1 /* 2 * net/sched/cls_u32.c Ugly (or Universal) 32bit key Packet Classifier. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 10 * 11 * The filters are packed to hash tables of key nodes 12 * with a set of 32bit key/mask pairs at every node. 13 * Nodes reference next level hash tables etc. 14 * 15 * This scheme is the best universal classifier I managed to 16 * invent; it is not super-fast, but it is not slow (provided you 17 * program it correctly), and general enough. And its relative 18 * speed grows as the number of rules becomes larger. 19 * 20 * It seems that it represents the best middle point between 21 * speed and manageability both by human and by machine. 22 * 23 * It is especially useful for link sharing combined with QoS; 24 * pure RSVP doesn't need such a general approach and can use 25 * much simpler (and faster) schemes, sort of cls_rsvp.c. 26 * 27 * JHS: We should remove the CONFIG_NET_CLS_IND from here 28 * eventually when the meta match extension is made available 29 * 30 * nfmark match added by Catalin(ux aka Dino) BOIE <catab at umbrella.ro> 31 */ 32 33 #include <linux/module.h> 34 #include <linux/slab.h> 35 #include <linux/types.h> 36 #include <linux/kernel.h> 37 #include <linux/string.h> 38 #include <linux/errno.h> 39 #include <linux/percpu.h> 40 #include <linux/rtnetlink.h> 41 #include <linux/skbuff.h> 42 #include <linux/bitmap.h> 43 #include <net/netlink.h> 44 #include <net/act_api.h> 45 #include <net/pkt_cls.h> 46 47 struct tc_u_knode { 48 struct tc_u_knode __rcu *next; 49 u32 handle; 50 struct tc_u_hnode __rcu *ht_up; 51 struct tcf_exts exts; 52 #ifdef CONFIG_NET_CLS_IND 53 int ifindex; 54 #endif 55 u8 fshift; 56 struct tcf_result res; 57 struct tc_u_hnode __rcu *ht_down; 58 #ifdef CONFIG_CLS_U32_PERF 59 struct tc_u32_pcnt __percpu *pf; 60 #endif 61 #ifdef CONFIG_CLS_U32_MARK 62 u32 val; 63 u32 mask; 64 u32 __percpu *pcpu_success; 65 #endif 66 struct tcf_proto *tp; 67 struct rcu_head rcu; 68 /* The 'sel' field MUST be the last field in structure to allow for 69 * tc_u32_keys allocated at end of structure. 70 */ 71 struct tc_u32_sel sel; 72 }; 73 74 struct tc_u_hnode { 75 struct tc_u_hnode __rcu *next; 76 u32 handle; 77 u32 prio; 78 struct tc_u_common *tp_c; 79 int refcnt; 80 unsigned int divisor; 81 struct tc_u_knode __rcu *ht[1]; 82 struct rcu_head rcu; 83 }; 84 85 struct tc_u_common { 86 struct tc_u_hnode __rcu *hlist; 87 struct Qdisc *q; 88 int refcnt; 89 u32 hgenerator; 90 struct rcu_head rcu; 91 }; 92 93 static inline unsigned int u32_hash_fold(__be32 key, 94 const struct tc_u32_sel *sel, 95 u8 fshift) 96 { 97 unsigned int h = ntohl(key & sel->hmask) >> fshift; 98 99 return h; 100 } 101 102 static int u32_classify(struct sk_buff *skb, const struct tcf_proto *tp, struct tcf_result *res) 103 { 104 struct { 105 struct tc_u_knode *knode; 106 unsigned int off; 107 } stack[TC_U32_MAXDEPTH]; 108 109 struct tc_u_hnode *ht = rcu_dereference_bh(tp->root); 110 unsigned int off = skb_network_offset(skb); 111 struct tc_u_knode *n; 112 int sdepth = 0; 113 int off2 = 0; 114 int sel = 0; 115 #ifdef CONFIG_CLS_U32_PERF 116 int j; 117 #endif 118 int i, r; 119 120 next_ht: 121 n = rcu_dereference_bh(ht->ht[sel]); 122 123 next_knode: 124 if (n) { 125 struct tc_u32_key *key = n->sel.keys; 126 127 #ifdef CONFIG_CLS_U32_PERF 128 __this_cpu_inc(n->pf->rcnt); 129 j = 0; 130 #endif 131 132 #ifdef CONFIG_CLS_U32_MARK 133 if ((skb->mark & n->mask) != n->val) { 134 n = rcu_dereference_bh(n->next); 135 goto next_knode; 136 } else { 137 __this_cpu_inc(*n->pcpu_success); 138 } 139 #endif 140 141 for (i = n->sel.nkeys; i > 0; i--, key++) { 142 int toff = off + key->off + (off2 & key->offmask); 143 __be32 *data, hdata; 144 145 if (skb_headroom(skb) + toff > INT_MAX) 146 goto out; 147 148 data = skb_header_pointer(skb, toff, 4, &hdata); 149 if (!data) 150 goto out; 151 if ((*data ^ key->val) & key->mask) { 152 n = rcu_dereference_bh(n->next); 153 goto next_knode; 154 } 155 #ifdef CONFIG_CLS_U32_PERF 156 __this_cpu_inc(n->pf->kcnts[j]); 157 j++; 158 #endif 159 } 160 161 ht = rcu_dereference_bh(n->ht_down); 162 if (!ht) { 163 check_terminal: 164 if (n->sel.flags & TC_U32_TERMINAL) { 165 166 *res = n->res; 167 #ifdef CONFIG_NET_CLS_IND 168 if (!tcf_match_indev(skb, n->ifindex)) { 169 n = rcu_dereference_bh(n->next); 170 goto next_knode; 171 } 172 #endif 173 #ifdef CONFIG_CLS_U32_PERF 174 __this_cpu_inc(n->pf->rhit); 175 #endif 176 r = tcf_exts_exec(skb, &n->exts, res); 177 if (r < 0) { 178 n = rcu_dereference_bh(n->next); 179 goto next_knode; 180 } 181 182 return r; 183 } 184 n = rcu_dereference_bh(n->next); 185 goto next_knode; 186 } 187 188 /* PUSH */ 189 if (sdepth >= TC_U32_MAXDEPTH) 190 goto deadloop; 191 stack[sdepth].knode = n; 192 stack[sdepth].off = off; 193 sdepth++; 194 195 ht = rcu_dereference_bh(n->ht_down); 196 sel = 0; 197 if (ht->divisor) { 198 __be32 *data, hdata; 199 200 data = skb_header_pointer(skb, off + n->sel.hoff, 4, 201 &hdata); 202 if (!data) 203 goto out; 204 sel = ht->divisor & u32_hash_fold(*data, &n->sel, 205 n->fshift); 206 } 207 if (!(n->sel.flags & (TC_U32_VAROFFSET | TC_U32_OFFSET | TC_U32_EAT))) 208 goto next_ht; 209 210 if (n->sel.flags & (TC_U32_OFFSET | TC_U32_VAROFFSET)) { 211 off2 = n->sel.off + 3; 212 if (n->sel.flags & TC_U32_VAROFFSET) { 213 __be16 *data, hdata; 214 215 data = skb_header_pointer(skb, 216 off + n->sel.offoff, 217 2, &hdata); 218 if (!data) 219 goto out; 220 off2 += ntohs(n->sel.offmask & *data) >> 221 n->sel.offshift; 222 } 223 off2 &= ~3; 224 } 225 if (n->sel.flags & TC_U32_EAT) { 226 off += off2; 227 off2 = 0; 228 } 229 230 if (off < skb->len) 231 goto next_ht; 232 } 233 234 /* POP */ 235 if (sdepth--) { 236 n = stack[sdepth].knode; 237 ht = rcu_dereference_bh(n->ht_up); 238 off = stack[sdepth].off; 239 goto check_terminal; 240 } 241 out: 242 return -1; 243 244 deadloop: 245 net_warn_ratelimited("cls_u32: dead loop\n"); 246 return -1; 247 } 248 249 static struct tc_u_hnode * 250 u32_lookup_ht(struct tc_u_common *tp_c, u32 handle) 251 { 252 struct tc_u_hnode *ht; 253 254 for (ht = rtnl_dereference(tp_c->hlist); 255 ht; 256 ht = rtnl_dereference(ht->next)) 257 if (ht->handle == handle) 258 break; 259 260 return ht; 261 } 262 263 static struct tc_u_knode * 264 u32_lookup_key(struct tc_u_hnode *ht, u32 handle) 265 { 266 unsigned int sel; 267 struct tc_u_knode *n = NULL; 268 269 sel = TC_U32_HASH(handle); 270 if (sel > ht->divisor) 271 goto out; 272 273 for (n = rtnl_dereference(ht->ht[sel]); 274 n; 275 n = rtnl_dereference(n->next)) 276 if (n->handle == handle) 277 break; 278 out: 279 return n; 280 } 281 282 283 static unsigned long u32_get(struct tcf_proto *tp, u32 handle) 284 { 285 struct tc_u_hnode *ht; 286 struct tc_u_common *tp_c = tp->data; 287 288 if (TC_U32_HTID(handle) == TC_U32_ROOT) 289 ht = rtnl_dereference(tp->root); 290 else 291 ht = u32_lookup_ht(tp_c, TC_U32_HTID(handle)); 292 293 if (!ht) 294 return 0; 295 296 if (TC_U32_KEY(handle) == 0) 297 return (unsigned long)ht; 298 299 return (unsigned long)u32_lookup_key(ht, handle); 300 } 301 302 static void u32_put(struct tcf_proto *tp, unsigned long f) 303 { 304 } 305 306 static u32 gen_new_htid(struct tc_u_common *tp_c) 307 { 308 int i = 0x800; 309 310 /* hgenerator only used inside rtnl lock it is safe to increment 311 * without read _copy_ update semantics 312 */ 313 do { 314 if (++tp_c->hgenerator == 0x7FF) 315 tp_c->hgenerator = 1; 316 } while (--i > 0 && u32_lookup_ht(tp_c, (tp_c->hgenerator|0x800)<<20)); 317 318 return i > 0 ? (tp_c->hgenerator|0x800)<<20 : 0; 319 } 320 321 static int u32_init(struct tcf_proto *tp) 322 { 323 struct tc_u_hnode *root_ht; 324 struct tc_u_common *tp_c; 325 326 tp_c = tp->q->u32_node; 327 328 root_ht = kzalloc(sizeof(*root_ht), GFP_KERNEL); 329 if (root_ht == NULL) 330 return -ENOBUFS; 331 332 root_ht->divisor = 0; 333 root_ht->refcnt++; 334 root_ht->handle = tp_c ? gen_new_htid(tp_c) : 0x80000000; 335 root_ht->prio = tp->prio; 336 337 if (tp_c == NULL) { 338 tp_c = kzalloc(sizeof(*tp_c), GFP_KERNEL); 339 if (tp_c == NULL) { 340 kfree(root_ht); 341 return -ENOBUFS; 342 } 343 tp_c->q = tp->q; 344 tp->q->u32_node = tp_c; 345 } 346 347 tp_c->refcnt++; 348 RCU_INIT_POINTER(root_ht->next, tp_c->hlist); 349 rcu_assign_pointer(tp_c->hlist, root_ht); 350 root_ht->tp_c = tp_c; 351 352 rcu_assign_pointer(tp->root, root_ht); 353 tp->data = tp_c; 354 return 0; 355 } 356 357 static int u32_destroy_key(struct tcf_proto *tp, 358 struct tc_u_knode *n, 359 bool free_pf) 360 { 361 tcf_exts_destroy(&n->exts); 362 if (n->ht_down) 363 n->ht_down->refcnt--; 364 #ifdef CONFIG_CLS_U32_PERF 365 if (free_pf) 366 free_percpu(n->pf); 367 #endif 368 #ifdef CONFIG_CLS_U32_MARK 369 if (free_pf) 370 free_percpu(n->pcpu_success); 371 #endif 372 kfree(n); 373 return 0; 374 } 375 376 /* u32_delete_key_rcu should be called when free'ing a copied 377 * version of a tc_u_knode obtained from u32_init_knode(). When 378 * copies are obtained from u32_init_knode() the statistics are 379 * shared between the old and new copies to allow readers to 380 * continue to update the statistics during the copy. To support 381 * this the u32_delete_key_rcu variant does not free the percpu 382 * statistics. 383 */ 384 static void u32_delete_key_rcu(struct rcu_head *rcu) 385 { 386 struct tc_u_knode *key = container_of(rcu, struct tc_u_knode, rcu); 387 388 u32_destroy_key(key->tp, key, false); 389 } 390 391 /* u32_delete_key_freepf_rcu is the rcu callback variant 392 * that free's the entire structure including the statistics 393 * percpu variables. Only use this if the key is not a copy 394 * returned by u32_init_knode(). See u32_delete_key_rcu() 395 * for the variant that should be used with keys return from 396 * u32_init_knode() 397 */ 398 static void u32_delete_key_freepf_rcu(struct rcu_head *rcu) 399 { 400 struct tc_u_knode *key = container_of(rcu, struct tc_u_knode, rcu); 401 402 u32_destroy_key(key->tp, key, true); 403 } 404 405 static int u32_delete_key(struct tcf_proto *tp, struct tc_u_knode *key) 406 { 407 struct tc_u_knode __rcu **kp; 408 struct tc_u_knode *pkp; 409 struct tc_u_hnode *ht = rtnl_dereference(key->ht_up); 410 411 if (ht) { 412 kp = &ht->ht[TC_U32_HASH(key->handle)]; 413 for (pkp = rtnl_dereference(*kp); pkp; 414 kp = &pkp->next, pkp = rtnl_dereference(*kp)) { 415 if (pkp == key) { 416 RCU_INIT_POINTER(*kp, key->next); 417 418 tcf_unbind_filter(tp, &key->res); 419 call_rcu(&key->rcu, u32_delete_key_freepf_rcu); 420 return 0; 421 } 422 } 423 } 424 WARN_ON(1); 425 return 0; 426 } 427 428 static void u32_clear_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht) 429 { 430 struct tc_u_knode *n; 431 unsigned int h; 432 433 for (h = 0; h <= ht->divisor; h++) { 434 while ((n = rtnl_dereference(ht->ht[h])) != NULL) { 435 RCU_INIT_POINTER(ht->ht[h], 436 rtnl_dereference(n->next)); 437 tcf_unbind_filter(tp, &n->res); 438 call_rcu(&n->rcu, u32_delete_key_freepf_rcu); 439 } 440 } 441 } 442 443 static int u32_destroy_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht) 444 { 445 struct tc_u_common *tp_c = tp->data; 446 struct tc_u_hnode __rcu **hn; 447 struct tc_u_hnode *phn; 448 449 WARN_ON(ht->refcnt); 450 451 u32_clear_hnode(tp, ht); 452 453 hn = &tp_c->hlist; 454 for (phn = rtnl_dereference(*hn); 455 phn; 456 hn = &phn->next, phn = rtnl_dereference(*hn)) { 457 if (phn == ht) { 458 RCU_INIT_POINTER(*hn, ht->next); 459 kfree_rcu(ht, rcu); 460 return 0; 461 } 462 } 463 464 return -ENOENT; 465 } 466 467 static void u32_destroy(struct tcf_proto *tp) 468 { 469 struct tc_u_common *tp_c = tp->data; 470 struct tc_u_hnode *root_ht = rtnl_dereference(tp->root); 471 472 WARN_ON(root_ht == NULL); 473 474 if (root_ht && --root_ht->refcnt == 0) 475 u32_destroy_hnode(tp, root_ht); 476 477 if (--tp_c->refcnt == 0) { 478 struct tc_u_hnode *ht; 479 480 tp->q->u32_node = NULL; 481 482 for (ht = rtnl_dereference(tp_c->hlist); 483 ht; 484 ht = rtnl_dereference(ht->next)) { 485 ht->refcnt--; 486 u32_clear_hnode(tp, ht); 487 } 488 489 while ((ht = rtnl_dereference(tp_c->hlist)) != NULL) { 490 RCU_INIT_POINTER(tp_c->hlist, ht->next); 491 kfree_rcu(ht, rcu); 492 } 493 494 kfree(tp_c); 495 } 496 497 tp->data = NULL; 498 } 499 500 static int u32_delete(struct tcf_proto *tp, unsigned long arg) 501 { 502 struct tc_u_hnode *ht = (struct tc_u_hnode *)arg; 503 struct tc_u_hnode *root_ht = rtnl_dereference(tp->root); 504 505 if (ht == NULL) 506 return 0; 507 508 if (TC_U32_KEY(ht->handle)) 509 return u32_delete_key(tp, (struct tc_u_knode *)ht); 510 511 if (root_ht == ht) 512 return -EINVAL; 513 514 if (ht->refcnt == 1) { 515 ht->refcnt--; 516 u32_destroy_hnode(tp, ht); 517 } else { 518 return -EBUSY; 519 } 520 521 return 0; 522 } 523 524 #define NR_U32_NODE (1<<12) 525 static u32 gen_new_kid(struct tc_u_hnode *ht, u32 handle) 526 { 527 struct tc_u_knode *n; 528 unsigned long i; 529 unsigned long *bitmap = kzalloc(BITS_TO_LONGS(NR_U32_NODE) * sizeof(unsigned long), 530 GFP_KERNEL); 531 if (!bitmap) 532 return handle | 0xFFF; 533 534 for (n = rtnl_dereference(ht->ht[TC_U32_HASH(handle)]); 535 n; 536 n = rtnl_dereference(n->next)) 537 set_bit(TC_U32_NODE(n->handle), bitmap); 538 539 i = find_next_zero_bit(bitmap, NR_U32_NODE, 0x800); 540 if (i >= NR_U32_NODE) 541 i = find_next_zero_bit(bitmap, NR_U32_NODE, 1); 542 543 kfree(bitmap); 544 return handle | (i >= NR_U32_NODE ? 0xFFF : i); 545 } 546 547 static const struct nla_policy u32_policy[TCA_U32_MAX + 1] = { 548 [TCA_U32_CLASSID] = { .type = NLA_U32 }, 549 [TCA_U32_HASH] = { .type = NLA_U32 }, 550 [TCA_U32_LINK] = { .type = NLA_U32 }, 551 [TCA_U32_DIVISOR] = { .type = NLA_U32 }, 552 [TCA_U32_SEL] = { .len = sizeof(struct tc_u32_sel) }, 553 [TCA_U32_INDEV] = { .type = NLA_STRING, .len = IFNAMSIZ }, 554 [TCA_U32_MARK] = { .len = sizeof(struct tc_u32_mark) }, 555 }; 556 557 static int u32_set_parms(struct net *net, struct tcf_proto *tp, 558 unsigned long base, struct tc_u_hnode *ht, 559 struct tc_u_knode *n, struct nlattr **tb, 560 struct nlattr *est, bool ovr) 561 { 562 int err; 563 struct tcf_exts e; 564 565 tcf_exts_init(&e, TCA_U32_ACT, TCA_U32_POLICE); 566 err = tcf_exts_validate(net, tp, tb, est, &e, ovr); 567 if (err < 0) 568 return err; 569 570 err = -EINVAL; 571 if (tb[TCA_U32_LINK]) { 572 u32 handle = nla_get_u32(tb[TCA_U32_LINK]); 573 struct tc_u_hnode *ht_down = NULL, *ht_old; 574 575 if (TC_U32_KEY(handle)) 576 goto errout; 577 578 if (handle) { 579 ht_down = u32_lookup_ht(ht->tp_c, handle); 580 581 if (ht_down == NULL) 582 goto errout; 583 ht_down->refcnt++; 584 } 585 586 ht_old = rtnl_dereference(n->ht_down); 587 rcu_assign_pointer(n->ht_down, ht_down); 588 589 if (ht_old) 590 ht_old->refcnt--; 591 } 592 if (tb[TCA_U32_CLASSID]) { 593 n->res.classid = nla_get_u32(tb[TCA_U32_CLASSID]); 594 tcf_bind_filter(tp, &n->res, base); 595 } 596 597 #ifdef CONFIG_NET_CLS_IND 598 if (tb[TCA_U32_INDEV]) { 599 int ret; 600 ret = tcf_change_indev(net, tb[TCA_U32_INDEV]); 601 if (ret < 0) 602 goto errout; 603 n->ifindex = ret; 604 } 605 #endif 606 tcf_exts_change(tp, &n->exts, &e); 607 608 return 0; 609 errout: 610 tcf_exts_destroy(&e); 611 return err; 612 } 613 614 static void u32_replace_knode(struct tcf_proto *tp, 615 struct tc_u_common *tp_c, 616 struct tc_u_knode *n) 617 { 618 struct tc_u_knode __rcu **ins; 619 struct tc_u_knode *pins; 620 struct tc_u_hnode *ht; 621 622 if (TC_U32_HTID(n->handle) == TC_U32_ROOT) 623 ht = rtnl_dereference(tp->root); 624 else 625 ht = u32_lookup_ht(tp_c, TC_U32_HTID(n->handle)); 626 627 ins = &ht->ht[TC_U32_HASH(n->handle)]; 628 629 /* The node must always exist for it to be replaced if this is not the 630 * case then something went very wrong elsewhere. 631 */ 632 for (pins = rtnl_dereference(*ins); ; 633 ins = &pins->next, pins = rtnl_dereference(*ins)) 634 if (pins->handle == n->handle) 635 break; 636 637 RCU_INIT_POINTER(n->next, pins->next); 638 rcu_assign_pointer(*ins, n); 639 } 640 641 static struct tc_u_knode *u32_init_knode(struct tcf_proto *tp, 642 struct tc_u_knode *n) 643 { 644 struct tc_u_knode *new; 645 struct tc_u32_sel *s = &n->sel; 646 647 new = kzalloc(sizeof(*n) + s->nkeys*sizeof(struct tc_u32_key), 648 GFP_KERNEL); 649 650 if (!new) 651 return NULL; 652 653 RCU_INIT_POINTER(new->next, n->next); 654 new->handle = n->handle; 655 RCU_INIT_POINTER(new->ht_up, n->ht_up); 656 657 #ifdef CONFIG_NET_CLS_IND 658 new->ifindex = n->ifindex; 659 #endif 660 new->fshift = n->fshift; 661 new->res = n->res; 662 RCU_INIT_POINTER(new->ht_down, n->ht_down); 663 664 /* bump reference count as long as we hold pointer to structure */ 665 if (new->ht_down) 666 new->ht_down->refcnt++; 667 668 #ifdef CONFIG_CLS_U32_PERF 669 /* Statistics may be incremented by readers during update 670 * so we must keep them in tact. When the node is later destroyed 671 * a special destroy call must be made to not free the pf memory. 672 */ 673 new->pf = n->pf; 674 #endif 675 676 #ifdef CONFIG_CLS_U32_MARK 677 new->val = n->val; 678 new->mask = n->mask; 679 /* Similarly success statistics must be moved as pointers */ 680 new->pcpu_success = n->pcpu_success; 681 #endif 682 new->tp = tp; 683 memcpy(&new->sel, s, sizeof(*s) + s->nkeys*sizeof(struct tc_u32_key)); 684 685 tcf_exts_init(&new->exts, TCA_U32_ACT, TCA_U32_POLICE); 686 687 return new; 688 } 689 690 static int u32_change(struct net *net, struct sk_buff *in_skb, 691 struct tcf_proto *tp, unsigned long base, u32 handle, 692 struct nlattr **tca, 693 unsigned long *arg, bool ovr) 694 { 695 struct tc_u_common *tp_c = tp->data; 696 struct tc_u_hnode *ht; 697 struct tc_u_knode *n; 698 struct tc_u32_sel *s; 699 struct nlattr *opt = tca[TCA_OPTIONS]; 700 struct nlattr *tb[TCA_U32_MAX + 1]; 701 u32 htid; 702 int err; 703 #ifdef CONFIG_CLS_U32_PERF 704 size_t size; 705 #endif 706 707 if (opt == NULL) 708 return handle ? -EINVAL : 0; 709 710 err = nla_parse_nested(tb, TCA_U32_MAX, opt, u32_policy); 711 if (err < 0) 712 return err; 713 714 n = (struct tc_u_knode *)*arg; 715 if (n) { 716 struct tc_u_knode *new; 717 718 if (TC_U32_KEY(n->handle) == 0) 719 return -EINVAL; 720 721 new = u32_init_knode(tp, n); 722 if (!new) 723 return -ENOMEM; 724 725 err = u32_set_parms(net, tp, base, 726 rtnl_dereference(n->ht_up), new, tb, 727 tca[TCA_RATE], ovr); 728 729 if (err) { 730 u32_destroy_key(tp, new, false); 731 return err; 732 } 733 734 u32_replace_knode(tp, tp_c, new); 735 tcf_unbind_filter(tp, &n->res); 736 call_rcu(&n->rcu, u32_delete_key_rcu); 737 return 0; 738 } 739 740 if (tb[TCA_U32_DIVISOR]) { 741 unsigned int divisor = nla_get_u32(tb[TCA_U32_DIVISOR]); 742 743 if (--divisor > 0x100) 744 return -EINVAL; 745 if (TC_U32_KEY(handle)) 746 return -EINVAL; 747 if (handle == 0) { 748 handle = gen_new_htid(tp->data); 749 if (handle == 0) 750 return -ENOMEM; 751 } 752 ht = kzalloc(sizeof(*ht) + divisor*sizeof(void *), GFP_KERNEL); 753 if (ht == NULL) 754 return -ENOBUFS; 755 ht->tp_c = tp_c; 756 ht->refcnt = 1; 757 ht->divisor = divisor; 758 ht->handle = handle; 759 ht->prio = tp->prio; 760 RCU_INIT_POINTER(ht->next, tp_c->hlist); 761 rcu_assign_pointer(tp_c->hlist, ht); 762 *arg = (unsigned long)ht; 763 return 0; 764 } 765 766 if (tb[TCA_U32_HASH]) { 767 htid = nla_get_u32(tb[TCA_U32_HASH]); 768 if (TC_U32_HTID(htid) == TC_U32_ROOT) { 769 ht = rtnl_dereference(tp->root); 770 htid = ht->handle; 771 } else { 772 ht = u32_lookup_ht(tp->data, TC_U32_HTID(htid)); 773 if (ht == NULL) 774 return -EINVAL; 775 } 776 } else { 777 ht = rtnl_dereference(tp->root); 778 htid = ht->handle; 779 } 780 781 if (ht->divisor < TC_U32_HASH(htid)) 782 return -EINVAL; 783 784 if (handle) { 785 if (TC_U32_HTID(handle) && TC_U32_HTID(handle^htid)) 786 return -EINVAL; 787 handle = htid | TC_U32_NODE(handle); 788 } else 789 handle = gen_new_kid(ht, htid); 790 791 if (tb[TCA_U32_SEL] == NULL) 792 return -EINVAL; 793 794 s = nla_data(tb[TCA_U32_SEL]); 795 796 n = kzalloc(sizeof(*n) + s->nkeys*sizeof(struct tc_u32_key), GFP_KERNEL); 797 if (n == NULL) 798 return -ENOBUFS; 799 800 #ifdef CONFIG_CLS_U32_PERF 801 size = sizeof(struct tc_u32_pcnt) + s->nkeys * sizeof(u64); 802 n->pf = __alloc_percpu(size, __alignof__(struct tc_u32_pcnt)); 803 if (!n->pf) { 804 kfree(n); 805 return -ENOBUFS; 806 } 807 #endif 808 809 memcpy(&n->sel, s, sizeof(*s) + s->nkeys*sizeof(struct tc_u32_key)); 810 RCU_INIT_POINTER(n->ht_up, ht); 811 n->handle = handle; 812 n->fshift = s->hmask ? ffs(ntohl(s->hmask)) - 1 : 0; 813 tcf_exts_init(&n->exts, TCA_U32_ACT, TCA_U32_POLICE); 814 n->tp = tp; 815 816 #ifdef CONFIG_CLS_U32_MARK 817 n->pcpu_success = alloc_percpu(u32); 818 if (!n->pcpu_success) { 819 err = -ENOMEM; 820 goto errout; 821 } 822 823 if (tb[TCA_U32_MARK]) { 824 struct tc_u32_mark *mark; 825 826 mark = nla_data(tb[TCA_U32_MARK]); 827 n->val = mark->val; 828 n->mask = mark->mask; 829 } 830 #endif 831 832 err = u32_set_parms(net, tp, base, ht, n, tb, tca[TCA_RATE], ovr); 833 if (err == 0) { 834 struct tc_u_knode __rcu **ins; 835 struct tc_u_knode *pins; 836 837 ins = &ht->ht[TC_U32_HASH(handle)]; 838 for (pins = rtnl_dereference(*ins); pins; 839 ins = &pins->next, pins = rtnl_dereference(*ins)) 840 if (TC_U32_NODE(handle) < TC_U32_NODE(pins->handle)) 841 break; 842 843 RCU_INIT_POINTER(n->next, pins); 844 rcu_assign_pointer(*ins, n); 845 846 *arg = (unsigned long)n; 847 return 0; 848 } 849 850 #ifdef CONFIG_CLS_U32_MARK 851 free_percpu(n->pcpu_success); 852 errout: 853 #endif 854 855 #ifdef CONFIG_CLS_U32_PERF 856 free_percpu(n->pf); 857 #endif 858 kfree(n); 859 return err; 860 } 861 862 static void u32_walk(struct tcf_proto *tp, struct tcf_walker *arg) 863 { 864 struct tc_u_common *tp_c = tp->data; 865 struct tc_u_hnode *ht; 866 struct tc_u_knode *n; 867 unsigned int h; 868 869 if (arg->stop) 870 return; 871 872 for (ht = rtnl_dereference(tp_c->hlist); 873 ht; 874 ht = rtnl_dereference(ht->next)) { 875 if (ht->prio != tp->prio) 876 continue; 877 if (arg->count >= arg->skip) { 878 if (arg->fn(tp, (unsigned long)ht, arg) < 0) { 879 arg->stop = 1; 880 return; 881 } 882 } 883 arg->count++; 884 for (h = 0; h <= ht->divisor; h++) { 885 for (n = rtnl_dereference(ht->ht[h]); 886 n; 887 n = rtnl_dereference(n->next)) { 888 if (arg->count < arg->skip) { 889 arg->count++; 890 continue; 891 } 892 if (arg->fn(tp, (unsigned long)n, arg) < 0) { 893 arg->stop = 1; 894 return; 895 } 896 arg->count++; 897 } 898 } 899 } 900 } 901 902 static int u32_dump(struct net *net, struct tcf_proto *tp, unsigned long fh, 903 struct sk_buff *skb, struct tcmsg *t) 904 { 905 struct tc_u_knode *n = (struct tc_u_knode *)fh; 906 struct tc_u_hnode *ht_up, *ht_down; 907 struct nlattr *nest; 908 909 if (n == NULL) 910 return skb->len; 911 912 t->tcm_handle = n->handle; 913 914 nest = nla_nest_start(skb, TCA_OPTIONS); 915 if (nest == NULL) 916 goto nla_put_failure; 917 918 if (TC_U32_KEY(n->handle) == 0) { 919 struct tc_u_hnode *ht = (struct tc_u_hnode *)fh; 920 u32 divisor = ht->divisor + 1; 921 922 if (nla_put_u32(skb, TCA_U32_DIVISOR, divisor)) 923 goto nla_put_failure; 924 } else { 925 #ifdef CONFIG_CLS_U32_PERF 926 struct tc_u32_pcnt *gpf; 927 int cpu; 928 #endif 929 930 if (nla_put(skb, TCA_U32_SEL, 931 sizeof(n->sel) + n->sel.nkeys*sizeof(struct tc_u32_key), 932 &n->sel)) 933 goto nla_put_failure; 934 935 ht_up = rtnl_dereference(n->ht_up); 936 if (ht_up) { 937 u32 htid = n->handle & 0xFFFFF000; 938 if (nla_put_u32(skb, TCA_U32_HASH, htid)) 939 goto nla_put_failure; 940 } 941 if (n->res.classid && 942 nla_put_u32(skb, TCA_U32_CLASSID, n->res.classid)) 943 goto nla_put_failure; 944 945 ht_down = rtnl_dereference(n->ht_down); 946 if (ht_down && 947 nla_put_u32(skb, TCA_U32_LINK, ht_down->handle)) 948 goto nla_put_failure; 949 950 #ifdef CONFIG_CLS_U32_MARK 951 if ((n->val || n->mask)) { 952 struct tc_u32_mark mark = {.val = n->val, 953 .mask = n->mask, 954 .success = 0}; 955 int cpum; 956 957 for_each_possible_cpu(cpum) { 958 __u32 cnt = *per_cpu_ptr(n->pcpu_success, cpum); 959 960 mark.success += cnt; 961 } 962 963 if (nla_put(skb, TCA_U32_MARK, sizeof(mark), &mark)) 964 goto nla_put_failure; 965 } 966 #endif 967 968 if (tcf_exts_dump(skb, &n->exts) < 0) 969 goto nla_put_failure; 970 971 #ifdef CONFIG_NET_CLS_IND 972 if (n->ifindex) { 973 struct net_device *dev; 974 dev = __dev_get_by_index(net, n->ifindex); 975 if (dev && nla_put_string(skb, TCA_U32_INDEV, dev->name)) 976 goto nla_put_failure; 977 } 978 #endif 979 #ifdef CONFIG_CLS_U32_PERF 980 gpf = kzalloc(sizeof(struct tc_u32_pcnt) + 981 n->sel.nkeys * sizeof(u64), 982 GFP_KERNEL); 983 if (!gpf) 984 goto nla_put_failure; 985 986 for_each_possible_cpu(cpu) { 987 int i; 988 struct tc_u32_pcnt *pf = per_cpu_ptr(n->pf, cpu); 989 990 gpf->rcnt += pf->rcnt; 991 gpf->rhit += pf->rhit; 992 for (i = 0; i < n->sel.nkeys; i++) 993 gpf->kcnts[i] += pf->kcnts[i]; 994 } 995 996 if (nla_put(skb, TCA_U32_PCNT, 997 sizeof(struct tc_u32_pcnt) + n->sel.nkeys*sizeof(u64), 998 gpf)) { 999 kfree(gpf); 1000 goto nla_put_failure; 1001 } 1002 kfree(gpf); 1003 #endif 1004 } 1005 1006 nla_nest_end(skb, nest); 1007 1008 if (TC_U32_KEY(n->handle)) 1009 if (tcf_exts_dump_stats(skb, &n->exts) < 0) 1010 goto nla_put_failure; 1011 return skb->len; 1012 1013 nla_put_failure: 1014 nla_nest_cancel(skb, nest); 1015 return -1; 1016 } 1017 1018 static struct tcf_proto_ops cls_u32_ops __read_mostly = { 1019 .kind = "u32", 1020 .classify = u32_classify, 1021 .init = u32_init, 1022 .destroy = u32_destroy, 1023 .get = u32_get, 1024 .put = u32_put, 1025 .change = u32_change, 1026 .delete = u32_delete, 1027 .walk = u32_walk, 1028 .dump = u32_dump, 1029 .owner = THIS_MODULE, 1030 }; 1031 1032 static int __init init_u32(void) 1033 { 1034 pr_info("u32 classifier\n"); 1035 #ifdef CONFIG_CLS_U32_PERF 1036 pr_info(" Performance counters on\n"); 1037 #endif 1038 #ifdef CONFIG_NET_CLS_IND 1039 pr_info(" input device check on\n"); 1040 #endif 1041 #ifdef CONFIG_NET_CLS_ACT 1042 pr_info(" Actions configured\n"); 1043 #endif 1044 return register_tcf_proto_ops(&cls_u32_ops); 1045 } 1046 1047 static void __exit exit_u32(void) 1048 { 1049 unregister_tcf_proto_ops(&cls_u32_ops); 1050 } 1051 1052 module_init(init_u32) 1053 module_exit(exit_u32) 1054 MODULE_LICENSE("GPL"); 1055