL, &index, max, GFP_KERNEL)) { 695 index = htid + 1; 696 if (idr_alloc_u32(&ht->handle_idr, NULL, &index, max, 697 GFP_KERNEL)) 698 index = max; 699 } 700 701 return index; 702 } 703 704 static const struct nla_policy u32_policy[TCA_U32_MAX + 1] = { 705 [TCA_U32_CLASSID] = { .type = NLA_U32 }, 706 [TCA_U32_HASH] = { .type = NLA_U32 }, 707 [TCA_U32_LINK] = { .type = NLA_U32 }, 708 [TCA_U32_DIVISOR] = { .type = NLA_U32 }, 709 [TCA_U32_SEL] = { .len = sizeof(struct tc_u32_sel) }, 710 [TCA_U32_INDEV] = { .type = NLA_STRING, .len = IFNAMSIZ }, 711 [TCA_U32_MARK] = { .len = sizeof(struct tc_u32_mark) }, 712 [TCA_U32_FLAGS] = { .type = NLA_U32 }, 713 }; 714 715 static void u32_unbind_filter(struct tcf_proto *tp, struct tc_u_knode *n, 716 struct nlattr **tb) 717 { 718 if (tb[TCA_U32_CLASSID]) 719 tcf_unbind_filter(tp, &n->res); 720 } 721 722 static void u32_bind_filter(struct tcf_proto *tp, struct tc_u_knode *n, 723 unsigned long base, struct nlattr **tb) 724 { 725 if (tb[TCA_U32_CLASSID]) { 726 n->res.classid = nla_get_u32(tb[TCA_U32_CLASSID]); 727 tcf_bind_filter(tp, &n->res, base); 728 } 729 } 730 731 static int u32_set_parms(struct net *net, struct tcf_proto *tp, 732 struct tc_u_knode *n, struct nlattr **tb, 733 struct nlattr *est, u32 flags, u32 fl_flags, 734 struct netlink_ext_ack *extack) 735 { 736 int err, ifindex = -1; 737 738 err = tcf_exts_validate_ex(net, tp, tb, est, &n->exts, flags, 739 fl_flags, extack); 740 if (err < 0) 741 return err; 742 743 if (tb[TCA_U32_INDEV]) { 744 ifindex = tcf_change_indev(net, tb[TCA_U32_INDEV], extack); 745 if (ifindex < 0) 746 return -EINVAL; 747 } 748 749 if (tb[TCA_U32_LINK]) { 750 u32 handle = nla_get_u32(tb[TCA_U32_LINK]); 751 struct tc_u_hnode *ht_down = NULL, *ht_old; 752 753 if (TC_U32_KEY(handle)) { 754 NL_SET_ERR_MSG_MOD(extack, "u32 Link handle must be a hash table"); 755 return -EINVAL; 756 } 757 758 if (handle) { 759 ht_down = u32_lookup_ht(tp->data, handle); 760 761 if (!ht_down) { 762 NL_SET_ERR_MSG_MOD(extack, "Link hash table not found"); 763 return -EINVAL; 764 } 765 if (ht_down->is_root) { 766 NL_SET_ERR_MSG_MOD(extack, "Not linking to root node"); 767 return -EINVAL; 768 } 769 ht_down->refcnt++; 770 } 771 772 ht_old = rtnl_dereference(n->ht_down); 773 rcu_assign_pointer(n->ht_down, ht_down); 774 775 if (ht_old) 776 ht_old->refcnt--; 777 } 778 779 if (ifindex >= 0) 780 n->ifindex = ifindex; 781 782 return 0; 783 } 784 785 static void u32_replace_knode(struct tcf_proto *tp, struct tc_u_common *tp_c, 786 struct tc_u_knode *n) 787 { 788 struct tc_u_knode __rcu **ins; 789 struct tc_u_knode *pins; 790 struct tc_u_hnode *ht; 791 792 if (TC_U32_HTID(n->handle) == TC_U32_ROOT) 793 ht = rtnl_dereference(tp->root); 794 else 795 ht = u32_lookup_ht(tp_c, TC_U32_HTID(n->handle)); 796 797 ins = &ht->ht[TC_U32_HASH(n->handle)]; 798 799 /* The node must always exist for it to be replaced if this is not the 800 * case then something went very wrong elsewhere. 801 */ 802 for (pins = rtnl_dereference(*ins); ; 803 ins = &pins->next, pins = rtnl_dereference(*ins)) 804 if (pins->handle == n->handle) 805 break; 806 807 idr_replace(&ht->handle_idr, n, n->handle); 808 RCU_INIT_POINTER(n->next, pins->next); 809 rcu_assign_pointer(*ins, n); 810 } 811 812 static struct tc_u_knode *u32_init_knode(struct net *net, struct tcf_proto *tp, 813 struct tc_u_knode *n) 814 { 815 struct tc_u_hnode *ht = rtnl_dereference(n->ht_down); 816 struct tc_u32_sel *s = &n->sel; 817 struct tc_u_knode *new; 818 819 new = kzalloc(struct_size(new, sel.keys, s->nkeys), GFP_KERNEL); 820 if (!new) 821 return NULL; 822 823 RCU_INIT_POINTER(new->next, n->next); 824 new->handle = n->handle; 825 RCU_INIT_POINTER(new->ht_up, n->ht_up); 826 827 new->ifindex = n->ifindex; 828 new->fshift = n->fshift; 829 new->flags = n->flags; 830 RCU_INIT_POINTER(new->ht_down, ht); 831 832 #ifdef CONFIG_CLS_U32_PERF 833 /* Statistics may be incremented by readers during update 834 * so we must keep them in tact. When the node is later destroyed 835 * a special destroy call must be made to not free the pf memory. 836 */ 837 new->pf = n->pf; 838 #endif 839 840 #ifdef CONFIG_CLS_U32_MARK 841 new->val = n->val; 842 new->mask = n->mask; 843 /* Similarly success statistics must be moved as pointers */ 844 new->pcpu_success = n->pcpu_success; 845 #endif 846 memcpy(&new->sel, s, struct_size(s, keys, s->nkeys)); 847 848 if (tcf_exts_init(&new->exts, net, TCA_U32_ACT, TCA_U32_POLICE)) { 849 kfree(new); 850 return NULL; 851 } 852 853 /* bump reference count as long as we hold pointer to structure */ 854 if (ht) 855 ht->refcnt++; 856 857 return new; 858 } 859 860 static int u32_change(struct net *net, struct sk_buff *in_skb, 861 struct tcf_proto *tp, unsigned long base, u32 handle, 862 struct nlattr **tca, void **arg, u32 flags, 863 struct netlink_ext_ack *extack) 864 { 865 struct tc_u_common *tp_c = tp->data; 866 struct tc_u_hnode *ht; 867 struct tc_u_knode *n; 868 struct tc_u32_sel *s; 869 struct nlattr *opt = tca[TCA_OPTIONS]; 870 struct nlattr *tb[TCA_U32_MAX + 1]; 871 u32 htid, userflags = 0; 872 size_t sel_size; 873 int err; 874 875 if (!opt) { 876 if (handle) { 877 NL_SET_ERR_MSG_MOD(extack, "Filter handle requires options"); 878 return -EINVAL; 879 } else { 880 return 0; 881 } 882 } 883 884 err = nla_parse_nested_deprecated(tb, TCA_U32_MAX, opt, u32_policy, 885 extack); 886 if (err < 0) 887 return err; 888 889 if (tb[TCA_U32_FLAGS]) { 890 userflags = nla_get_u32(tb[TCA_U32_FLAGS]); 891 if (!tc_flags_valid(userflags)) { 892 NL_SET_ERR_MSG_MOD(extack, "Invalid filter flags"); 893 return -EINVAL; 894 } 895 } 896 897 n = *arg; 898 if (n) { 899 struct tc_u_knode *new; 900 901 if (TC_U32_KEY(n->handle) == 0) { 902 NL_SET_ERR_MSG_MOD(extack, "Key node id cannot be zero"); 903 return -EINVAL; 904 } 905 906 if ((n->flags ^ userflags) & 907 ~(TCA_CLS_FLAGS_IN_HW | TCA_CLS_FLAGS_NOT_IN_HW)) { 908 NL_SET_ERR_MSG_MOD(extack, "Key node flags do not match passed flags"); 909 return -EINVAL; 910 } 911 912 new = u32_init_knode(net, tp, n); 913 if (!new) 914 return -ENOMEM; 915 916 err = u32_set_parms(net, tp, new, tb, tca[TCA_RATE], 917 flags, new->flags, extack); 918 919 if (err) { 920 __u32_destroy_key(new); 921 return err; 922 } 923 924 u32_bind_filter(tp, new, base, tb); 925 926 err = u32_replace_hw_knode(tp, new, flags, extack); 927 if (err) { 928 u32_unbind_filter(tp, new, tb); 929 930 if (tb[TCA_U32_LINK]) { 931 struct tc_u_hnode *ht_old; 932 933 ht_old = rtnl_dereference(n->ht_down); 934 if (ht_old) 935 ht_old->refcnt++; 936 } 937 __u32_destroy_key(new); 938 return err; 939 } 940 941 if (!tc_in_hw(new->flags)) 942 new->flags |= TCA_CLS_FLAGS_NOT_IN_HW; 943 944 u32_replace_knode(tp, tp_c, new); 945 tcf_unbind_filter(tp, &n->res); 946 tcf_exts_get_net(&n->exts); 947 tcf_queue_work(&n->rwork, u32_delete_key_work); 948 return 0; 949 } 950 951 if (tb[TCA_U32_DIVISOR]) { 952 unsigned int divisor = nla_get_u32(tb[TCA_U32_DIVISOR]); 953 954 if (!is_power_of_2(divisor)) { 955 NL_SET_ERR_MSG_MOD(extack, "Divisor is not a power of 2"); 956 return -EINVAL; 957 } 958 if (divisor-- > 0x100) { 959 NL_SET_ERR_MSG_MOD(extack, "Exceeded maximum 256 hash buckets"); 960 return -EINVAL; 961 } 962 if (TC_U32_KEY(handle)) { 963 NL_SET_ERR_MSG_MOD(extack, "Divisor can only be used on a hash table"); 964 return -EINVAL; 965 } 966 ht = kzalloc(struct_size(ht, ht, divisor + 1), GFP_KERNEL); 967 if (ht == NULL) 968 return -ENOBUFS; 969 if (handle == 0) { 970 handle = gen_new_htid(tp->data, ht); 971 if (handle == 0) { 972 kfree(ht); 973 return -ENOMEM; 974 } 975 } else { 976 err = idr_alloc_u32(&tp_c->handle_idr, ht, &handle, 977 handle, GFP_KERNEL); 978 if (err) { 979 kfree(ht); 980 return err; 981 } 982 } 983 ht->refcnt = 1; 984 ht->divisor = divisor; 985 ht->handle = handle; 986 ht->prio = tp->prio; 987 idr_init(&ht->handle_idr); 988 ht->flags = userflags; 989 990 err = u32_replace_hw_hnode(tp, ht, userflags, extack); 991 if (err) { 992 idr_remove(&tp_c->handle_idr, handle); 993 kfree(ht); 994 return err; 995 } 996 997 RCU_INIT_POINTER(ht->next, tp_c->hlist); 998 rcu_assign_pointer(tp_c->hlist, ht); 999 *arg = ht; 1000 1001 return 0; 1002 } 1003 1004 if (tb[TCA_U32_HASH]) { 1005 htid = nla_get_u32(tb[TCA_U32_HASH]); 1006 if (TC_U32_HTID(htid) == TC_U32_ROOT) { 1007 ht = rtnl_dereference(tp->root); 1008 htid = ht->handle; 1009 } else { 1010 ht = u32_lookup_ht(tp->data, TC_U32_HTID(htid)); 1011 if (!ht) { 1012 NL_SET_ERR_MSG_MOD(extack, "Specified hash table not found"); 1013 return -EINVAL; 1014 } 1015 } 1016 } else { 1017 ht = rtnl_dereference(tp->root); 1018 htid = ht->handle; 1019 } 1020 1021 if (ht->divisor < TC_U32_HASH(htid)) { 1022 NL_SET_ERR_MSG_MOD(extack, "Specified hash table buckets exceed configured value"); 1023 return -EINVAL; 1024 } 1025 1026 /* At this point, we need to derive the new handle that will be used to 1027 * uniquely map the identity of this table match entry. The 1028 * identity of the entry that we need to construct is 32 bits made of: 1029 * htid(12b):bucketid(8b):node/entryid(12b) 1030 * 1031 * At this point _we have the table(ht)_ in which we will insert this 1032 * entry. We carry the table's id in variable "htid". 1033 * Note that earlier code picked the ht selection either by a) the user 1034 * providing the htid specified via TCA_U32_HASH attribute or b) when 1035 * no such attribute is passed then the root ht, is default to at ID 1036 * 0x[800][00][000]. Rule: the root table has a single bucket with ID 0. 1037 * If OTOH the user passed us the htid, they may also pass a bucketid of 1038 * choice. 0 is fine. For example a user htid is 0x[600][01][000] it is 1039 * indicating hash bucketid of 1. Rule: the entry/node ID _cannot_ be 1040 * passed via the htid, so even if it was non-zero it will be ignored. 1041 * 1042 * We may also have a handle, if the user passed one. The handle also 1043 * carries the same addressing of htid(12b):bucketid(8b):node/entryid(12b). 1044 * Rule: the bucketid on the handle is ignored even if one was passed; 1045 * rather the value on "htid" is always assumed to be the bucketid. 1046 */ 1047 if (handle) { 1048 /* Rule: The htid from handle and tableid from htid must match */ 1049 if (TC_U32_HTID(handle) && TC_U32_HTID(handle ^ htid)) { 1050 NL_SET_ERR_MSG_MOD(extack, "Handle specified hash table address mismatch"); 1051 return -EINVAL; 1052 } 1053 /* Ok, so far we have a valid htid(12b):bucketid(8b) but we 1054 * need to finalize the table entry identification with the last 1055 * part - the node/entryid(12b)). Rule: Nodeid _cannot be 0_ for 1056 * entries. Rule: nodeid of 0 is reserved only for tables(see 1057 * earlier code which processes TC_U32_DIVISOR attribute). 1058 * Rule: The nodeid can only be derived from the handle (and not 1059 * htid). 1060 * Rule: if the handle specified zero for the node id example 1061 * 0x60000000, then pick a new nodeid from the pool of IDs 1062 * this hash table has been allocating from. 1063 * If OTOH it is specified (i.e for example the user passed a 1064 * handle such as 0x60000123), then we use it generate our final 1065 * handle which is used to uniquely identify the match entry. 1066 */ 1067 if (!TC_U32_NODE(handle)) { 1068 handle = gen_new_kid(ht, htid); 1069 } else { 1070 handle = htid | TC_U32_NODE(handle); 1071 err = idr_alloc_u32(&ht->handle_idr, NULL, &handle, 1072 handle, GFP_KERNEL); 1073 if (err) 1074 return err; 1075 } 1076 } else { 1077 /* The user did not give us a handle; lets just generate one 1078 * from the table's pool of nodeids. 1079 */ 1080 handle = gen_new_kid(ht, htid); 1081 } 1082 1083 if (tb[TCA_U32_SEL] == NULL) { 1084 NL_SET_ERR_MSG_MOD(extack, "Selector not specified"); 1085 err = -EINVAL; 1086 goto erridr; 1087 } 1088 1089 s = nla_data(tb[TCA_U32_SEL]); 1090 sel_size = struct_size(s, keys, s->nkeys); 1091 if (nla_len(tb[TCA_U32_SEL]) < sel_size) { 1092 err = -EINVAL; 1093 goto erridr; 1094 } 1095 1096 n = kzalloc(struct_size(n, sel.keys, s->nkeys), GFP_KERNEL); 1097 if (n == NULL) { 1098 err = -ENOBUFS; 1099 goto erridr; 1100 } 1101 1102 #ifdef CONFIG_CLS_U32_PERF 1103 n->pf = __alloc_percpu(struct_size(n->pf, kcnts, s->nkeys), 1104 __alignof__(struct tc_u32_pcnt)); 1105 if (!n->pf) { 1106 err = -ENOBUFS; 1107 goto errfree; 1108 } 1109 #endif 1110 1111 unsafe_memcpy(&n->sel, s, sel_size, 1112 /* A composite flex-array structure destination, 1113 * which was correctly sized with struct_size(), 1114 * bounds-checked against nla_len(), and allocated 1115 * above. */); 1116 RCU_INIT_POINTER(n->ht_up, ht); 1117 n->handle = handle; 1118 n->fshift = s->hmask ? ffs(ntohl(s->hmask)) - 1 : 0; 1119 n->flags = userflags; 1120 1121 err = tcf_exts_init(&n->exts, net, TCA_U32_ACT, TCA_U32_POLICE); 1122 if (err < 0) 1123 goto errout; 1124 1125 #ifdef CONFIG_CLS_U32_MARK 1126 n->pcpu_success = alloc_percpu(u32); 1127 if (!n->pcpu_success) { 1128 err = -ENOMEM; 1129 goto errout; 1130 } 1131 1132 if (tb[TCA_U32_MARK]) { 1133 struct tc_u32_mark *mark; 1134 1135 mark = nla_data(tb[TCA_U32_MARK]); 1136 n->val = mark->val; 1137 n->mask = mark->mask; 1138 } 1139 #endif 1140 1141 err = u32_set_parms(net, tp, n, tb, tca[TCA_RATE], 1142 flags, n->flags, extack); 1143 1144 u32_bind_filter(tp, n, base, tb); 1145 1146 if (err == 0) { 1147 struct tc_u_knode __rcu **ins; 1148 struct tc_u_knode *pins; 1149 1150 err = u32_replace_hw_knode(tp, n, flags, extack); 1151 if (err) 1152 goto errunbind; 1153 1154 if (!tc_in_hw(n->flags)) 1155 n->flags |= TCA_CLS_FLAGS_NOT_IN_HW; 1156 1157 ins = &ht->ht[TC_U32_HASH(handle)]; 1158 for (pins = rtnl_dereference(*ins); pins; 1159 ins = &pins->next, pins = rtnl_dereference(*ins)) 1160 if (TC_U32_NODE(handle) < TC_U32_NODE(pins->handle)) 1161 break; 1162 1163 RCU_INIT_POINTER(n->next, pins); 1164 rcu_assign_pointer(*ins, n); 1165 tp_c->knodes++; 1166 *arg = n; 1167 return 0; 1168 } 1169 1170 errunbind: 1171 u32_unbind_filter(tp, n, tb); 1172 1173 #ifdef CONFIG_CLS_U32_MARK 1174 free_percpu(n->pcpu_success); 1175 #endif 1176 1177 errout: 1178 tcf_exts_destroy(&n->exts); 1179 #ifdef CONFIG_CLS_U32_PERF 1180 errfree: 1181 free_percpu(n->pf); 1182 #endif 1183 kfree(n); 1184 erridr: 1185 idr_remove(&ht->handle_idr, handle); 1186 return err; 1187 } 1188 1189 static void u32_walk(struct tcf_proto *tp, struct tcf_walker *arg, 1190 bool rtnl_held) 1191 { 1192 struct tc_u_common *tp_c = tp->data; 1193 struct tc_u_hnode *ht; 1194 struct tc_u_knode *n; 1195 unsigned int h; 1196 1197 if (arg->stop) 1198 return; 1199 1200 for (ht = rtnl_dereference(tp_c->hlist); 1201 ht; 1202 ht = rtnl_dereference(ht->next)) { 1203 if (ht->prio != tp->prio) 1204 continue; 1205 1206 if (!tc_cls_stats_dump(tp, arg, ht)) 1207 return; 1208 1209 for (h = 0; h <= ht->divisor; h++) { 1210 for (n = rtnl_dereference(ht->ht[h]); 1211 n; 1212 n = rtnl_dereference(n->next)) { 1213 if (!tc_cls_stats_dump(tp, arg, n)) 1214 return; 1215 } 1216 } 1217 } 1218 } 1219 1220 static int u32_reoffload_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht, 1221 bool add, flow_setup_cb_t *cb, void *cb_priv, 1222 struct netlink_ext_ack *extack) 1223 { 1224 struct tc_cls_u32_offload cls_u32 = {}; 1225 int err; 1226 1227 tc_cls_common_offload_init(&cls_u32.common, tp, ht->flags, extack); 1228 cls_u32.command = add ? TC_CLSU32_NEW_HNODE : TC_CLSU32_DELETE_HNODE; 1229 cls_u32.hnode.divisor = ht->divisor; 1230 cls_u32.hnode.handle = ht->handle; 1231 cls_u32.hnode.prio = ht->prio; 1232 1233 err = cb(TC_SETUP_CLSU32, &cls_u32, cb_priv); 1234 if (err && add && tc_skip_sw(ht->flags)) 1235 return err; 1236 1237 return 0; 1238 } 1239 1240 static int u32_reoffload_knode(struct tcf_proto *tp, struct tc_u_knode *n, 1241 bool add, flow_setup_cb_t *cb, void *cb_priv, 1242 struct netlink_ext_ack *extack) 1243 { 1244 struct tc_u_hnode *ht = rtnl_dereference(n->ht_down); 1245 struct tcf_block *block = tp->chain->block; 1246 struct tc_cls_u32_offload cls_u32 = {}; 1247 1248 tc_cls_common_offload_init(&cls_u32.common, tp, n->flags, extack); 1249 cls_u32.command = add ? 1250 TC_CLSU32_REPLACE_KNODE : TC_CLSU32_DELETE_KNODE; 1251 cls_u32.knode.handle = n->handle; 1252 1253 if (add) { 1254 cls_u32.knode.fshift = n->fshift; 1255 #ifdef CONFIG_CLS_U32_MARK 1256 cls_u32.knode.val = n->val; 1257 cls_u32.knode.mask = n->mask; 1258 #else 1259 cls_u32.knode.val = 0; 1260 cls_u32.knode.mask = 0; 1261 #endif 1262 cls_u32.knode.sel = &n->sel; 1263 cls_u32.knode.res = &n->res; 1264 cls_u32.knode.exts = &n->exts; 1265 if (n->ht_down) 1266 cls_u32.knode.link_handle = ht->handle; 1267 } 1268 1269 return tc_setup_cb_reoffload(block, tp, add, cb, TC_SETUP_CLSU32, 1270 &cls_u32, cb_priv, &n->flags, 1271 &n->in_hw_count); 1272 } 1273 1274 static int u32_reoffload(struct tcf_proto *tp, bool add, flow_setup_cb_t *cb, 1275 void *cb_priv, struct netlink_ext_ack *extack) 1276 { 1277 struct tc_u_common *tp_c = tp->data; 1278 struct tc_u_hnode *ht; 1279 struct tc_u_knode *n; 1280 unsigned int h; 1281 int err; 1282 1283 for (ht = rtnl_dereference(tp_c->hlist); 1284 ht; 1285 ht = rtnl_dereference(ht->next)) { 1286 if (ht->prio != tp->prio) 1287 continue; 1288 1289 /* When adding filters to a new dev, try to offload the 1290 * hashtable first. When removing, do the filters before the 1291 * hashtable. 1292 */ 1293 if (add && !tc_skip_hw(ht->flags)) { 1294 err = u32_reoffload_hnode(tp, ht, add, cb, cb_priv, 1295 extack); 1296 if (err) 1297 return err; 1298 } 1299 1300 for (h = 0; h <= ht->divisor; h++) { 1301 for (n = rtnl_dereference(ht->ht[h]); 1302 n; 1303 n = rtnl_dereference(n->next)) { 1304 if (tc_skip_hw(n->flags)) 1305 continue; 1306 1307 err = u32_reoffload_knode(tp, n, add, cb, 1308 cb_priv, extack); 1309 if (err) 1310 return err; 1311 } 1312 } 1313 1314 if (!add && !tc_skip_hw(ht->flags)) 1315 u32_reoffload_hnode(tp, ht, add, cb, cb_priv, extack); 1316 } 1317 1318 return 0; 1319 } 1320 1321 static void u32_bind_class(void *fh, u32 classid, unsigned long cl, void *q, 1322 unsigned long base) 1323 { 1324 struct tc_u_knode *n = fh; 1325 1326 tc_cls_bind_class(classid, cl, q, &n->res, base); 1327 } 1328 1329 static int u32_dump(struct net *net, struct tcf_proto *tp, void *fh, 1330 struct sk_buff *skb, struct tcmsg *t, bool rtnl_held) 1331 { 1332 struct tc_u_knode *n = fh; 1333 struct tc_u_hnode *ht_up, *ht_down; 1334 struct nlattr *nest; 1335 1336 if (n == NULL) 1337 return skb->len; 1338 1339 t->tcm_handle = n->handle; 1340 1341 nest = nla_nest_start_noflag(skb, TCA_OPTIONS); 1342 if (nest == NULL) 1343 goto nla_put_failure; 1344 1345 if (TC_U32_KEY(n->handle) == 0) { 1346 struct tc_u_hnode *ht = fh; 1347 u32 divisor = ht->divisor + 1; 1348 1349 if (nla_put_u32(skb, TCA_U32_DIVISOR, divisor)) 1350 goto nla_put_failure; 1351 } else { 1352 #ifdef CONFIG_CLS_U32_PERF 1353 struct tc_u32_pcnt *gpf; 1354 int cpu; 1355 #endif 1356 1357 if (nla_put(skb, TCA_U32_SEL, struct_size(&n->sel, keys, n->sel.nkeys), 1358 &n->sel)) 1359 goto nla_put_failure; 1360 1361 ht_up = rtnl_dereference(n->ht_up); 1362 if (ht_up) { 1363 u32 htid = n->handle & 0xFFFFF000; 1364 if (nla_put_u32(skb, TCA_U32_HASH, htid)) 1365 goto nla_put_failure; 1366 } 1367 if (n->res.classid && 1368 nla_put_u32(skb, TCA_U32_CLASSID, n->res.classid)) 1369 goto nla_put_failure; 1370 1371 ht_down = rtnl_dereference(n->ht_down); 1372 if (ht_down && 1373 nla_put_u32(skb, TCA_U32_LINK, ht_down->handle)) 1374 goto nla_put_failure; 1375 1376 if (n->flags && nla_put_u32(skb, TCA_U32_FLAGS, n->flags)) 1377 goto nla_put_failure; 1378 1379 #ifdef CONFIG_CLS_U32_MARK 1380 if ((n->val || n->mask)) { 1381 struct tc_u32_mark mark = {.val = n->val, 1382 .mask = n->mask, 1383 .success = 0}; 1384 int cpum; 1385 1386 for_each_possible_cpu(cpum) { 1387 __u32 cnt = *per_cpu_ptr(n->pcpu_success, cpum); 1388 1389 mark.success += cnt; 1390 } 1391 1392 if (nla_put(skb, TCA_U32_MARK, sizeof(mark), &mark)) 1393 goto nla_put_failure; 1394 } 1395 #endif 1396 1397 if (tcf_exts_dump(skb, &n->exts) < 0) 1398 goto nla_put_failure; 1399 1400 if (n->ifindex) { 1401 struct net_device *dev; 1402 dev = __dev_get_by_index(net, n->ifindex); 1403 if (dev && nla_put_string(skb, TCA_U32_INDEV, dev->name)) 1404 goto nla_put_failure; 1405 } 1406 #ifdef CONFIG_CLS_U32_PERF 1407 gpf = kzalloc(struct_size(gpf, kcnts, n->sel.nkeys), GFP_KERNEL); 1408 if (!gpf) 1409 goto nla_put_failure; 1410 1411 for_each_possible_cpu(cpu) { 1412 int i; 1413 struct tc_u32_pcnt *pf = per_cpu_ptr(n->pf, cpu); 1414 1415 gpf->rcnt += pf->rcnt; 1416 gpf->rhit += pf->rhit; 1417 for (i = 0; i < n->sel.nkeys; i++) 1418 gpf->kcnts[i] += pf->kcnts[i]; 1419 } 1420 1421 if (nla_put_64bit(skb, TCA_U32_PCNT, struct_size(gpf, kcnts, n->sel.nkeys), 1422 gpf, TCA_U32_PAD)) { 1423 kfree(gpf); 1424 goto nla_put_failure; 1425 } 1426 kfree(gpf); 1427 #endif 1428 } 1429 1430 nla_nest_end(skb, nest); 1431 1432 if (TC_U32_KEY(n->handle)) 1433 if (tcf_exts_dump_stats(skb, &n->exts) < 0) 1434 goto nla_put_failure; 1435 return skb->len; 1436 1437 nla_put_failure: 1438 nla_nest_cancel(skb, nest); 1439 return -1; 1440 } 1441 1442 static struct tcf_proto_ops cls_u32_ops __read_mostly = { 1443 .kind = "u32", 1444 .classify = u32_classify, 1445 .init = u32_init, 1446 .destroy = u32_destroy, 1447 .get = u32_get, 1448 .change = u32_change, 1449 .delete = u32_delete, 1450 .walk = u32_walk, 1451 .reoffload = u32_reoffload, 1452 .dump = u32_dump, 1453 .bind_class = u32_bind_class, 1454 .owner = THIS_MODULE, 1455 }; 1456 1457 static int __init init_u32(void) 1458 { 1459 int i, ret; 1460 1461 pr_info("u32 classifier\n"); 1462 #ifdef CONFIG_CLS_U32_PERF 1463 pr_info(" Performance counters on\n"); 1464 #endif 1465 pr_info(" input device check on\n"); 1466 #ifdef CONFIG_NET_CLS_ACT 1467 pr_info(" Actions configured\n"); 1468 #endif 1469 tc_u_common_hash = kvmalloc_array(U32_HASH_SIZE, 1470 sizeof(struct hlist_head), 1471 GFP_KERNEL); 1472 if (!tc_u_common_hash) 1473 return -ENOMEM; 1474 1475 for (i = 0; i < U32_HASH_SIZE; i++) 1476 INIT_HLIST_HEAD(&tc_u_common_hash[i]); 1477 1478 ret = register_tcf_proto_ops(&cls_u32_ops); 1479 if (ret) 1480 kvfree(tc_u_common_hash); 1481 return ret; 1482 } 1483 1484 static void __exit exit_u32(void) 1485 { 1486 unregister_tcf_proto_ops(&cls_u32_ops); 1487 kvfree(tc_u_common_hash); 1488 } 1489 1490 module_init(init_u32) 1491 module_exit(exit_u32) 1492 MODULE_LICENSE("GPL"); 1493