xref: /openbmc/linux/net/sched/cls_u32.c (revision 8ee90c5c)
1 /*
2  * net/sched/cls_u32.c	Ugly (or Universal) 32bit key Packet Classifier.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
10  *
11  *	The filters are packed to hash tables of key nodes
12  *	with a set of 32bit key/mask pairs at every node.
13  *	Nodes reference next level hash tables etc.
14  *
15  *	This scheme is the best universal classifier I managed to
16  *	invent; it is not super-fast, but it is not slow (provided you
17  *	program it correctly), and general enough.  And its relative
18  *	speed grows as the number of rules becomes larger.
19  *
20  *	It seems that it represents the best middle point between
21  *	speed and manageability both by human and by machine.
22  *
23  *	It is especially useful for link sharing combined with QoS;
24  *	pure RSVP doesn't need such a general approach and can use
25  *	much simpler (and faster) schemes, sort of cls_rsvp.c.
26  *
27  *	JHS: We should remove the CONFIG_NET_CLS_IND from here
28  *	eventually when the meta match extension is made available
29  *
30  *	nfmark match added by Catalin(ux aka Dino) BOIE <catab at umbrella.ro>
31  */
32 
33 #include <linux/module.h>
34 #include <linux/slab.h>
35 #include <linux/types.h>
36 #include <linux/kernel.h>
37 #include <linux/string.h>
38 #include <linux/errno.h>
39 #include <linux/percpu.h>
40 #include <linux/rtnetlink.h>
41 #include <linux/skbuff.h>
42 #include <linux/bitmap.h>
43 #include <linux/netdevice.h>
44 #include <linux/hash.h>
45 #include <net/netlink.h>
46 #include <net/act_api.h>
47 #include <net/pkt_cls.h>
48 #include <linux/netdevice.h>
49 
50 struct tc_u_knode {
51 	struct tc_u_knode __rcu	*next;
52 	u32			handle;
53 	struct tc_u_hnode __rcu	*ht_up;
54 	struct tcf_exts		exts;
55 #ifdef CONFIG_NET_CLS_IND
56 	int			ifindex;
57 #endif
58 	u8			fshift;
59 	struct tcf_result	res;
60 	struct tc_u_hnode __rcu	*ht_down;
61 #ifdef CONFIG_CLS_U32_PERF
62 	struct tc_u32_pcnt __percpu *pf;
63 #endif
64 	u32			flags;
65 #ifdef CONFIG_CLS_U32_MARK
66 	u32			val;
67 	u32			mask;
68 	u32 __percpu		*pcpu_success;
69 #endif
70 	struct tcf_proto	*tp;
71 	union {
72 		struct work_struct	work;
73 		struct rcu_head		rcu;
74 	};
75 	/* The 'sel' field MUST be the last field in structure to allow for
76 	 * tc_u32_keys allocated at end of structure.
77 	 */
78 	struct tc_u32_sel	sel;
79 };
80 
81 struct tc_u_hnode {
82 	struct tc_u_hnode __rcu	*next;
83 	u32			handle;
84 	u32			prio;
85 	struct tc_u_common	*tp_c;
86 	int			refcnt;
87 	unsigned int		divisor;
88 	struct rcu_head		rcu;
89 	/* The 'ht' field MUST be the last field in structure to allow for
90 	 * more entries allocated at end of structure.
91 	 */
92 	struct tc_u_knode __rcu	*ht[1];
93 };
94 
95 struct tc_u_common {
96 	struct tc_u_hnode __rcu	*hlist;
97 	struct Qdisc		*q;
98 	int			refcnt;
99 	u32			hgenerator;
100 	struct hlist_node	hnode;
101 	struct rcu_head		rcu;
102 };
103 
104 static inline unsigned int u32_hash_fold(__be32 key,
105 					 const struct tc_u32_sel *sel,
106 					 u8 fshift)
107 {
108 	unsigned int h = ntohl(key & sel->hmask) >> fshift;
109 
110 	return h;
111 }
112 
113 static int u32_classify(struct sk_buff *skb, const struct tcf_proto *tp,
114 			struct tcf_result *res)
115 {
116 	struct {
117 		struct tc_u_knode *knode;
118 		unsigned int	  off;
119 	} stack[TC_U32_MAXDEPTH];
120 
121 	struct tc_u_hnode *ht = rcu_dereference_bh(tp->root);
122 	unsigned int off = skb_network_offset(skb);
123 	struct tc_u_knode *n;
124 	int sdepth = 0;
125 	int off2 = 0;
126 	int sel = 0;
127 #ifdef CONFIG_CLS_U32_PERF
128 	int j;
129 #endif
130 	int i, r;
131 
132 next_ht:
133 	n = rcu_dereference_bh(ht->ht[sel]);
134 
135 next_knode:
136 	if (n) {
137 		struct tc_u32_key *key = n->sel.keys;
138 
139 #ifdef CONFIG_CLS_U32_PERF
140 		__this_cpu_inc(n->pf->rcnt);
141 		j = 0;
142 #endif
143 
144 		if (tc_skip_sw(n->flags)) {
145 			n = rcu_dereference_bh(n->next);
146 			goto next_knode;
147 		}
148 
149 #ifdef CONFIG_CLS_U32_MARK
150 		if ((skb->mark & n->mask) != n->val) {
151 			n = rcu_dereference_bh(n->next);
152 			goto next_knode;
153 		} else {
154 			__this_cpu_inc(*n->pcpu_success);
155 		}
156 #endif
157 
158 		for (i = n->sel.nkeys; i > 0; i--, key++) {
159 			int toff = off + key->off + (off2 & key->offmask);
160 			__be32 *data, hdata;
161 
162 			if (skb_headroom(skb) + toff > INT_MAX)
163 				goto out;
164 
165 			data = skb_header_pointer(skb, toff, 4, &hdata);
166 			if (!data)
167 				goto out;
168 			if ((*data ^ key->val) & key->mask) {
169 				n = rcu_dereference_bh(n->next);
170 				goto next_knode;
171 			}
172 #ifdef CONFIG_CLS_U32_PERF
173 			__this_cpu_inc(n->pf->kcnts[j]);
174 			j++;
175 #endif
176 		}
177 
178 		ht = rcu_dereference_bh(n->ht_down);
179 		if (!ht) {
180 check_terminal:
181 			if (n->sel.flags & TC_U32_TERMINAL) {
182 
183 				*res = n->res;
184 #ifdef CONFIG_NET_CLS_IND
185 				if (!tcf_match_indev(skb, n->ifindex)) {
186 					n = rcu_dereference_bh(n->next);
187 					goto next_knode;
188 				}
189 #endif
190 #ifdef CONFIG_CLS_U32_PERF
191 				__this_cpu_inc(n->pf->rhit);
192 #endif
193 				r = tcf_exts_exec(skb, &n->exts, res);
194 				if (r < 0) {
195 					n = rcu_dereference_bh(n->next);
196 					goto next_knode;
197 				}
198 
199 				return r;
200 			}
201 			n = rcu_dereference_bh(n->next);
202 			goto next_knode;
203 		}
204 
205 		/* PUSH */
206 		if (sdepth >= TC_U32_MAXDEPTH)
207 			goto deadloop;
208 		stack[sdepth].knode = n;
209 		stack[sdepth].off = off;
210 		sdepth++;
211 
212 		ht = rcu_dereference_bh(n->ht_down);
213 		sel = 0;
214 		if (ht->divisor) {
215 			__be32 *data, hdata;
216 
217 			data = skb_header_pointer(skb, off + n->sel.hoff, 4,
218 						  &hdata);
219 			if (!data)
220 				goto out;
221 			sel = ht->divisor & u32_hash_fold(*data, &n->sel,
222 							  n->fshift);
223 		}
224 		if (!(n->sel.flags & (TC_U32_VAROFFSET | TC_U32_OFFSET | TC_U32_EAT)))
225 			goto next_ht;
226 
227 		if (n->sel.flags & (TC_U32_OFFSET | TC_U32_VAROFFSET)) {
228 			off2 = n->sel.off + 3;
229 			if (n->sel.flags & TC_U32_VAROFFSET) {
230 				__be16 *data, hdata;
231 
232 				data = skb_header_pointer(skb,
233 							  off + n->sel.offoff,
234 							  2, &hdata);
235 				if (!data)
236 					goto out;
237 				off2 += ntohs(n->sel.offmask & *data) >>
238 					n->sel.offshift;
239 			}
240 			off2 &= ~3;
241 		}
242 		if (n->sel.flags & TC_U32_EAT) {
243 			off += off2;
244 			off2 = 0;
245 		}
246 
247 		if (off < skb->len)
248 			goto next_ht;
249 	}
250 
251 	/* POP */
252 	if (sdepth--) {
253 		n = stack[sdepth].knode;
254 		ht = rcu_dereference_bh(n->ht_up);
255 		off = stack[sdepth].off;
256 		goto check_terminal;
257 	}
258 out:
259 	return -1;
260 
261 deadloop:
262 	net_warn_ratelimited("cls_u32: dead loop\n");
263 	return -1;
264 }
265 
266 static struct tc_u_hnode *u32_lookup_ht(struct tc_u_common *tp_c, u32 handle)
267 {
268 	struct tc_u_hnode *ht;
269 
270 	for (ht = rtnl_dereference(tp_c->hlist);
271 	     ht;
272 	     ht = rtnl_dereference(ht->next))
273 		if (ht->handle == handle)
274 			break;
275 
276 	return ht;
277 }
278 
279 static struct tc_u_knode *u32_lookup_key(struct tc_u_hnode *ht, u32 handle)
280 {
281 	unsigned int sel;
282 	struct tc_u_knode *n = NULL;
283 
284 	sel = TC_U32_HASH(handle);
285 	if (sel > ht->divisor)
286 		goto out;
287 
288 	for (n = rtnl_dereference(ht->ht[sel]);
289 	     n;
290 	     n = rtnl_dereference(n->next))
291 		if (n->handle == handle)
292 			break;
293 out:
294 	return n;
295 }
296 
297 
298 static void *u32_get(struct tcf_proto *tp, u32 handle)
299 {
300 	struct tc_u_hnode *ht;
301 	struct tc_u_common *tp_c = tp->data;
302 
303 	if (TC_U32_HTID(handle) == TC_U32_ROOT)
304 		ht = rtnl_dereference(tp->root);
305 	else
306 		ht = u32_lookup_ht(tp_c, TC_U32_HTID(handle));
307 
308 	if (!ht)
309 		return NULL;
310 
311 	if (TC_U32_KEY(handle) == 0)
312 		return ht;
313 
314 	return u32_lookup_key(ht, handle);
315 }
316 
317 static u32 gen_new_htid(struct tc_u_common *tp_c)
318 {
319 	int i = 0x800;
320 
321 	/* hgenerator only used inside rtnl lock it is safe to increment
322 	 * without read _copy_ update semantics
323 	 */
324 	do {
325 		if (++tp_c->hgenerator == 0x7FF)
326 			tp_c->hgenerator = 1;
327 	} while (--i > 0 && u32_lookup_ht(tp_c, (tp_c->hgenerator|0x800)<<20));
328 
329 	return i > 0 ? (tp_c->hgenerator|0x800)<<20 : 0;
330 }
331 
332 static struct hlist_head *tc_u_common_hash;
333 
334 #define U32_HASH_SHIFT 10
335 #define U32_HASH_SIZE (1 << U32_HASH_SHIFT)
336 
337 static unsigned int tc_u_hash(const struct tcf_proto *tp)
338 {
339 	struct net_device *dev = tp->q->dev_queue->dev;
340 	u32 qhandle = tp->q->handle;
341 	int ifindex = dev->ifindex;
342 
343 	return hash_64((u64)ifindex << 32 | qhandle, U32_HASH_SHIFT);
344 }
345 
346 static struct tc_u_common *tc_u_common_find(const struct tcf_proto *tp)
347 {
348 	struct tc_u_common *tc;
349 	unsigned int h;
350 
351 	h = tc_u_hash(tp);
352 	hlist_for_each_entry(tc, &tc_u_common_hash[h], hnode) {
353 		if (tc->q == tp->q)
354 			return tc;
355 	}
356 	return NULL;
357 }
358 
359 static int u32_init(struct tcf_proto *tp)
360 {
361 	struct tc_u_hnode *root_ht;
362 	struct tc_u_common *tp_c;
363 	unsigned int h;
364 
365 	tp_c = tc_u_common_find(tp);
366 
367 	root_ht = kzalloc(sizeof(*root_ht), GFP_KERNEL);
368 	if (root_ht == NULL)
369 		return -ENOBUFS;
370 
371 	root_ht->refcnt++;
372 	root_ht->handle = tp_c ? gen_new_htid(tp_c) : 0x80000000;
373 	root_ht->prio = tp->prio;
374 
375 	if (tp_c == NULL) {
376 		tp_c = kzalloc(sizeof(*tp_c), GFP_KERNEL);
377 		if (tp_c == NULL) {
378 			kfree(root_ht);
379 			return -ENOBUFS;
380 		}
381 		tp_c->q = tp->q;
382 		INIT_HLIST_NODE(&tp_c->hnode);
383 
384 		h = tc_u_hash(tp);
385 		hlist_add_head(&tp_c->hnode, &tc_u_common_hash[h]);
386 	}
387 
388 	tp_c->refcnt++;
389 	RCU_INIT_POINTER(root_ht->next, tp_c->hlist);
390 	rcu_assign_pointer(tp_c->hlist, root_ht);
391 	root_ht->tp_c = tp_c;
392 
393 	rcu_assign_pointer(tp->root, root_ht);
394 	tp->data = tp_c;
395 	return 0;
396 }
397 
398 static int u32_destroy_key(struct tcf_proto *tp, struct tc_u_knode *n,
399 			   bool free_pf)
400 {
401 	tcf_exts_destroy(&n->exts);
402 	if (n->ht_down)
403 		n->ht_down->refcnt--;
404 #ifdef CONFIG_CLS_U32_PERF
405 	if (free_pf)
406 		free_percpu(n->pf);
407 #endif
408 #ifdef CONFIG_CLS_U32_MARK
409 	if (free_pf)
410 		free_percpu(n->pcpu_success);
411 #endif
412 	kfree(n);
413 	return 0;
414 }
415 
416 /* u32_delete_key_rcu should be called when free'ing a copied
417  * version of a tc_u_knode obtained from u32_init_knode(). When
418  * copies are obtained from u32_init_knode() the statistics are
419  * shared between the old and new copies to allow readers to
420  * continue to update the statistics during the copy. To support
421  * this the u32_delete_key_rcu variant does not free the percpu
422  * statistics.
423  */
424 static void u32_delete_key_work(struct work_struct *work)
425 {
426 	struct tc_u_knode *key = container_of(work, struct tc_u_knode, work);
427 
428 	rtnl_lock();
429 	u32_destroy_key(key->tp, key, false);
430 	rtnl_unlock();
431 }
432 
433 static void u32_delete_key_rcu(struct rcu_head *rcu)
434 {
435 	struct tc_u_knode *key = container_of(rcu, struct tc_u_knode, rcu);
436 
437 	INIT_WORK(&key->work, u32_delete_key_work);
438 	tcf_queue_work(&key->work);
439 }
440 
441 /* u32_delete_key_freepf_rcu is the rcu callback variant
442  * that free's the entire structure including the statistics
443  * percpu variables. Only use this if the key is not a copy
444  * returned by u32_init_knode(). See u32_delete_key_rcu()
445  * for the variant that should be used with keys return from
446  * u32_init_knode()
447  */
448 static void u32_delete_key_freepf_work(struct work_struct *work)
449 {
450 	struct tc_u_knode *key = container_of(work, struct tc_u_knode, work);
451 
452 	rtnl_lock();
453 	u32_destroy_key(key->tp, key, true);
454 	rtnl_unlock();
455 }
456 
457 static void u32_delete_key_freepf_rcu(struct rcu_head *rcu)
458 {
459 	struct tc_u_knode *key = container_of(rcu, struct tc_u_knode, rcu);
460 
461 	INIT_WORK(&key->work, u32_delete_key_freepf_work);
462 	tcf_queue_work(&key->work);
463 }
464 
465 static int u32_delete_key(struct tcf_proto *tp, struct tc_u_knode *key)
466 {
467 	struct tc_u_knode __rcu **kp;
468 	struct tc_u_knode *pkp;
469 	struct tc_u_hnode *ht = rtnl_dereference(key->ht_up);
470 
471 	if (ht) {
472 		kp = &ht->ht[TC_U32_HASH(key->handle)];
473 		for (pkp = rtnl_dereference(*kp); pkp;
474 		     kp = &pkp->next, pkp = rtnl_dereference(*kp)) {
475 			if (pkp == key) {
476 				RCU_INIT_POINTER(*kp, key->next);
477 
478 				tcf_unbind_filter(tp, &key->res);
479 				call_rcu(&key->rcu, u32_delete_key_freepf_rcu);
480 				return 0;
481 			}
482 		}
483 	}
484 	WARN_ON(1);
485 	return 0;
486 }
487 
488 static void u32_remove_hw_knode(struct tcf_proto *tp, u32 handle)
489 {
490 	struct net_device *dev = tp->q->dev_queue->dev;
491 	struct tc_cls_u32_offload cls_u32 = {};
492 
493 	if (!tc_should_offload(dev, 0))
494 		return;
495 
496 	tc_cls_common_offload_init(&cls_u32.common, tp);
497 	cls_u32.command = TC_CLSU32_DELETE_KNODE;
498 	cls_u32.knode.handle = handle;
499 
500 	dev->netdev_ops->ndo_setup_tc(dev, TC_SETUP_CLSU32, &cls_u32);
501 }
502 
503 static int u32_replace_hw_hnode(struct tcf_proto *tp, struct tc_u_hnode *h,
504 				u32 flags)
505 {
506 	struct net_device *dev = tp->q->dev_queue->dev;
507 	struct tc_cls_u32_offload cls_u32 = {};
508 	int err;
509 
510 	if (!tc_should_offload(dev, flags))
511 		return tc_skip_sw(flags) ? -EINVAL : 0;
512 
513 	tc_cls_common_offload_init(&cls_u32.common, tp);
514 	cls_u32.command = TC_CLSU32_NEW_HNODE;
515 	cls_u32.hnode.divisor = h->divisor;
516 	cls_u32.hnode.handle = h->handle;
517 	cls_u32.hnode.prio = h->prio;
518 
519 	err = dev->netdev_ops->ndo_setup_tc(dev, TC_SETUP_CLSU32, &cls_u32);
520 	if (tc_skip_sw(flags))
521 		return err;
522 
523 	return 0;
524 }
525 
526 static void u32_clear_hw_hnode(struct tcf_proto *tp, struct tc_u_hnode *h)
527 {
528 	struct net_device *dev = tp->q->dev_queue->dev;
529 	struct tc_cls_u32_offload cls_u32 = {};
530 
531 	if (!tc_should_offload(dev, 0))
532 		return;
533 
534 	tc_cls_common_offload_init(&cls_u32.common, tp);
535 	cls_u32.command = TC_CLSU32_DELETE_HNODE;
536 	cls_u32.hnode.divisor = h->divisor;
537 	cls_u32.hnode.handle = h->handle;
538 	cls_u32.hnode.prio = h->prio;
539 
540 	dev->netdev_ops->ndo_setup_tc(dev, TC_SETUP_CLSU32, &cls_u32);
541 }
542 
543 static int u32_replace_hw_knode(struct tcf_proto *tp, struct tc_u_knode *n,
544 				u32 flags)
545 {
546 	struct net_device *dev = tp->q->dev_queue->dev;
547 	struct tc_cls_u32_offload cls_u32 = {};
548 	int err;
549 
550 	if (!tc_should_offload(dev, flags))
551 		return tc_skip_sw(flags) ? -EINVAL : 0;
552 
553 	tc_cls_common_offload_init(&cls_u32.common, tp);
554 	cls_u32.command = TC_CLSU32_REPLACE_KNODE;
555 	cls_u32.knode.handle = n->handle;
556 	cls_u32.knode.fshift = n->fshift;
557 #ifdef CONFIG_CLS_U32_MARK
558 	cls_u32.knode.val = n->val;
559 	cls_u32.knode.mask = n->mask;
560 #else
561 	cls_u32.knode.val = 0;
562 	cls_u32.knode.mask = 0;
563 #endif
564 	cls_u32.knode.sel = &n->sel;
565 	cls_u32.knode.exts = &n->exts;
566 	if (n->ht_down)
567 		cls_u32.knode.link_handle = n->ht_down->handle;
568 
569 	err = dev->netdev_ops->ndo_setup_tc(dev, TC_SETUP_CLSU32, &cls_u32);
570 
571 	if (!err)
572 		n->flags |= TCA_CLS_FLAGS_IN_HW;
573 
574 	if (tc_skip_sw(flags))
575 		return err;
576 
577 	return 0;
578 }
579 
580 static void u32_clear_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht)
581 {
582 	struct tc_u_knode *n;
583 	unsigned int h;
584 
585 	for (h = 0; h <= ht->divisor; h++) {
586 		while ((n = rtnl_dereference(ht->ht[h])) != NULL) {
587 			RCU_INIT_POINTER(ht->ht[h],
588 					 rtnl_dereference(n->next));
589 			tcf_unbind_filter(tp, &n->res);
590 			u32_remove_hw_knode(tp, n->handle);
591 			call_rcu(&n->rcu, u32_delete_key_freepf_rcu);
592 		}
593 	}
594 }
595 
596 static int u32_destroy_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht)
597 {
598 	struct tc_u_common *tp_c = tp->data;
599 	struct tc_u_hnode __rcu **hn;
600 	struct tc_u_hnode *phn;
601 
602 	WARN_ON(ht->refcnt);
603 
604 	u32_clear_hnode(tp, ht);
605 
606 	hn = &tp_c->hlist;
607 	for (phn = rtnl_dereference(*hn);
608 	     phn;
609 	     hn = &phn->next, phn = rtnl_dereference(*hn)) {
610 		if (phn == ht) {
611 			u32_clear_hw_hnode(tp, ht);
612 			RCU_INIT_POINTER(*hn, ht->next);
613 			kfree_rcu(ht, rcu);
614 			return 0;
615 		}
616 	}
617 
618 	return -ENOENT;
619 }
620 
621 static bool ht_empty(struct tc_u_hnode *ht)
622 {
623 	unsigned int h;
624 
625 	for (h = 0; h <= ht->divisor; h++)
626 		if (rcu_access_pointer(ht->ht[h]))
627 			return false;
628 
629 	return true;
630 }
631 
632 static void u32_destroy(struct tcf_proto *tp)
633 {
634 	struct tc_u_common *tp_c = tp->data;
635 	struct tc_u_hnode *root_ht = rtnl_dereference(tp->root);
636 
637 	WARN_ON(root_ht == NULL);
638 
639 	if (root_ht && --root_ht->refcnt == 0)
640 		u32_destroy_hnode(tp, root_ht);
641 
642 	if (--tp_c->refcnt == 0) {
643 		struct tc_u_hnode *ht;
644 
645 		hlist_del(&tp_c->hnode);
646 
647 		for (ht = rtnl_dereference(tp_c->hlist);
648 		     ht;
649 		     ht = rtnl_dereference(ht->next)) {
650 			ht->refcnt--;
651 			u32_clear_hnode(tp, ht);
652 		}
653 
654 		while ((ht = rtnl_dereference(tp_c->hlist)) != NULL) {
655 			RCU_INIT_POINTER(tp_c->hlist, ht->next);
656 			kfree_rcu(ht, rcu);
657 		}
658 
659 		kfree(tp_c);
660 	}
661 
662 	tp->data = NULL;
663 }
664 
665 static int u32_delete(struct tcf_proto *tp, void *arg, bool *last)
666 {
667 	struct tc_u_hnode *ht = arg;
668 	struct tc_u_hnode *root_ht = rtnl_dereference(tp->root);
669 	struct tc_u_common *tp_c = tp->data;
670 	int ret = 0;
671 
672 	if (ht == NULL)
673 		goto out;
674 
675 	if (TC_U32_KEY(ht->handle)) {
676 		u32_remove_hw_knode(tp, ht->handle);
677 		ret = u32_delete_key(tp, (struct tc_u_knode *)ht);
678 		goto out;
679 	}
680 
681 	if (root_ht == ht)
682 		return -EINVAL;
683 
684 	if (ht->refcnt == 1) {
685 		ht->refcnt--;
686 		u32_destroy_hnode(tp, ht);
687 	} else {
688 		return -EBUSY;
689 	}
690 
691 out:
692 	*last = true;
693 	if (root_ht) {
694 		if (root_ht->refcnt > 1) {
695 			*last = false;
696 			goto ret;
697 		}
698 		if (root_ht->refcnt == 1) {
699 			if (!ht_empty(root_ht)) {
700 				*last = false;
701 				goto ret;
702 			}
703 		}
704 	}
705 
706 	if (tp_c->refcnt > 1) {
707 		*last = false;
708 		goto ret;
709 	}
710 
711 	if (tp_c->refcnt == 1) {
712 		struct tc_u_hnode *ht;
713 
714 		for (ht = rtnl_dereference(tp_c->hlist);
715 		     ht;
716 		     ht = rtnl_dereference(ht->next))
717 			if (!ht_empty(ht)) {
718 				*last = false;
719 				break;
720 			}
721 	}
722 
723 ret:
724 	return ret;
725 }
726 
727 #define NR_U32_NODE (1<<12)
728 static u32 gen_new_kid(struct tc_u_hnode *ht, u32 handle)
729 {
730 	struct tc_u_knode *n;
731 	unsigned long i;
732 	unsigned long *bitmap = kzalloc(BITS_TO_LONGS(NR_U32_NODE) * sizeof(unsigned long),
733 					GFP_KERNEL);
734 	if (!bitmap)
735 		return handle | 0xFFF;
736 
737 	for (n = rtnl_dereference(ht->ht[TC_U32_HASH(handle)]);
738 	     n;
739 	     n = rtnl_dereference(n->next))
740 		set_bit(TC_U32_NODE(n->handle), bitmap);
741 
742 	i = find_next_zero_bit(bitmap, NR_U32_NODE, 0x800);
743 	if (i >= NR_U32_NODE)
744 		i = find_next_zero_bit(bitmap, NR_U32_NODE, 1);
745 
746 	kfree(bitmap);
747 	return handle | (i >= NR_U32_NODE ? 0xFFF : i);
748 }
749 
750 static const struct nla_policy u32_policy[TCA_U32_MAX + 1] = {
751 	[TCA_U32_CLASSID]	= { .type = NLA_U32 },
752 	[TCA_U32_HASH]		= { .type = NLA_U32 },
753 	[TCA_U32_LINK]		= { .type = NLA_U32 },
754 	[TCA_U32_DIVISOR]	= { .type = NLA_U32 },
755 	[TCA_U32_SEL]		= { .len = sizeof(struct tc_u32_sel) },
756 	[TCA_U32_INDEV]		= { .type = NLA_STRING, .len = IFNAMSIZ },
757 	[TCA_U32_MARK]		= { .len = sizeof(struct tc_u32_mark) },
758 	[TCA_U32_FLAGS]		= { .type = NLA_U32 },
759 };
760 
761 static int u32_set_parms(struct net *net, struct tcf_proto *tp,
762 			 unsigned long base, struct tc_u_hnode *ht,
763 			 struct tc_u_knode *n, struct nlattr **tb,
764 			 struct nlattr *est, bool ovr)
765 {
766 	int err;
767 
768 	err = tcf_exts_validate(net, tp, tb, est, &n->exts, ovr);
769 	if (err < 0)
770 		return err;
771 
772 	if (tb[TCA_U32_LINK]) {
773 		u32 handle = nla_get_u32(tb[TCA_U32_LINK]);
774 		struct tc_u_hnode *ht_down = NULL, *ht_old;
775 
776 		if (TC_U32_KEY(handle))
777 			return -EINVAL;
778 
779 		if (handle) {
780 			ht_down = u32_lookup_ht(ht->tp_c, handle);
781 
782 			if (ht_down == NULL)
783 				return -EINVAL;
784 			ht_down->refcnt++;
785 		}
786 
787 		ht_old = rtnl_dereference(n->ht_down);
788 		rcu_assign_pointer(n->ht_down, ht_down);
789 
790 		if (ht_old)
791 			ht_old->refcnt--;
792 	}
793 	if (tb[TCA_U32_CLASSID]) {
794 		n->res.classid = nla_get_u32(tb[TCA_U32_CLASSID]);
795 		tcf_bind_filter(tp, &n->res, base);
796 	}
797 
798 #ifdef CONFIG_NET_CLS_IND
799 	if (tb[TCA_U32_INDEV]) {
800 		int ret;
801 		ret = tcf_change_indev(net, tb[TCA_U32_INDEV]);
802 		if (ret < 0)
803 			return -EINVAL;
804 		n->ifindex = ret;
805 	}
806 #endif
807 	return 0;
808 }
809 
810 static void u32_replace_knode(struct tcf_proto *tp, struct tc_u_common *tp_c,
811 			      struct tc_u_knode *n)
812 {
813 	struct tc_u_knode __rcu **ins;
814 	struct tc_u_knode *pins;
815 	struct tc_u_hnode *ht;
816 
817 	if (TC_U32_HTID(n->handle) == TC_U32_ROOT)
818 		ht = rtnl_dereference(tp->root);
819 	else
820 		ht = u32_lookup_ht(tp_c, TC_U32_HTID(n->handle));
821 
822 	ins = &ht->ht[TC_U32_HASH(n->handle)];
823 
824 	/* The node must always exist for it to be replaced if this is not the
825 	 * case then something went very wrong elsewhere.
826 	 */
827 	for (pins = rtnl_dereference(*ins); ;
828 	     ins = &pins->next, pins = rtnl_dereference(*ins))
829 		if (pins->handle == n->handle)
830 			break;
831 
832 	RCU_INIT_POINTER(n->next, pins->next);
833 	rcu_assign_pointer(*ins, n);
834 }
835 
836 static struct tc_u_knode *u32_init_knode(struct tcf_proto *tp,
837 					 struct tc_u_knode *n)
838 {
839 	struct tc_u_knode *new;
840 	struct tc_u32_sel *s = &n->sel;
841 
842 	new = kzalloc(sizeof(*n) + s->nkeys*sizeof(struct tc_u32_key),
843 		      GFP_KERNEL);
844 
845 	if (!new)
846 		return NULL;
847 
848 	RCU_INIT_POINTER(new->next, n->next);
849 	new->handle = n->handle;
850 	RCU_INIT_POINTER(new->ht_up, n->ht_up);
851 
852 #ifdef CONFIG_NET_CLS_IND
853 	new->ifindex = n->ifindex;
854 #endif
855 	new->fshift = n->fshift;
856 	new->res = n->res;
857 	new->flags = n->flags;
858 	RCU_INIT_POINTER(new->ht_down, n->ht_down);
859 
860 	/* bump reference count as long as we hold pointer to structure */
861 	if (new->ht_down)
862 		new->ht_down->refcnt++;
863 
864 #ifdef CONFIG_CLS_U32_PERF
865 	/* Statistics may be incremented by readers during update
866 	 * so we must keep them in tact. When the node is later destroyed
867 	 * a special destroy call must be made to not free the pf memory.
868 	 */
869 	new->pf = n->pf;
870 #endif
871 
872 #ifdef CONFIG_CLS_U32_MARK
873 	new->val = n->val;
874 	new->mask = n->mask;
875 	/* Similarly success statistics must be moved as pointers */
876 	new->pcpu_success = n->pcpu_success;
877 #endif
878 	new->tp = tp;
879 	memcpy(&new->sel, s, sizeof(*s) + s->nkeys*sizeof(struct tc_u32_key));
880 
881 	if (tcf_exts_init(&new->exts, TCA_U32_ACT, TCA_U32_POLICE)) {
882 		kfree(new);
883 		return NULL;
884 	}
885 
886 	return new;
887 }
888 
889 static int u32_change(struct net *net, struct sk_buff *in_skb,
890 		      struct tcf_proto *tp, unsigned long base, u32 handle,
891 		      struct nlattr **tca, void **arg, bool ovr)
892 {
893 	struct tc_u_common *tp_c = tp->data;
894 	struct tc_u_hnode *ht;
895 	struct tc_u_knode *n;
896 	struct tc_u32_sel *s;
897 	struct nlattr *opt = tca[TCA_OPTIONS];
898 	struct nlattr *tb[TCA_U32_MAX + 1];
899 	u32 htid, flags = 0;
900 	int err;
901 #ifdef CONFIG_CLS_U32_PERF
902 	size_t size;
903 #endif
904 
905 	if (opt == NULL)
906 		return handle ? -EINVAL : 0;
907 
908 	err = nla_parse_nested(tb, TCA_U32_MAX, opt, u32_policy, NULL);
909 	if (err < 0)
910 		return err;
911 
912 	if (tb[TCA_U32_FLAGS]) {
913 		flags = nla_get_u32(tb[TCA_U32_FLAGS]);
914 		if (!tc_flags_valid(flags))
915 			return -EINVAL;
916 	}
917 
918 	n = *arg;
919 	if (n) {
920 		struct tc_u_knode *new;
921 
922 		if (TC_U32_KEY(n->handle) == 0)
923 			return -EINVAL;
924 
925 		if (n->flags != flags)
926 			return -EINVAL;
927 
928 		new = u32_init_knode(tp, n);
929 		if (!new)
930 			return -ENOMEM;
931 
932 		err = u32_set_parms(net, tp, base,
933 				    rtnl_dereference(n->ht_up), new, tb,
934 				    tca[TCA_RATE], ovr);
935 
936 		if (err) {
937 			u32_destroy_key(tp, new, false);
938 			return err;
939 		}
940 
941 		err = u32_replace_hw_knode(tp, new, flags);
942 		if (err) {
943 			u32_destroy_key(tp, new, false);
944 			return err;
945 		}
946 
947 		if (!tc_in_hw(new->flags))
948 			new->flags |= TCA_CLS_FLAGS_NOT_IN_HW;
949 
950 		u32_replace_knode(tp, tp_c, new);
951 		tcf_unbind_filter(tp, &n->res);
952 		call_rcu(&n->rcu, u32_delete_key_rcu);
953 		return 0;
954 	}
955 
956 	if (tb[TCA_U32_DIVISOR]) {
957 		unsigned int divisor = nla_get_u32(tb[TCA_U32_DIVISOR]);
958 
959 		if (--divisor > 0x100)
960 			return -EINVAL;
961 		if (TC_U32_KEY(handle))
962 			return -EINVAL;
963 		if (handle == 0) {
964 			handle = gen_new_htid(tp->data);
965 			if (handle == 0)
966 				return -ENOMEM;
967 		}
968 		ht = kzalloc(sizeof(*ht) + divisor*sizeof(void *), GFP_KERNEL);
969 		if (ht == NULL)
970 			return -ENOBUFS;
971 		ht->tp_c = tp_c;
972 		ht->refcnt = 1;
973 		ht->divisor = divisor;
974 		ht->handle = handle;
975 		ht->prio = tp->prio;
976 
977 		err = u32_replace_hw_hnode(tp, ht, flags);
978 		if (err) {
979 			kfree(ht);
980 			return err;
981 		}
982 
983 		RCU_INIT_POINTER(ht->next, tp_c->hlist);
984 		rcu_assign_pointer(tp_c->hlist, ht);
985 		*arg = ht;
986 
987 		return 0;
988 	}
989 
990 	if (tb[TCA_U32_HASH]) {
991 		htid = nla_get_u32(tb[TCA_U32_HASH]);
992 		if (TC_U32_HTID(htid) == TC_U32_ROOT) {
993 			ht = rtnl_dereference(tp->root);
994 			htid = ht->handle;
995 		} else {
996 			ht = u32_lookup_ht(tp->data, TC_U32_HTID(htid));
997 			if (ht == NULL)
998 				return -EINVAL;
999 		}
1000 	} else {
1001 		ht = rtnl_dereference(tp->root);
1002 		htid = ht->handle;
1003 	}
1004 
1005 	if (ht->divisor < TC_U32_HASH(htid))
1006 		return -EINVAL;
1007 
1008 	if (handle) {
1009 		if (TC_U32_HTID(handle) && TC_U32_HTID(handle^htid))
1010 			return -EINVAL;
1011 		handle = htid | TC_U32_NODE(handle);
1012 	} else
1013 		handle = gen_new_kid(ht, htid);
1014 
1015 	if (tb[TCA_U32_SEL] == NULL)
1016 		return -EINVAL;
1017 
1018 	s = nla_data(tb[TCA_U32_SEL]);
1019 
1020 	n = kzalloc(sizeof(*n) + s->nkeys*sizeof(struct tc_u32_key), GFP_KERNEL);
1021 	if (n == NULL)
1022 		return -ENOBUFS;
1023 
1024 #ifdef CONFIG_CLS_U32_PERF
1025 	size = sizeof(struct tc_u32_pcnt) + s->nkeys * sizeof(u64);
1026 	n->pf = __alloc_percpu(size, __alignof__(struct tc_u32_pcnt));
1027 	if (!n->pf) {
1028 		kfree(n);
1029 		return -ENOBUFS;
1030 	}
1031 #endif
1032 
1033 	memcpy(&n->sel, s, sizeof(*s) + s->nkeys*sizeof(struct tc_u32_key));
1034 	RCU_INIT_POINTER(n->ht_up, ht);
1035 	n->handle = handle;
1036 	n->fshift = s->hmask ? ffs(ntohl(s->hmask)) - 1 : 0;
1037 	n->flags = flags;
1038 	n->tp = tp;
1039 
1040 	err = tcf_exts_init(&n->exts, TCA_U32_ACT, TCA_U32_POLICE);
1041 	if (err < 0)
1042 		goto errout;
1043 
1044 #ifdef CONFIG_CLS_U32_MARK
1045 	n->pcpu_success = alloc_percpu(u32);
1046 	if (!n->pcpu_success) {
1047 		err = -ENOMEM;
1048 		goto errout;
1049 	}
1050 
1051 	if (tb[TCA_U32_MARK]) {
1052 		struct tc_u32_mark *mark;
1053 
1054 		mark = nla_data(tb[TCA_U32_MARK]);
1055 		n->val = mark->val;
1056 		n->mask = mark->mask;
1057 	}
1058 #endif
1059 
1060 	err = u32_set_parms(net, tp, base, ht, n, tb, tca[TCA_RATE], ovr);
1061 	if (err == 0) {
1062 		struct tc_u_knode __rcu **ins;
1063 		struct tc_u_knode *pins;
1064 
1065 		err = u32_replace_hw_knode(tp, n, flags);
1066 		if (err)
1067 			goto errhw;
1068 
1069 		if (!tc_in_hw(n->flags))
1070 			n->flags |= TCA_CLS_FLAGS_NOT_IN_HW;
1071 
1072 		ins = &ht->ht[TC_U32_HASH(handle)];
1073 		for (pins = rtnl_dereference(*ins); pins;
1074 		     ins = &pins->next, pins = rtnl_dereference(*ins))
1075 			if (TC_U32_NODE(handle) < TC_U32_NODE(pins->handle))
1076 				break;
1077 
1078 		RCU_INIT_POINTER(n->next, pins);
1079 		rcu_assign_pointer(*ins, n);
1080 		*arg = n;
1081 		return 0;
1082 	}
1083 
1084 errhw:
1085 #ifdef CONFIG_CLS_U32_MARK
1086 	free_percpu(n->pcpu_success);
1087 #endif
1088 
1089 errout:
1090 	tcf_exts_destroy(&n->exts);
1091 #ifdef CONFIG_CLS_U32_PERF
1092 	free_percpu(n->pf);
1093 #endif
1094 	kfree(n);
1095 	return err;
1096 }
1097 
1098 static void u32_walk(struct tcf_proto *tp, struct tcf_walker *arg)
1099 {
1100 	struct tc_u_common *tp_c = tp->data;
1101 	struct tc_u_hnode *ht;
1102 	struct tc_u_knode *n;
1103 	unsigned int h;
1104 
1105 	if (arg->stop)
1106 		return;
1107 
1108 	for (ht = rtnl_dereference(tp_c->hlist);
1109 	     ht;
1110 	     ht = rtnl_dereference(ht->next)) {
1111 		if (ht->prio != tp->prio)
1112 			continue;
1113 		if (arg->count >= arg->skip) {
1114 			if (arg->fn(tp, ht, arg) < 0) {
1115 				arg->stop = 1;
1116 				return;
1117 			}
1118 		}
1119 		arg->count++;
1120 		for (h = 0; h <= ht->divisor; h++) {
1121 			for (n = rtnl_dereference(ht->ht[h]);
1122 			     n;
1123 			     n = rtnl_dereference(n->next)) {
1124 				if (arg->count < arg->skip) {
1125 					arg->count++;
1126 					continue;
1127 				}
1128 				if (arg->fn(tp, n, arg) < 0) {
1129 					arg->stop = 1;
1130 					return;
1131 				}
1132 				arg->count++;
1133 			}
1134 		}
1135 	}
1136 }
1137 
1138 static void u32_bind_class(void *fh, u32 classid, unsigned long cl)
1139 {
1140 	struct tc_u_knode *n = fh;
1141 
1142 	if (n && n->res.classid == classid)
1143 		n->res.class = cl;
1144 }
1145 
1146 static int u32_dump(struct net *net, struct tcf_proto *tp, void *fh,
1147 		    struct sk_buff *skb, struct tcmsg *t)
1148 {
1149 	struct tc_u_knode *n = fh;
1150 	struct tc_u_hnode *ht_up, *ht_down;
1151 	struct nlattr *nest;
1152 
1153 	if (n == NULL)
1154 		return skb->len;
1155 
1156 	t->tcm_handle = n->handle;
1157 
1158 	nest = nla_nest_start(skb, TCA_OPTIONS);
1159 	if (nest == NULL)
1160 		goto nla_put_failure;
1161 
1162 	if (TC_U32_KEY(n->handle) == 0) {
1163 		struct tc_u_hnode *ht = fh;
1164 		u32 divisor = ht->divisor + 1;
1165 
1166 		if (nla_put_u32(skb, TCA_U32_DIVISOR, divisor))
1167 			goto nla_put_failure;
1168 	} else {
1169 #ifdef CONFIG_CLS_U32_PERF
1170 		struct tc_u32_pcnt *gpf;
1171 		int cpu;
1172 #endif
1173 
1174 		if (nla_put(skb, TCA_U32_SEL,
1175 			    sizeof(n->sel) + n->sel.nkeys*sizeof(struct tc_u32_key),
1176 			    &n->sel))
1177 			goto nla_put_failure;
1178 
1179 		ht_up = rtnl_dereference(n->ht_up);
1180 		if (ht_up) {
1181 			u32 htid = n->handle & 0xFFFFF000;
1182 			if (nla_put_u32(skb, TCA_U32_HASH, htid))
1183 				goto nla_put_failure;
1184 		}
1185 		if (n->res.classid &&
1186 		    nla_put_u32(skb, TCA_U32_CLASSID, n->res.classid))
1187 			goto nla_put_failure;
1188 
1189 		ht_down = rtnl_dereference(n->ht_down);
1190 		if (ht_down &&
1191 		    nla_put_u32(skb, TCA_U32_LINK, ht_down->handle))
1192 			goto nla_put_failure;
1193 
1194 		if (n->flags && nla_put_u32(skb, TCA_U32_FLAGS, n->flags))
1195 			goto nla_put_failure;
1196 
1197 #ifdef CONFIG_CLS_U32_MARK
1198 		if ((n->val || n->mask)) {
1199 			struct tc_u32_mark mark = {.val = n->val,
1200 						   .mask = n->mask,
1201 						   .success = 0};
1202 			int cpum;
1203 
1204 			for_each_possible_cpu(cpum) {
1205 				__u32 cnt = *per_cpu_ptr(n->pcpu_success, cpum);
1206 
1207 				mark.success += cnt;
1208 			}
1209 
1210 			if (nla_put(skb, TCA_U32_MARK, sizeof(mark), &mark))
1211 				goto nla_put_failure;
1212 		}
1213 #endif
1214 
1215 		if (tcf_exts_dump(skb, &n->exts) < 0)
1216 			goto nla_put_failure;
1217 
1218 #ifdef CONFIG_NET_CLS_IND
1219 		if (n->ifindex) {
1220 			struct net_device *dev;
1221 			dev = __dev_get_by_index(net, n->ifindex);
1222 			if (dev && nla_put_string(skb, TCA_U32_INDEV, dev->name))
1223 				goto nla_put_failure;
1224 		}
1225 #endif
1226 #ifdef CONFIG_CLS_U32_PERF
1227 		gpf = kzalloc(sizeof(struct tc_u32_pcnt) +
1228 			      n->sel.nkeys * sizeof(u64),
1229 			      GFP_KERNEL);
1230 		if (!gpf)
1231 			goto nla_put_failure;
1232 
1233 		for_each_possible_cpu(cpu) {
1234 			int i;
1235 			struct tc_u32_pcnt *pf = per_cpu_ptr(n->pf, cpu);
1236 
1237 			gpf->rcnt += pf->rcnt;
1238 			gpf->rhit += pf->rhit;
1239 			for (i = 0; i < n->sel.nkeys; i++)
1240 				gpf->kcnts[i] += pf->kcnts[i];
1241 		}
1242 
1243 		if (nla_put_64bit(skb, TCA_U32_PCNT,
1244 				  sizeof(struct tc_u32_pcnt) +
1245 				  n->sel.nkeys * sizeof(u64),
1246 				  gpf, TCA_U32_PAD)) {
1247 			kfree(gpf);
1248 			goto nla_put_failure;
1249 		}
1250 		kfree(gpf);
1251 #endif
1252 	}
1253 
1254 	nla_nest_end(skb, nest);
1255 
1256 	if (TC_U32_KEY(n->handle))
1257 		if (tcf_exts_dump_stats(skb, &n->exts) < 0)
1258 			goto nla_put_failure;
1259 	return skb->len;
1260 
1261 nla_put_failure:
1262 	nla_nest_cancel(skb, nest);
1263 	return -1;
1264 }
1265 
1266 static struct tcf_proto_ops cls_u32_ops __read_mostly = {
1267 	.kind		=	"u32",
1268 	.classify	=	u32_classify,
1269 	.init		=	u32_init,
1270 	.destroy	=	u32_destroy,
1271 	.get		=	u32_get,
1272 	.change		=	u32_change,
1273 	.delete		=	u32_delete,
1274 	.walk		=	u32_walk,
1275 	.dump		=	u32_dump,
1276 	.bind_class	=	u32_bind_class,
1277 	.owner		=	THIS_MODULE,
1278 };
1279 
1280 static int __init init_u32(void)
1281 {
1282 	int i, ret;
1283 
1284 	pr_info("u32 classifier\n");
1285 #ifdef CONFIG_CLS_U32_PERF
1286 	pr_info("    Performance counters on\n");
1287 #endif
1288 #ifdef CONFIG_NET_CLS_IND
1289 	pr_info("    input device check on\n");
1290 #endif
1291 #ifdef CONFIG_NET_CLS_ACT
1292 	pr_info("    Actions configured\n");
1293 #endif
1294 	tc_u_common_hash = kvmalloc_array(U32_HASH_SIZE,
1295 					  sizeof(struct hlist_head),
1296 					  GFP_KERNEL);
1297 	if (!tc_u_common_hash)
1298 		return -ENOMEM;
1299 
1300 	for (i = 0; i < U32_HASH_SIZE; i++)
1301 		INIT_HLIST_HEAD(&tc_u_common_hash[i]);
1302 
1303 	ret = register_tcf_proto_ops(&cls_u32_ops);
1304 	if (ret)
1305 		kvfree(tc_u_common_hash);
1306 	return ret;
1307 }
1308 
1309 static void __exit exit_u32(void)
1310 {
1311 	unregister_tcf_proto_ops(&cls_u32_ops);
1312 	kvfree(tc_u_common_hash);
1313 }
1314 
1315 module_init(init_u32)
1316 module_exit(exit_u32)
1317 MODULE_LICENSE("GPL");
1318