1 /* 2 * net/sched/cls_u32.c Ugly (or Universal) 32bit key Packet Classifier. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 10 * 11 * The filters are packed to hash tables of key nodes 12 * with a set of 32bit key/mask pairs at every node. 13 * Nodes reference next level hash tables etc. 14 * 15 * This scheme is the best universal classifier I managed to 16 * invent; it is not super-fast, but it is not slow (provided you 17 * program it correctly), and general enough. And its relative 18 * speed grows as the number of rules becomes larger. 19 * 20 * It seems that it represents the best middle point between 21 * speed and manageability both by human and by machine. 22 * 23 * It is especially useful for link sharing combined with QoS; 24 * pure RSVP doesn't need such a general approach and can use 25 * much simpler (and faster) schemes, sort of cls_rsvp.c. 26 * 27 * JHS: We should remove the CONFIG_NET_CLS_IND from here 28 * eventually when the meta match extension is made available 29 * 30 * nfmark match added by Catalin(ux aka Dino) BOIE <catab at umbrella.ro> 31 */ 32 33 #include <asm/uaccess.h> 34 #include <asm/system.h> 35 #include <linux/bitops.h> 36 #include <linux/config.h> 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/sched.h> 41 #include <linux/string.h> 42 #include <linux/mm.h> 43 #include <linux/socket.h> 44 #include <linux/sockios.h> 45 #include <linux/in.h> 46 #include <linux/errno.h> 47 #include <linux/interrupt.h> 48 #include <linux/if_ether.h> 49 #include <linux/inet.h> 50 #include <linux/netdevice.h> 51 #include <linux/etherdevice.h> 52 #include <linux/notifier.h> 53 #include <linux/rtnetlink.h> 54 #include <net/ip.h> 55 #include <net/route.h> 56 #include <linux/skbuff.h> 57 #include <net/sock.h> 58 #include <net/act_api.h> 59 #include <net/pkt_cls.h> 60 61 struct tc_u_knode 62 { 63 struct tc_u_knode *next; 64 u32 handle; 65 struct tc_u_hnode *ht_up; 66 struct tcf_exts exts; 67 #ifdef CONFIG_NET_CLS_IND 68 char indev[IFNAMSIZ]; 69 #endif 70 u8 fshift; 71 struct tcf_result res; 72 struct tc_u_hnode *ht_down; 73 #ifdef CONFIG_CLS_U32_PERF 74 struct tc_u32_pcnt *pf; 75 #endif 76 #ifdef CONFIG_CLS_U32_MARK 77 struct tc_u32_mark mark; 78 #endif 79 struct tc_u32_sel sel; 80 }; 81 82 struct tc_u_hnode 83 { 84 struct tc_u_hnode *next; 85 u32 handle; 86 u32 prio; 87 struct tc_u_common *tp_c; 88 int refcnt; 89 unsigned divisor; 90 struct tc_u_knode *ht[1]; 91 }; 92 93 struct tc_u_common 94 { 95 struct tc_u_common *next; 96 struct tc_u_hnode *hlist; 97 struct Qdisc *q; 98 int refcnt; 99 u32 hgenerator; 100 }; 101 102 static struct tcf_ext_map u32_ext_map = { 103 .action = TCA_U32_ACT, 104 .police = TCA_U32_POLICE 105 }; 106 107 static struct tc_u_common *u32_list; 108 109 static __inline__ unsigned u32_hash_fold(u32 key, struct tc_u32_sel *sel, u8 fshift) 110 { 111 unsigned h = (key & sel->hmask)>>fshift; 112 113 return h; 114 } 115 116 static int u32_classify(struct sk_buff *skb, struct tcf_proto *tp, struct tcf_result *res) 117 { 118 struct { 119 struct tc_u_knode *knode; 120 u8 *ptr; 121 } stack[TC_U32_MAXDEPTH]; 122 123 struct tc_u_hnode *ht = (struct tc_u_hnode*)tp->root; 124 u8 *ptr = skb->nh.raw; 125 struct tc_u_knode *n; 126 int sdepth = 0; 127 int off2 = 0; 128 int sel = 0; 129 #ifdef CONFIG_CLS_U32_PERF 130 int j; 131 #endif 132 int i, r; 133 134 next_ht: 135 n = ht->ht[sel]; 136 137 next_knode: 138 if (n) { 139 struct tc_u32_key *key = n->sel.keys; 140 141 #ifdef CONFIG_CLS_U32_PERF 142 n->pf->rcnt +=1; 143 j = 0; 144 #endif 145 146 #ifdef CONFIG_CLS_U32_MARK 147 if ((skb->nfmark & n->mark.mask) != n->mark.val) { 148 n = n->next; 149 goto next_knode; 150 } else { 151 n->mark.success++; 152 } 153 #endif 154 155 for (i = n->sel.nkeys; i>0; i--, key++) { 156 157 if ((*(u32*)(ptr+key->off+(off2&key->offmask))^key->val)&key->mask) { 158 n = n->next; 159 goto next_knode; 160 } 161 #ifdef CONFIG_CLS_U32_PERF 162 n->pf->kcnts[j] +=1; 163 j++; 164 #endif 165 } 166 if (n->ht_down == NULL) { 167 check_terminal: 168 if (n->sel.flags&TC_U32_TERMINAL) { 169 170 *res = n->res; 171 #ifdef CONFIG_NET_CLS_IND 172 if (!tcf_match_indev(skb, n->indev)) { 173 n = n->next; 174 goto next_knode; 175 } 176 #endif 177 #ifdef CONFIG_CLS_U32_PERF 178 n->pf->rhit +=1; 179 #endif 180 r = tcf_exts_exec(skb, &n->exts, res); 181 if (r < 0) { 182 n = n->next; 183 goto next_knode; 184 } 185 186 return r; 187 } 188 n = n->next; 189 goto next_knode; 190 } 191 192 /* PUSH */ 193 if (sdepth >= TC_U32_MAXDEPTH) 194 goto deadloop; 195 stack[sdepth].knode = n; 196 stack[sdepth].ptr = ptr; 197 sdepth++; 198 199 ht = n->ht_down; 200 sel = 0; 201 if (ht->divisor) 202 sel = ht->divisor&u32_hash_fold(*(u32*)(ptr+n->sel.hoff), &n->sel,n->fshift); 203 204 if (!(n->sel.flags&(TC_U32_VAROFFSET|TC_U32_OFFSET|TC_U32_EAT))) 205 goto next_ht; 206 207 if (n->sel.flags&(TC_U32_OFFSET|TC_U32_VAROFFSET)) { 208 off2 = n->sel.off + 3; 209 if (n->sel.flags&TC_U32_VAROFFSET) 210 off2 += ntohs(n->sel.offmask & *(u16*)(ptr+n->sel.offoff)) >>n->sel.offshift; 211 off2 &= ~3; 212 } 213 if (n->sel.flags&TC_U32_EAT) { 214 ptr += off2; 215 off2 = 0; 216 } 217 218 if (ptr < skb->tail) 219 goto next_ht; 220 } 221 222 /* POP */ 223 if (sdepth--) { 224 n = stack[sdepth].knode; 225 ht = n->ht_up; 226 ptr = stack[sdepth].ptr; 227 goto check_terminal; 228 } 229 return -1; 230 231 deadloop: 232 if (net_ratelimit()) 233 printk("cls_u32: dead loop\n"); 234 return -1; 235 } 236 237 static __inline__ struct tc_u_hnode * 238 u32_lookup_ht(struct tc_u_common *tp_c, u32 handle) 239 { 240 struct tc_u_hnode *ht; 241 242 for (ht = tp_c->hlist; ht; ht = ht->next) 243 if (ht->handle == handle) 244 break; 245 246 return ht; 247 } 248 249 static __inline__ struct tc_u_knode * 250 u32_lookup_key(struct tc_u_hnode *ht, u32 handle) 251 { 252 unsigned sel; 253 struct tc_u_knode *n = NULL; 254 255 sel = TC_U32_HASH(handle); 256 if (sel > ht->divisor) 257 goto out; 258 259 for (n = ht->ht[sel]; n; n = n->next) 260 if (n->handle == handle) 261 break; 262 out: 263 return n; 264 } 265 266 267 static unsigned long u32_get(struct tcf_proto *tp, u32 handle) 268 { 269 struct tc_u_hnode *ht; 270 struct tc_u_common *tp_c = tp->data; 271 272 if (TC_U32_HTID(handle) == TC_U32_ROOT) 273 ht = tp->root; 274 else 275 ht = u32_lookup_ht(tp_c, TC_U32_HTID(handle)); 276 277 if (!ht) 278 return 0; 279 280 if (TC_U32_KEY(handle) == 0) 281 return (unsigned long)ht; 282 283 return (unsigned long)u32_lookup_key(ht, handle); 284 } 285 286 static void u32_put(struct tcf_proto *tp, unsigned long f) 287 { 288 } 289 290 static u32 gen_new_htid(struct tc_u_common *tp_c) 291 { 292 int i = 0x800; 293 294 do { 295 if (++tp_c->hgenerator == 0x7FF) 296 tp_c->hgenerator = 1; 297 } while (--i>0 && u32_lookup_ht(tp_c, (tp_c->hgenerator|0x800)<<20)); 298 299 return i > 0 ? (tp_c->hgenerator|0x800)<<20 : 0; 300 } 301 302 static int u32_init(struct tcf_proto *tp) 303 { 304 struct tc_u_hnode *root_ht; 305 struct tc_u_common *tp_c; 306 307 for (tp_c = u32_list; tp_c; tp_c = tp_c->next) 308 if (tp_c->q == tp->q) 309 break; 310 311 root_ht = kmalloc(sizeof(*root_ht), GFP_KERNEL); 312 if (root_ht == NULL) 313 return -ENOBUFS; 314 315 memset(root_ht, 0, sizeof(*root_ht)); 316 root_ht->divisor = 0; 317 root_ht->refcnt++; 318 root_ht->handle = tp_c ? gen_new_htid(tp_c) : 0x80000000; 319 root_ht->prio = tp->prio; 320 321 if (tp_c == NULL) { 322 tp_c = kmalloc(sizeof(*tp_c), GFP_KERNEL); 323 if (tp_c == NULL) { 324 kfree(root_ht); 325 return -ENOBUFS; 326 } 327 memset(tp_c, 0, sizeof(*tp_c)); 328 tp_c->q = tp->q; 329 tp_c->next = u32_list; 330 u32_list = tp_c; 331 } 332 333 tp_c->refcnt++; 334 root_ht->next = tp_c->hlist; 335 tp_c->hlist = root_ht; 336 root_ht->tp_c = tp_c; 337 338 tp->root = root_ht; 339 tp->data = tp_c; 340 return 0; 341 } 342 343 static int u32_destroy_key(struct tcf_proto *tp, struct tc_u_knode *n) 344 { 345 tcf_unbind_filter(tp, &n->res); 346 tcf_exts_destroy(tp, &n->exts); 347 if (n->ht_down) 348 n->ht_down->refcnt--; 349 #ifdef CONFIG_CLS_U32_PERF 350 if (n) 351 kfree(n->pf); 352 #endif 353 kfree(n); 354 return 0; 355 } 356 357 static int u32_delete_key(struct tcf_proto *tp, struct tc_u_knode* key) 358 { 359 struct tc_u_knode **kp; 360 struct tc_u_hnode *ht = key->ht_up; 361 362 if (ht) { 363 for (kp = &ht->ht[TC_U32_HASH(key->handle)]; *kp; kp = &(*kp)->next) { 364 if (*kp == key) { 365 tcf_tree_lock(tp); 366 *kp = key->next; 367 tcf_tree_unlock(tp); 368 369 u32_destroy_key(tp, key); 370 return 0; 371 } 372 } 373 } 374 BUG_TRAP(0); 375 return 0; 376 } 377 378 static void u32_clear_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht) 379 { 380 struct tc_u_knode *n; 381 unsigned h; 382 383 for (h=0; h<=ht->divisor; h++) { 384 while ((n = ht->ht[h]) != NULL) { 385 ht->ht[h] = n->next; 386 387 u32_destroy_key(tp, n); 388 } 389 } 390 } 391 392 static int u32_destroy_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht) 393 { 394 struct tc_u_common *tp_c = tp->data; 395 struct tc_u_hnode **hn; 396 397 BUG_TRAP(!ht->refcnt); 398 399 u32_clear_hnode(tp, ht); 400 401 for (hn = &tp_c->hlist; *hn; hn = &(*hn)->next) { 402 if (*hn == ht) { 403 *hn = ht->next; 404 kfree(ht); 405 return 0; 406 } 407 } 408 409 BUG_TRAP(0); 410 return -ENOENT; 411 } 412 413 static void u32_destroy(struct tcf_proto *tp) 414 { 415 struct tc_u_common *tp_c = tp->data; 416 struct tc_u_hnode *root_ht = xchg(&tp->root, NULL); 417 418 BUG_TRAP(root_ht != NULL); 419 420 if (root_ht && --root_ht->refcnt == 0) 421 u32_destroy_hnode(tp, root_ht); 422 423 if (--tp_c->refcnt == 0) { 424 struct tc_u_hnode *ht; 425 struct tc_u_common **tp_cp; 426 427 for (tp_cp = &u32_list; *tp_cp; tp_cp = &(*tp_cp)->next) { 428 if (*tp_cp == tp_c) { 429 *tp_cp = tp_c->next; 430 break; 431 } 432 } 433 434 for (ht=tp_c->hlist; ht; ht = ht->next) 435 u32_clear_hnode(tp, ht); 436 437 while ((ht = tp_c->hlist) != NULL) { 438 tp_c->hlist = ht->next; 439 440 BUG_TRAP(ht->refcnt == 0); 441 442 kfree(ht); 443 }; 444 445 kfree(tp_c); 446 } 447 448 tp->data = NULL; 449 } 450 451 static int u32_delete(struct tcf_proto *tp, unsigned long arg) 452 { 453 struct tc_u_hnode *ht = (struct tc_u_hnode*)arg; 454 455 if (ht == NULL) 456 return 0; 457 458 if (TC_U32_KEY(ht->handle)) 459 return u32_delete_key(tp, (struct tc_u_knode*)ht); 460 461 if (tp->root == ht) 462 return -EINVAL; 463 464 if (--ht->refcnt == 0) 465 u32_destroy_hnode(tp, ht); 466 467 return 0; 468 } 469 470 static u32 gen_new_kid(struct tc_u_hnode *ht, u32 handle) 471 { 472 struct tc_u_knode *n; 473 unsigned i = 0x7FF; 474 475 for (n=ht->ht[TC_U32_HASH(handle)]; n; n = n->next) 476 if (i < TC_U32_NODE(n->handle)) 477 i = TC_U32_NODE(n->handle); 478 i++; 479 480 return handle|(i>0xFFF ? 0xFFF : i); 481 } 482 483 static int u32_set_parms(struct tcf_proto *tp, unsigned long base, 484 struct tc_u_hnode *ht, 485 struct tc_u_knode *n, struct rtattr **tb, 486 struct rtattr *est) 487 { 488 int err; 489 struct tcf_exts e; 490 491 err = tcf_exts_validate(tp, tb, est, &e, &u32_ext_map); 492 if (err < 0) 493 return err; 494 495 err = -EINVAL; 496 if (tb[TCA_U32_LINK-1]) { 497 u32 handle = *(u32*)RTA_DATA(tb[TCA_U32_LINK-1]); 498 struct tc_u_hnode *ht_down = NULL; 499 500 if (TC_U32_KEY(handle)) 501 goto errout; 502 503 if (handle) { 504 ht_down = u32_lookup_ht(ht->tp_c, handle); 505 506 if (ht_down == NULL) 507 goto errout; 508 ht_down->refcnt++; 509 } 510 511 tcf_tree_lock(tp); 512 ht_down = xchg(&n->ht_down, ht_down); 513 tcf_tree_unlock(tp); 514 515 if (ht_down) 516 ht_down->refcnt--; 517 } 518 if (tb[TCA_U32_CLASSID-1]) { 519 n->res.classid = *(u32*)RTA_DATA(tb[TCA_U32_CLASSID-1]); 520 tcf_bind_filter(tp, &n->res, base); 521 } 522 523 #ifdef CONFIG_NET_CLS_IND 524 if (tb[TCA_U32_INDEV-1]) { 525 int err = tcf_change_indev(tp, n->indev, tb[TCA_U32_INDEV-1]); 526 if (err < 0) 527 goto errout; 528 } 529 #endif 530 tcf_exts_change(tp, &n->exts, &e); 531 532 return 0; 533 errout: 534 tcf_exts_destroy(tp, &e); 535 return err; 536 } 537 538 static int u32_change(struct tcf_proto *tp, unsigned long base, u32 handle, 539 struct rtattr **tca, 540 unsigned long *arg) 541 { 542 struct tc_u_common *tp_c = tp->data; 543 struct tc_u_hnode *ht; 544 struct tc_u_knode *n; 545 struct tc_u32_sel *s; 546 struct rtattr *opt = tca[TCA_OPTIONS-1]; 547 struct rtattr *tb[TCA_U32_MAX]; 548 u32 htid; 549 int err; 550 551 if (opt == NULL) 552 return handle ? -EINVAL : 0; 553 554 if (rtattr_parse_nested(tb, TCA_U32_MAX, opt) < 0) 555 return -EINVAL; 556 557 if ((n = (struct tc_u_knode*)*arg) != NULL) { 558 if (TC_U32_KEY(n->handle) == 0) 559 return -EINVAL; 560 561 return u32_set_parms(tp, base, n->ht_up, n, tb, tca[TCA_RATE-1]); 562 } 563 564 if (tb[TCA_U32_DIVISOR-1]) { 565 unsigned divisor = *(unsigned*)RTA_DATA(tb[TCA_U32_DIVISOR-1]); 566 567 if (--divisor > 0x100) 568 return -EINVAL; 569 if (TC_U32_KEY(handle)) 570 return -EINVAL; 571 if (handle == 0) { 572 handle = gen_new_htid(tp->data); 573 if (handle == 0) 574 return -ENOMEM; 575 } 576 ht = kmalloc(sizeof(*ht) + divisor*sizeof(void*), GFP_KERNEL); 577 if (ht == NULL) 578 return -ENOBUFS; 579 memset(ht, 0, sizeof(*ht) + divisor*sizeof(void*)); 580 ht->tp_c = tp_c; 581 ht->refcnt = 0; 582 ht->divisor = divisor; 583 ht->handle = handle; 584 ht->prio = tp->prio; 585 ht->next = tp_c->hlist; 586 tp_c->hlist = ht; 587 *arg = (unsigned long)ht; 588 return 0; 589 } 590 591 if (tb[TCA_U32_HASH-1]) { 592 htid = *(unsigned*)RTA_DATA(tb[TCA_U32_HASH-1]); 593 if (TC_U32_HTID(htid) == TC_U32_ROOT) { 594 ht = tp->root; 595 htid = ht->handle; 596 } else { 597 ht = u32_lookup_ht(tp->data, TC_U32_HTID(htid)); 598 if (ht == NULL) 599 return -EINVAL; 600 } 601 } else { 602 ht = tp->root; 603 htid = ht->handle; 604 } 605 606 if (ht->divisor < TC_U32_HASH(htid)) 607 return -EINVAL; 608 609 if (handle) { 610 if (TC_U32_HTID(handle) && TC_U32_HTID(handle^htid)) 611 return -EINVAL; 612 handle = htid | TC_U32_NODE(handle); 613 } else 614 handle = gen_new_kid(ht, htid); 615 616 if (tb[TCA_U32_SEL-1] == 0 || 617 RTA_PAYLOAD(tb[TCA_U32_SEL-1]) < sizeof(struct tc_u32_sel)) 618 return -EINVAL; 619 620 s = RTA_DATA(tb[TCA_U32_SEL-1]); 621 622 n = kmalloc(sizeof(*n) + s->nkeys*sizeof(struct tc_u32_key), GFP_KERNEL); 623 if (n == NULL) 624 return -ENOBUFS; 625 626 memset(n, 0, sizeof(*n) + s->nkeys*sizeof(struct tc_u32_key)); 627 #ifdef CONFIG_CLS_U32_PERF 628 n->pf = kmalloc(sizeof(struct tc_u32_pcnt) + s->nkeys*sizeof(u64), GFP_KERNEL); 629 if (n->pf == NULL) { 630 kfree(n); 631 return -ENOBUFS; 632 } 633 memset(n->pf, 0, sizeof(struct tc_u32_pcnt) + s->nkeys*sizeof(u64)); 634 #endif 635 636 memcpy(&n->sel, s, sizeof(*s) + s->nkeys*sizeof(struct tc_u32_key)); 637 n->ht_up = ht; 638 n->handle = handle; 639 { 640 u8 i = 0; 641 u32 mask = s->hmask; 642 if (mask) { 643 while (!(mask & 1)) { 644 i++; 645 mask>>=1; 646 } 647 } 648 n->fshift = i; 649 } 650 651 #ifdef CONFIG_CLS_U32_MARK 652 if (tb[TCA_U32_MARK-1]) { 653 struct tc_u32_mark *mark; 654 655 if (RTA_PAYLOAD(tb[TCA_U32_MARK-1]) < sizeof(struct tc_u32_mark)) { 656 #ifdef CONFIG_CLS_U32_PERF 657 kfree(n->pf); 658 #endif 659 kfree(n); 660 return -EINVAL; 661 } 662 mark = RTA_DATA(tb[TCA_U32_MARK-1]); 663 memcpy(&n->mark, mark, sizeof(struct tc_u32_mark)); 664 n->mark.success = 0; 665 } 666 #endif 667 668 err = u32_set_parms(tp, base, ht, n, tb, tca[TCA_RATE-1]); 669 if (err == 0) { 670 struct tc_u_knode **ins; 671 for (ins = &ht->ht[TC_U32_HASH(handle)]; *ins; ins = &(*ins)->next) 672 if (TC_U32_NODE(handle) < TC_U32_NODE((*ins)->handle)) 673 break; 674 675 n->next = *ins; 676 wmb(); 677 *ins = n; 678 679 *arg = (unsigned long)n; 680 return 0; 681 } 682 #ifdef CONFIG_CLS_U32_PERF 683 if (n) 684 kfree(n->pf); 685 #endif 686 kfree(n); 687 return err; 688 } 689 690 static void u32_walk(struct tcf_proto *tp, struct tcf_walker *arg) 691 { 692 struct tc_u_common *tp_c = tp->data; 693 struct tc_u_hnode *ht; 694 struct tc_u_knode *n; 695 unsigned h; 696 697 if (arg->stop) 698 return; 699 700 for (ht = tp_c->hlist; ht; ht = ht->next) { 701 if (ht->prio != tp->prio) 702 continue; 703 if (arg->count >= arg->skip) { 704 if (arg->fn(tp, (unsigned long)ht, arg) < 0) { 705 arg->stop = 1; 706 return; 707 } 708 } 709 arg->count++; 710 for (h = 0; h <= ht->divisor; h++) { 711 for (n = ht->ht[h]; n; n = n->next) { 712 if (arg->count < arg->skip) { 713 arg->count++; 714 continue; 715 } 716 if (arg->fn(tp, (unsigned long)n, arg) < 0) { 717 arg->stop = 1; 718 return; 719 } 720 arg->count++; 721 } 722 } 723 } 724 } 725 726 static int u32_dump(struct tcf_proto *tp, unsigned long fh, 727 struct sk_buff *skb, struct tcmsg *t) 728 { 729 struct tc_u_knode *n = (struct tc_u_knode*)fh; 730 unsigned char *b = skb->tail; 731 struct rtattr *rta; 732 733 if (n == NULL) 734 return skb->len; 735 736 t->tcm_handle = n->handle; 737 738 rta = (struct rtattr*)b; 739 RTA_PUT(skb, TCA_OPTIONS, 0, NULL); 740 741 if (TC_U32_KEY(n->handle) == 0) { 742 struct tc_u_hnode *ht = (struct tc_u_hnode*)fh; 743 u32 divisor = ht->divisor+1; 744 RTA_PUT(skb, TCA_U32_DIVISOR, 4, &divisor); 745 } else { 746 RTA_PUT(skb, TCA_U32_SEL, 747 sizeof(n->sel) + n->sel.nkeys*sizeof(struct tc_u32_key), 748 &n->sel); 749 if (n->ht_up) { 750 u32 htid = n->handle & 0xFFFFF000; 751 RTA_PUT(skb, TCA_U32_HASH, 4, &htid); 752 } 753 if (n->res.classid) 754 RTA_PUT(skb, TCA_U32_CLASSID, 4, &n->res.classid); 755 if (n->ht_down) 756 RTA_PUT(skb, TCA_U32_LINK, 4, &n->ht_down->handle); 757 758 #ifdef CONFIG_CLS_U32_MARK 759 if (n->mark.val || n->mark.mask) 760 RTA_PUT(skb, TCA_U32_MARK, sizeof(n->mark), &n->mark); 761 #endif 762 763 if (tcf_exts_dump(skb, &n->exts, &u32_ext_map) < 0) 764 goto rtattr_failure; 765 766 #ifdef CONFIG_NET_CLS_IND 767 if(strlen(n->indev)) 768 RTA_PUT(skb, TCA_U32_INDEV, IFNAMSIZ, n->indev); 769 #endif 770 #ifdef CONFIG_CLS_U32_PERF 771 RTA_PUT(skb, TCA_U32_PCNT, 772 sizeof(struct tc_u32_pcnt) + n->sel.nkeys*sizeof(u64), 773 n->pf); 774 #endif 775 } 776 777 rta->rta_len = skb->tail - b; 778 if (TC_U32_KEY(n->handle)) 779 if (tcf_exts_dump_stats(skb, &n->exts, &u32_ext_map) < 0) 780 goto rtattr_failure; 781 return skb->len; 782 783 rtattr_failure: 784 skb_trim(skb, b - skb->data); 785 return -1; 786 } 787 788 static struct tcf_proto_ops cls_u32_ops = { 789 .next = NULL, 790 .kind = "u32", 791 .classify = u32_classify, 792 .init = u32_init, 793 .destroy = u32_destroy, 794 .get = u32_get, 795 .put = u32_put, 796 .change = u32_change, 797 .delete = u32_delete, 798 .walk = u32_walk, 799 .dump = u32_dump, 800 .owner = THIS_MODULE, 801 }; 802 803 static int __init init_u32(void) 804 { 805 printk("u32 classifier\n"); 806 #ifdef CONFIG_CLS_U32_PERF 807 printk(" Perfomance counters on\n"); 808 #endif 809 #ifdef CONFIG_NET_CLS_POLICE 810 printk(" OLD policer on \n"); 811 #endif 812 #ifdef CONFIG_NET_CLS_IND 813 printk(" input device check on \n"); 814 #endif 815 #ifdef CONFIG_NET_CLS_ACT 816 printk(" Actions configured \n"); 817 #endif 818 return register_tcf_proto_ops(&cls_u32_ops); 819 } 820 821 static void __exit exit_u32(void) 822 { 823 unregister_tcf_proto_ops(&cls_u32_ops); 824 } 825 826 module_init(init_u32) 827 module_exit(exit_u32) 828 MODULE_LICENSE("GPL"); 829