1 /* 2 * net/sched/cls_u32.c Ugly (or Universal) 32bit key Packet Classifier. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 10 * 11 * The filters are packed to hash tables of key nodes 12 * with a set of 32bit key/mask pairs at every node. 13 * Nodes reference next level hash tables etc. 14 * 15 * This scheme is the best universal classifier I managed to 16 * invent; it is not super-fast, but it is not slow (provided you 17 * program it correctly), and general enough. And its relative 18 * speed grows as the number of rules becomes larger. 19 * 20 * It seems that it represents the best middle point between 21 * speed and manageability both by human and by machine. 22 * 23 * It is especially useful for link sharing combined with QoS; 24 * pure RSVP doesn't need such a general approach and can use 25 * much simpler (and faster) schemes, sort of cls_rsvp.c. 26 * 27 * JHS: We should remove the CONFIG_NET_CLS_IND from here 28 * eventually when the meta match extension is made available 29 * 30 * nfmark match added by Catalin(ux aka Dino) BOIE <catab at umbrella.ro> 31 */ 32 33 #include <linux/module.h> 34 #include <linux/slab.h> 35 #include <linux/types.h> 36 #include <linux/kernel.h> 37 #include <linux/string.h> 38 #include <linux/errno.h> 39 #include <linux/percpu.h> 40 #include <linux/rtnetlink.h> 41 #include <linux/skbuff.h> 42 #include <linux/bitmap.h> 43 #include <linux/netdevice.h> 44 #include <linux/hash.h> 45 #include <net/netlink.h> 46 #include <net/act_api.h> 47 #include <net/pkt_cls.h> 48 #include <linux/netdevice.h> 49 50 struct tc_u_knode { 51 struct tc_u_knode __rcu *next; 52 u32 handle; 53 struct tc_u_hnode __rcu *ht_up; 54 struct tcf_exts exts; 55 #ifdef CONFIG_NET_CLS_IND 56 int ifindex; 57 #endif 58 u8 fshift; 59 struct tcf_result res; 60 struct tc_u_hnode __rcu *ht_down; 61 #ifdef CONFIG_CLS_U32_PERF 62 struct tc_u32_pcnt __percpu *pf; 63 #endif 64 u32 flags; 65 #ifdef CONFIG_CLS_U32_MARK 66 u32 val; 67 u32 mask; 68 u32 __percpu *pcpu_success; 69 #endif 70 struct tcf_proto *tp; 71 struct rcu_head rcu; 72 /* The 'sel' field MUST be the last field in structure to allow for 73 * tc_u32_keys allocated at end of structure. 74 */ 75 struct tc_u32_sel sel; 76 }; 77 78 struct tc_u_hnode { 79 struct tc_u_hnode __rcu *next; 80 u32 handle; 81 u32 prio; 82 struct tc_u_common *tp_c; 83 int refcnt; 84 unsigned int divisor; 85 struct rcu_head rcu; 86 /* The 'ht' field MUST be the last field in structure to allow for 87 * more entries allocated at end of structure. 88 */ 89 struct tc_u_knode __rcu *ht[1]; 90 }; 91 92 struct tc_u_common { 93 struct tc_u_hnode __rcu *hlist; 94 struct Qdisc *q; 95 int refcnt; 96 u32 hgenerator; 97 struct hlist_node hnode; 98 struct rcu_head rcu; 99 }; 100 101 static inline unsigned int u32_hash_fold(__be32 key, 102 const struct tc_u32_sel *sel, 103 u8 fshift) 104 { 105 unsigned int h = ntohl(key & sel->hmask) >> fshift; 106 107 return h; 108 } 109 110 static int u32_classify(struct sk_buff *skb, const struct tcf_proto *tp, 111 struct tcf_result *res) 112 { 113 struct { 114 struct tc_u_knode *knode; 115 unsigned int off; 116 } stack[TC_U32_MAXDEPTH]; 117 118 struct tc_u_hnode *ht = rcu_dereference_bh(tp->root); 119 unsigned int off = skb_network_offset(skb); 120 struct tc_u_knode *n; 121 int sdepth = 0; 122 int off2 = 0; 123 int sel = 0; 124 #ifdef CONFIG_CLS_U32_PERF 125 int j; 126 #endif 127 int i, r; 128 129 next_ht: 130 n = rcu_dereference_bh(ht->ht[sel]); 131 132 next_knode: 133 if (n) { 134 struct tc_u32_key *key = n->sel.keys; 135 136 #ifdef CONFIG_CLS_U32_PERF 137 __this_cpu_inc(n->pf->rcnt); 138 j = 0; 139 #endif 140 141 if (tc_skip_sw(n->flags)) { 142 n = rcu_dereference_bh(n->next); 143 goto next_knode; 144 } 145 146 #ifdef CONFIG_CLS_U32_MARK 147 if ((skb->mark & n->mask) != n->val) { 148 n = rcu_dereference_bh(n->next); 149 goto next_knode; 150 } else { 151 __this_cpu_inc(*n->pcpu_success); 152 } 153 #endif 154 155 for (i = n->sel.nkeys; i > 0; i--, key++) { 156 int toff = off + key->off + (off2 & key->offmask); 157 __be32 *data, hdata; 158 159 if (skb_headroom(skb) + toff > INT_MAX) 160 goto out; 161 162 data = skb_header_pointer(skb, toff, 4, &hdata); 163 if (!data) 164 goto out; 165 if ((*data ^ key->val) & key->mask) { 166 n = rcu_dereference_bh(n->next); 167 goto next_knode; 168 } 169 #ifdef CONFIG_CLS_U32_PERF 170 __this_cpu_inc(n->pf->kcnts[j]); 171 j++; 172 #endif 173 } 174 175 ht = rcu_dereference_bh(n->ht_down); 176 if (!ht) { 177 check_terminal: 178 if (n->sel.flags & TC_U32_TERMINAL) { 179 180 *res = n->res; 181 #ifdef CONFIG_NET_CLS_IND 182 if (!tcf_match_indev(skb, n->ifindex)) { 183 n = rcu_dereference_bh(n->next); 184 goto next_knode; 185 } 186 #endif 187 #ifdef CONFIG_CLS_U32_PERF 188 __this_cpu_inc(n->pf->rhit); 189 #endif 190 r = tcf_exts_exec(skb, &n->exts, res); 191 if (r < 0) { 192 n = rcu_dereference_bh(n->next); 193 goto next_knode; 194 } 195 196 return r; 197 } 198 n = rcu_dereference_bh(n->next); 199 goto next_knode; 200 } 201 202 /* PUSH */ 203 if (sdepth >= TC_U32_MAXDEPTH) 204 goto deadloop; 205 stack[sdepth].knode = n; 206 stack[sdepth].off = off; 207 sdepth++; 208 209 ht = rcu_dereference_bh(n->ht_down); 210 sel = 0; 211 if (ht->divisor) { 212 __be32 *data, hdata; 213 214 data = skb_header_pointer(skb, off + n->sel.hoff, 4, 215 &hdata); 216 if (!data) 217 goto out; 218 sel = ht->divisor & u32_hash_fold(*data, &n->sel, 219 n->fshift); 220 } 221 if (!(n->sel.flags & (TC_U32_VAROFFSET | TC_U32_OFFSET | TC_U32_EAT))) 222 goto next_ht; 223 224 if (n->sel.flags & (TC_U32_OFFSET | TC_U32_VAROFFSET)) { 225 off2 = n->sel.off + 3; 226 if (n->sel.flags & TC_U32_VAROFFSET) { 227 __be16 *data, hdata; 228 229 data = skb_header_pointer(skb, 230 off + n->sel.offoff, 231 2, &hdata); 232 if (!data) 233 goto out; 234 off2 += ntohs(n->sel.offmask & *data) >> 235 n->sel.offshift; 236 } 237 off2 &= ~3; 238 } 239 if (n->sel.flags & TC_U32_EAT) { 240 off += off2; 241 off2 = 0; 242 } 243 244 if (off < skb->len) 245 goto next_ht; 246 } 247 248 /* POP */ 249 if (sdepth--) { 250 n = stack[sdepth].knode; 251 ht = rcu_dereference_bh(n->ht_up); 252 off = stack[sdepth].off; 253 goto check_terminal; 254 } 255 out: 256 return -1; 257 258 deadloop: 259 net_warn_ratelimited("cls_u32: dead loop\n"); 260 return -1; 261 } 262 263 static struct tc_u_hnode *u32_lookup_ht(struct tc_u_common *tp_c, u32 handle) 264 { 265 struct tc_u_hnode *ht; 266 267 for (ht = rtnl_dereference(tp_c->hlist); 268 ht; 269 ht = rtnl_dereference(ht->next)) 270 if (ht->handle == handle) 271 break; 272 273 return ht; 274 } 275 276 static struct tc_u_knode *u32_lookup_key(struct tc_u_hnode *ht, u32 handle) 277 { 278 unsigned int sel; 279 struct tc_u_knode *n = NULL; 280 281 sel = TC_U32_HASH(handle); 282 if (sel > ht->divisor) 283 goto out; 284 285 for (n = rtnl_dereference(ht->ht[sel]); 286 n; 287 n = rtnl_dereference(n->next)) 288 if (n->handle == handle) 289 break; 290 out: 291 return n; 292 } 293 294 295 static void *u32_get(struct tcf_proto *tp, u32 handle) 296 { 297 struct tc_u_hnode *ht; 298 struct tc_u_common *tp_c = tp->data; 299 300 if (TC_U32_HTID(handle) == TC_U32_ROOT) 301 ht = rtnl_dereference(tp->root); 302 else 303 ht = u32_lookup_ht(tp_c, TC_U32_HTID(handle)); 304 305 if (!ht) 306 return NULL; 307 308 if (TC_U32_KEY(handle) == 0) 309 return ht; 310 311 return u32_lookup_key(ht, handle); 312 } 313 314 static u32 gen_new_htid(struct tc_u_common *tp_c) 315 { 316 int i = 0x800; 317 318 /* hgenerator only used inside rtnl lock it is safe to increment 319 * without read _copy_ update semantics 320 */ 321 do { 322 if (++tp_c->hgenerator == 0x7FF) 323 tp_c->hgenerator = 1; 324 } while (--i > 0 && u32_lookup_ht(tp_c, (tp_c->hgenerator|0x800)<<20)); 325 326 return i > 0 ? (tp_c->hgenerator|0x800)<<20 : 0; 327 } 328 329 static struct hlist_head *tc_u_common_hash; 330 331 #define U32_HASH_SHIFT 10 332 #define U32_HASH_SIZE (1 << U32_HASH_SHIFT) 333 334 static unsigned int tc_u_hash(const struct tcf_proto *tp) 335 { 336 struct net_device *dev = tp->q->dev_queue->dev; 337 u32 qhandle = tp->q->handle; 338 int ifindex = dev->ifindex; 339 340 return hash_64((u64)ifindex << 32 | qhandle, U32_HASH_SHIFT); 341 } 342 343 static struct tc_u_common *tc_u_common_find(const struct tcf_proto *tp) 344 { 345 struct tc_u_common *tc; 346 unsigned int h; 347 348 h = tc_u_hash(tp); 349 hlist_for_each_entry(tc, &tc_u_common_hash[h], hnode) { 350 if (tc->q == tp->q) 351 return tc; 352 } 353 return NULL; 354 } 355 356 static int u32_init(struct tcf_proto *tp) 357 { 358 struct tc_u_hnode *root_ht; 359 struct tc_u_common *tp_c; 360 unsigned int h; 361 362 tp_c = tc_u_common_find(tp); 363 364 root_ht = kzalloc(sizeof(*root_ht), GFP_KERNEL); 365 if (root_ht == NULL) 366 return -ENOBUFS; 367 368 root_ht->refcnt++; 369 root_ht->handle = tp_c ? gen_new_htid(tp_c) : 0x80000000; 370 root_ht->prio = tp->prio; 371 372 if (tp_c == NULL) { 373 tp_c = kzalloc(sizeof(*tp_c), GFP_KERNEL); 374 if (tp_c == NULL) { 375 kfree(root_ht); 376 return -ENOBUFS; 377 } 378 tp_c->q = tp->q; 379 INIT_HLIST_NODE(&tp_c->hnode); 380 381 h = tc_u_hash(tp); 382 hlist_add_head(&tp_c->hnode, &tc_u_common_hash[h]); 383 } 384 385 tp_c->refcnt++; 386 RCU_INIT_POINTER(root_ht->next, tp_c->hlist); 387 rcu_assign_pointer(tp_c->hlist, root_ht); 388 root_ht->tp_c = tp_c; 389 390 rcu_assign_pointer(tp->root, root_ht); 391 tp->data = tp_c; 392 return 0; 393 } 394 395 static int u32_destroy_key(struct tcf_proto *tp, struct tc_u_knode *n, 396 bool free_pf) 397 { 398 tcf_exts_destroy(&n->exts); 399 if (n->ht_down) 400 n->ht_down->refcnt--; 401 #ifdef CONFIG_CLS_U32_PERF 402 if (free_pf) 403 free_percpu(n->pf); 404 #endif 405 #ifdef CONFIG_CLS_U32_MARK 406 if (free_pf) 407 free_percpu(n->pcpu_success); 408 #endif 409 kfree(n); 410 return 0; 411 } 412 413 /* u32_delete_key_rcu should be called when free'ing a copied 414 * version of a tc_u_knode obtained from u32_init_knode(). When 415 * copies are obtained from u32_init_knode() the statistics are 416 * shared between the old and new copies to allow readers to 417 * continue to update the statistics during the copy. To support 418 * this the u32_delete_key_rcu variant does not free the percpu 419 * statistics. 420 */ 421 static void u32_delete_key_rcu(struct rcu_head *rcu) 422 { 423 struct tc_u_knode *key = container_of(rcu, struct tc_u_knode, rcu); 424 425 u32_destroy_key(key->tp, key, false); 426 } 427 428 /* u32_delete_key_freepf_rcu is the rcu callback variant 429 * that free's the entire structure including the statistics 430 * percpu variables. Only use this if the key is not a copy 431 * returned by u32_init_knode(). See u32_delete_key_rcu() 432 * for the variant that should be used with keys return from 433 * u32_init_knode() 434 */ 435 static void u32_delete_key_freepf_rcu(struct rcu_head *rcu) 436 { 437 struct tc_u_knode *key = container_of(rcu, struct tc_u_knode, rcu); 438 439 u32_destroy_key(key->tp, key, true); 440 } 441 442 static int u32_delete_key(struct tcf_proto *tp, struct tc_u_knode *key) 443 { 444 struct tc_u_knode __rcu **kp; 445 struct tc_u_knode *pkp; 446 struct tc_u_hnode *ht = rtnl_dereference(key->ht_up); 447 448 if (ht) { 449 kp = &ht->ht[TC_U32_HASH(key->handle)]; 450 for (pkp = rtnl_dereference(*kp); pkp; 451 kp = &pkp->next, pkp = rtnl_dereference(*kp)) { 452 if (pkp == key) { 453 RCU_INIT_POINTER(*kp, key->next); 454 455 tcf_unbind_filter(tp, &key->res); 456 call_rcu(&key->rcu, u32_delete_key_freepf_rcu); 457 return 0; 458 } 459 } 460 } 461 WARN_ON(1); 462 return 0; 463 } 464 465 static void u32_remove_hw_knode(struct tcf_proto *tp, u32 handle) 466 { 467 struct net_device *dev = tp->q->dev_queue->dev; 468 struct tc_cls_u32_offload cls_u32 = {}; 469 470 if (!tc_should_offload(dev, 0)) 471 return; 472 473 tc_cls_common_offload_init(&cls_u32.common, tp); 474 cls_u32.command = TC_CLSU32_DELETE_KNODE; 475 cls_u32.knode.handle = handle; 476 477 dev->netdev_ops->ndo_setup_tc(dev, TC_SETUP_CLSU32, &cls_u32); 478 } 479 480 static int u32_replace_hw_hnode(struct tcf_proto *tp, struct tc_u_hnode *h, 481 u32 flags) 482 { 483 struct net_device *dev = tp->q->dev_queue->dev; 484 struct tc_cls_u32_offload cls_u32 = {}; 485 int err; 486 487 if (!tc_should_offload(dev, flags)) 488 return tc_skip_sw(flags) ? -EINVAL : 0; 489 490 tc_cls_common_offload_init(&cls_u32.common, tp); 491 cls_u32.command = TC_CLSU32_NEW_HNODE; 492 cls_u32.hnode.divisor = h->divisor; 493 cls_u32.hnode.handle = h->handle; 494 cls_u32.hnode.prio = h->prio; 495 496 err = dev->netdev_ops->ndo_setup_tc(dev, TC_SETUP_CLSU32, &cls_u32); 497 if (tc_skip_sw(flags)) 498 return err; 499 500 return 0; 501 } 502 503 static void u32_clear_hw_hnode(struct tcf_proto *tp, struct tc_u_hnode *h) 504 { 505 struct net_device *dev = tp->q->dev_queue->dev; 506 struct tc_cls_u32_offload cls_u32 = {}; 507 508 if (!tc_should_offload(dev, 0)) 509 return; 510 511 tc_cls_common_offload_init(&cls_u32.common, tp); 512 cls_u32.command = TC_CLSU32_DELETE_HNODE; 513 cls_u32.hnode.divisor = h->divisor; 514 cls_u32.hnode.handle = h->handle; 515 cls_u32.hnode.prio = h->prio; 516 517 dev->netdev_ops->ndo_setup_tc(dev, TC_SETUP_CLSU32, &cls_u32); 518 } 519 520 static int u32_replace_hw_knode(struct tcf_proto *tp, struct tc_u_knode *n, 521 u32 flags) 522 { 523 struct net_device *dev = tp->q->dev_queue->dev; 524 struct tc_cls_u32_offload cls_u32 = {}; 525 int err; 526 527 if (!tc_should_offload(dev, flags)) 528 return tc_skip_sw(flags) ? -EINVAL : 0; 529 530 tc_cls_common_offload_init(&cls_u32.common, tp); 531 cls_u32.command = TC_CLSU32_REPLACE_KNODE; 532 cls_u32.knode.handle = n->handle; 533 cls_u32.knode.fshift = n->fshift; 534 #ifdef CONFIG_CLS_U32_MARK 535 cls_u32.knode.val = n->val; 536 cls_u32.knode.mask = n->mask; 537 #else 538 cls_u32.knode.val = 0; 539 cls_u32.knode.mask = 0; 540 #endif 541 cls_u32.knode.sel = &n->sel; 542 cls_u32.knode.exts = &n->exts; 543 if (n->ht_down) 544 cls_u32.knode.link_handle = n->ht_down->handle; 545 546 err = dev->netdev_ops->ndo_setup_tc(dev, TC_SETUP_CLSU32, &cls_u32); 547 548 if (!err) 549 n->flags |= TCA_CLS_FLAGS_IN_HW; 550 551 if (tc_skip_sw(flags)) 552 return err; 553 554 return 0; 555 } 556 557 static void u32_clear_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht) 558 { 559 struct tc_u_knode *n; 560 unsigned int h; 561 562 for (h = 0; h <= ht->divisor; h++) { 563 while ((n = rtnl_dereference(ht->ht[h])) != NULL) { 564 RCU_INIT_POINTER(ht->ht[h], 565 rtnl_dereference(n->next)); 566 tcf_unbind_filter(tp, &n->res); 567 u32_remove_hw_knode(tp, n->handle); 568 call_rcu(&n->rcu, u32_delete_key_freepf_rcu); 569 } 570 } 571 } 572 573 static int u32_destroy_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht) 574 { 575 struct tc_u_common *tp_c = tp->data; 576 struct tc_u_hnode __rcu **hn; 577 struct tc_u_hnode *phn; 578 579 WARN_ON(ht->refcnt); 580 581 u32_clear_hnode(tp, ht); 582 583 hn = &tp_c->hlist; 584 for (phn = rtnl_dereference(*hn); 585 phn; 586 hn = &phn->next, phn = rtnl_dereference(*hn)) { 587 if (phn == ht) { 588 u32_clear_hw_hnode(tp, ht); 589 RCU_INIT_POINTER(*hn, ht->next); 590 kfree_rcu(ht, rcu); 591 return 0; 592 } 593 } 594 595 return -ENOENT; 596 } 597 598 static bool ht_empty(struct tc_u_hnode *ht) 599 { 600 unsigned int h; 601 602 for (h = 0; h <= ht->divisor; h++) 603 if (rcu_access_pointer(ht->ht[h])) 604 return false; 605 606 return true; 607 } 608 609 static void u32_destroy(struct tcf_proto *tp) 610 { 611 struct tc_u_common *tp_c = tp->data; 612 struct tc_u_hnode *root_ht = rtnl_dereference(tp->root); 613 614 WARN_ON(root_ht == NULL); 615 616 if (root_ht && --root_ht->refcnt == 0) 617 u32_destroy_hnode(tp, root_ht); 618 619 if (--tp_c->refcnt == 0) { 620 struct tc_u_hnode *ht; 621 622 hlist_del(&tp_c->hnode); 623 624 for (ht = rtnl_dereference(tp_c->hlist); 625 ht; 626 ht = rtnl_dereference(ht->next)) { 627 ht->refcnt--; 628 u32_clear_hnode(tp, ht); 629 } 630 631 while ((ht = rtnl_dereference(tp_c->hlist)) != NULL) { 632 RCU_INIT_POINTER(tp_c->hlist, ht->next); 633 kfree_rcu(ht, rcu); 634 } 635 636 kfree(tp_c); 637 } 638 639 tp->data = NULL; 640 } 641 642 static int u32_delete(struct tcf_proto *tp, void *arg, bool *last) 643 { 644 struct tc_u_hnode *ht = arg; 645 struct tc_u_hnode *root_ht = rtnl_dereference(tp->root); 646 struct tc_u_common *tp_c = tp->data; 647 int ret = 0; 648 649 if (ht == NULL) 650 goto out; 651 652 if (TC_U32_KEY(ht->handle)) { 653 u32_remove_hw_knode(tp, ht->handle); 654 ret = u32_delete_key(tp, (struct tc_u_knode *)ht); 655 goto out; 656 } 657 658 if (root_ht == ht) 659 return -EINVAL; 660 661 if (ht->refcnt == 1) { 662 ht->refcnt--; 663 u32_destroy_hnode(tp, ht); 664 } else { 665 return -EBUSY; 666 } 667 668 out: 669 *last = true; 670 if (root_ht) { 671 if (root_ht->refcnt > 1) { 672 *last = false; 673 goto ret; 674 } 675 if (root_ht->refcnt == 1) { 676 if (!ht_empty(root_ht)) { 677 *last = false; 678 goto ret; 679 } 680 } 681 } 682 683 if (tp_c->refcnt > 1) { 684 *last = false; 685 goto ret; 686 } 687 688 if (tp_c->refcnt == 1) { 689 struct tc_u_hnode *ht; 690 691 for (ht = rtnl_dereference(tp_c->hlist); 692 ht; 693 ht = rtnl_dereference(ht->next)) 694 if (!ht_empty(ht)) { 695 *last = false; 696 break; 697 } 698 } 699 700 ret: 701 return ret; 702 } 703 704 #define NR_U32_NODE (1<<12) 705 static u32 gen_new_kid(struct tc_u_hnode *ht, u32 handle) 706 { 707 struct tc_u_knode *n; 708 unsigned long i; 709 unsigned long *bitmap = kzalloc(BITS_TO_LONGS(NR_U32_NODE) * sizeof(unsigned long), 710 GFP_KERNEL); 711 if (!bitmap) 712 return handle | 0xFFF; 713 714 for (n = rtnl_dereference(ht->ht[TC_U32_HASH(handle)]); 715 n; 716 n = rtnl_dereference(n->next)) 717 set_bit(TC_U32_NODE(n->handle), bitmap); 718 719 i = find_next_zero_bit(bitmap, NR_U32_NODE, 0x800); 720 if (i >= NR_U32_NODE) 721 i = find_next_zero_bit(bitmap, NR_U32_NODE, 1); 722 723 kfree(bitmap); 724 return handle | (i >= NR_U32_NODE ? 0xFFF : i); 725 } 726 727 static const struct nla_policy u32_policy[TCA_U32_MAX + 1] = { 728 [TCA_U32_CLASSID] = { .type = NLA_U32 }, 729 [TCA_U32_HASH] = { .type = NLA_U32 }, 730 [TCA_U32_LINK] = { .type = NLA_U32 }, 731 [TCA_U32_DIVISOR] = { .type = NLA_U32 }, 732 [TCA_U32_SEL] = { .len = sizeof(struct tc_u32_sel) }, 733 [TCA_U32_INDEV] = { .type = NLA_STRING, .len = IFNAMSIZ }, 734 [TCA_U32_MARK] = { .len = sizeof(struct tc_u32_mark) }, 735 [TCA_U32_FLAGS] = { .type = NLA_U32 }, 736 }; 737 738 static int u32_set_parms(struct net *net, struct tcf_proto *tp, 739 unsigned long base, struct tc_u_hnode *ht, 740 struct tc_u_knode *n, struct nlattr **tb, 741 struct nlattr *est, bool ovr) 742 { 743 int err; 744 745 err = tcf_exts_validate(net, tp, tb, est, &n->exts, ovr); 746 if (err < 0) 747 return err; 748 749 if (tb[TCA_U32_LINK]) { 750 u32 handle = nla_get_u32(tb[TCA_U32_LINK]); 751 struct tc_u_hnode *ht_down = NULL, *ht_old; 752 753 if (TC_U32_KEY(handle)) 754 return -EINVAL; 755 756 if (handle) { 757 ht_down = u32_lookup_ht(ht->tp_c, handle); 758 759 if (ht_down == NULL) 760 return -EINVAL; 761 ht_down->refcnt++; 762 } 763 764 ht_old = rtnl_dereference(n->ht_down); 765 rcu_assign_pointer(n->ht_down, ht_down); 766 767 if (ht_old) 768 ht_old->refcnt--; 769 } 770 if (tb[TCA_U32_CLASSID]) { 771 n->res.classid = nla_get_u32(tb[TCA_U32_CLASSID]); 772 tcf_bind_filter(tp, &n->res, base); 773 } 774 775 #ifdef CONFIG_NET_CLS_IND 776 if (tb[TCA_U32_INDEV]) { 777 int ret; 778 ret = tcf_change_indev(net, tb[TCA_U32_INDEV]); 779 if (ret < 0) 780 return -EINVAL; 781 n->ifindex = ret; 782 } 783 #endif 784 return 0; 785 } 786 787 static void u32_replace_knode(struct tcf_proto *tp, struct tc_u_common *tp_c, 788 struct tc_u_knode *n) 789 { 790 struct tc_u_knode __rcu **ins; 791 struct tc_u_knode *pins; 792 struct tc_u_hnode *ht; 793 794 if (TC_U32_HTID(n->handle) == TC_U32_ROOT) 795 ht = rtnl_dereference(tp->root); 796 else 797 ht = u32_lookup_ht(tp_c, TC_U32_HTID(n->handle)); 798 799 ins = &ht->ht[TC_U32_HASH(n->handle)]; 800 801 /* The node must always exist for it to be replaced if this is not the 802 * case then something went very wrong elsewhere. 803 */ 804 for (pins = rtnl_dereference(*ins); ; 805 ins = &pins->next, pins = rtnl_dereference(*ins)) 806 if (pins->handle == n->handle) 807 break; 808 809 RCU_INIT_POINTER(n->next, pins->next); 810 rcu_assign_pointer(*ins, n); 811 } 812 813 static struct tc_u_knode *u32_init_knode(struct tcf_proto *tp, 814 struct tc_u_knode *n) 815 { 816 struct tc_u_knode *new; 817 struct tc_u32_sel *s = &n->sel; 818 819 new = kzalloc(sizeof(*n) + s->nkeys*sizeof(struct tc_u32_key), 820 GFP_KERNEL); 821 822 if (!new) 823 return NULL; 824 825 RCU_INIT_POINTER(new->next, n->next); 826 new->handle = n->handle; 827 RCU_INIT_POINTER(new->ht_up, n->ht_up); 828 829 #ifdef CONFIG_NET_CLS_IND 830 new->ifindex = n->ifindex; 831 #endif 832 new->fshift = n->fshift; 833 new->res = n->res; 834 new->flags = n->flags; 835 RCU_INIT_POINTER(new->ht_down, n->ht_down); 836 837 /* bump reference count as long as we hold pointer to structure */ 838 if (new->ht_down) 839 new->ht_down->refcnt++; 840 841 #ifdef CONFIG_CLS_U32_PERF 842 /* Statistics may be incremented by readers during update 843 * so we must keep them in tact. When the node is later destroyed 844 * a special destroy call must be made to not free the pf memory. 845 */ 846 new->pf = n->pf; 847 #endif 848 849 #ifdef CONFIG_CLS_U32_MARK 850 new->val = n->val; 851 new->mask = n->mask; 852 /* Similarly success statistics must be moved as pointers */ 853 new->pcpu_success = n->pcpu_success; 854 #endif 855 new->tp = tp; 856 memcpy(&new->sel, s, sizeof(*s) + s->nkeys*sizeof(struct tc_u32_key)); 857 858 if (tcf_exts_init(&new->exts, TCA_U32_ACT, TCA_U32_POLICE)) { 859 kfree(new); 860 return NULL; 861 } 862 863 return new; 864 } 865 866 static int u32_change(struct net *net, struct sk_buff *in_skb, 867 struct tcf_proto *tp, unsigned long base, u32 handle, 868 struct nlattr **tca, void **arg, bool ovr) 869 { 870 struct tc_u_common *tp_c = tp->data; 871 struct tc_u_hnode *ht; 872 struct tc_u_knode *n; 873 struct tc_u32_sel *s; 874 struct nlattr *opt = tca[TCA_OPTIONS]; 875 struct nlattr *tb[TCA_U32_MAX + 1]; 876 u32 htid, flags = 0; 877 int err; 878 #ifdef CONFIG_CLS_U32_PERF 879 size_t size; 880 #endif 881 882 if (opt == NULL) 883 return handle ? -EINVAL : 0; 884 885 err = nla_parse_nested(tb, TCA_U32_MAX, opt, u32_policy, NULL); 886 if (err < 0) 887 return err; 888 889 if (tb[TCA_U32_FLAGS]) { 890 flags = nla_get_u32(tb[TCA_U32_FLAGS]); 891 if (!tc_flags_valid(flags)) 892 return -EINVAL; 893 } 894 895 n = *arg; 896 if (n) { 897 struct tc_u_knode *new; 898 899 if (TC_U32_KEY(n->handle) == 0) 900 return -EINVAL; 901 902 if (n->flags != flags) 903 return -EINVAL; 904 905 new = u32_init_knode(tp, n); 906 if (!new) 907 return -ENOMEM; 908 909 err = u32_set_parms(net, tp, base, 910 rtnl_dereference(n->ht_up), new, tb, 911 tca[TCA_RATE], ovr); 912 913 if (err) { 914 u32_destroy_key(tp, new, false); 915 return err; 916 } 917 918 err = u32_replace_hw_knode(tp, new, flags); 919 if (err) { 920 u32_destroy_key(tp, new, false); 921 return err; 922 } 923 924 if (!tc_in_hw(new->flags)) 925 new->flags |= TCA_CLS_FLAGS_NOT_IN_HW; 926 927 u32_replace_knode(tp, tp_c, new); 928 tcf_unbind_filter(tp, &n->res); 929 call_rcu(&n->rcu, u32_delete_key_rcu); 930 return 0; 931 } 932 933 if (tb[TCA_U32_DIVISOR]) { 934 unsigned int divisor = nla_get_u32(tb[TCA_U32_DIVISOR]); 935 936 if (--divisor > 0x100) 937 return -EINVAL; 938 if (TC_U32_KEY(handle)) 939 return -EINVAL; 940 if (handle == 0) { 941 handle = gen_new_htid(tp->data); 942 if (handle == 0) 943 return -ENOMEM; 944 } 945 ht = kzalloc(sizeof(*ht) + divisor*sizeof(void *), GFP_KERNEL); 946 if (ht == NULL) 947 return -ENOBUFS; 948 ht->tp_c = tp_c; 949 ht->refcnt = 1; 950 ht->divisor = divisor; 951 ht->handle = handle; 952 ht->prio = tp->prio; 953 954 err = u32_replace_hw_hnode(tp, ht, flags); 955 if (err) { 956 kfree(ht); 957 return err; 958 } 959 960 RCU_INIT_POINTER(ht->next, tp_c->hlist); 961 rcu_assign_pointer(tp_c->hlist, ht); 962 *arg = ht; 963 964 return 0; 965 } 966 967 if (tb[TCA_U32_HASH]) { 968 htid = nla_get_u32(tb[TCA_U32_HASH]); 969 if (TC_U32_HTID(htid) == TC_U32_ROOT) { 970 ht = rtnl_dereference(tp->root); 971 htid = ht->handle; 972 } else { 973 ht = u32_lookup_ht(tp->data, TC_U32_HTID(htid)); 974 if (ht == NULL) 975 return -EINVAL; 976 } 977 } else { 978 ht = rtnl_dereference(tp->root); 979 htid = ht->handle; 980 } 981 982 if (ht->divisor < TC_U32_HASH(htid)) 983 return -EINVAL; 984 985 if (handle) { 986 if (TC_U32_HTID(handle) && TC_U32_HTID(handle^htid)) 987 return -EINVAL; 988 handle = htid | TC_U32_NODE(handle); 989 } else 990 handle = gen_new_kid(ht, htid); 991 992 if (tb[TCA_U32_SEL] == NULL) 993 return -EINVAL; 994 995 s = nla_data(tb[TCA_U32_SEL]); 996 997 n = kzalloc(sizeof(*n) + s->nkeys*sizeof(struct tc_u32_key), GFP_KERNEL); 998 if (n == NULL) 999 return -ENOBUFS; 1000 1001 #ifdef CONFIG_CLS_U32_PERF 1002 size = sizeof(struct tc_u32_pcnt) + s->nkeys * sizeof(u64); 1003 n->pf = __alloc_percpu(size, __alignof__(struct tc_u32_pcnt)); 1004 if (!n->pf) { 1005 kfree(n); 1006 return -ENOBUFS; 1007 } 1008 #endif 1009 1010 memcpy(&n->sel, s, sizeof(*s) + s->nkeys*sizeof(struct tc_u32_key)); 1011 RCU_INIT_POINTER(n->ht_up, ht); 1012 n->handle = handle; 1013 n->fshift = s->hmask ? ffs(ntohl(s->hmask)) - 1 : 0; 1014 n->flags = flags; 1015 n->tp = tp; 1016 1017 err = tcf_exts_init(&n->exts, TCA_U32_ACT, TCA_U32_POLICE); 1018 if (err < 0) 1019 goto errout; 1020 1021 #ifdef CONFIG_CLS_U32_MARK 1022 n->pcpu_success = alloc_percpu(u32); 1023 if (!n->pcpu_success) { 1024 err = -ENOMEM; 1025 goto errout; 1026 } 1027 1028 if (tb[TCA_U32_MARK]) { 1029 struct tc_u32_mark *mark; 1030 1031 mark = nla_data(tb[TCA_U32_MARK]); 1032 n->val = mark->val; 1033 n->mask = mark->mask; 1034 } 1035 #endif 1036 1037 err = u32_set_parms(net, tp, base, ht, n, tb, tca[TCA_RATE], ovr); 1038 if (err == 0) { 1039 struct tc_u_knode __rcu **ins; 1040 struct tc_u_knode *pins; 1041 1042 err = u32_replace_hw_knode(tp, n, flags); 1043 if (err) 1044 goto errhw; 1045 1046 if (!tc_in_hw(n->flags)) 1047 n->flags |= TCA_CLS_FLAGS_NOT_IN_HW; 1048 1049 ins = &ht->ht[TC_U32_HASH(handle)]; 1050 for (pins = rtnl_dereference(*ins); pins; 1051 ins = &pins->next, pins = rtnl_dereference(*ins)) 1052 if (TC_U32_NODE(handle) < TC_U32_NODE(pins->handle)) 1053 break; 1054 1055 RCU_INIT_POINTER(n->next, pins); 1056 rcu_assign_pointer(*ins, n); 1057 *arg = n; 1058 return 0; 1059 } 1060 1061 errhw: 1062 #ifdef CONFIG_CLS_U32_MARK 1063 free_percpu(n->pcpu_success); 1064 #endif 1065 1066 errout: 1067 tcf_exts_destroy(&n->exts); 1068 #ifdef CONFIG_CLS_U32_PERF 1069 free_percpu(n->pf); 1070 #endif 1071 kfree(n); 1072 return err; 1073 } 1074 1075 static void u32_walk(struct tcf_proto *tp, struct tcf_walker *arg) 1076 { 1077 struct tc_u_common *tp_c = tp->data; 1078 struct tc_u_hnode *ht; 1079 struct tc_u_knode *n; 1080 unsigned int h; 1081 1082 if (arg->stop) 1083 return; 1084 1085 for (ht = rtnl_dereference(tp_c->hlist); 1086 ht; 1087 ht = rtnl_dereference(ht->next)) { 1088 if (ht->prio != tp->prio) 1089 continue; 1090 if (arg->count >= arg->skip) { 1091 if (arg->fn(tp, ht, arg) < 0) { 1092 arg->stop = 1; 1093 return; 1094 } 1095 } 1096 arg->count++; 1097 for (h = 0; h <= ht->divisor; h++) { 1098 for (n = rtnl_dereference(ht->ht[h]); 1099 n; 1100 n = rtnl_dereference(n->next)) { 1101 if (arg->count < arg->skip) { 1102 arg->count++; 1103 continue; 1104 } 1105 if (arg->fn(tp, n, arg) < 0) { 1106 arg->stop = 1; 1107 return; 1108 } 1109 arg->count++; 1110 } 1111 } 1112 } 1113 } 1114 1115 static void u32_bind_class(void *fh, u32 classid, unsigned long cl) 1116 { 1117 struct tc_u_knode *n = fh; 1118 1119 if (n && n->res.classid == classid) 1120 n->res.class = cl; 1121 } 1122 1123 static int u32_dump(struct net *net, struct tcf_proto *tp, void *fh, 1124 struct sk_buff *skb, struct tcmsg *t) 1125 { 1126 struct tc_u_knode *n = fh; 1127 struct tc_u_hnode *ht_up, *ht_down; 1128 struct nlattr *nest; 1129 1130 if (n == NULL) 1131 return skb->len; 1132 1133 t->tcm_handle = n->handle; 1134 1135 nest = nla_nest_start(skb, TCA_OPTIONS); 1136 if (nest == NULL) 1137 goto nla_put_failure; 1138 1139 if (TC_U32_KEY(n->handle) == 0) { 1140 struct tc_u_hnode *ht = fh; 1141 u32 divisor = ht->divisor + 1; 1142 1143 if (nla_put_u32(skb, TCA_U32_DIVISOR, divisor)) 1144 goto nla_put_failure; 1145 } else { 1146 #ifdef CONFIG_CLS_U32_PERF 1147 struct tc_u32_pcnt *gpf; 1148 int cpu; 1149 #endif 1150 1151 if (nla_put(skb, TCA_U32_SEL, 1152 sizeof(n->sel) + n->sel.nkeys*sizeof(struct tc_u32_key), 1153 &n->sel)) 1154 goto nla_put_failure; 1155 1156 ht_up = rtnl_dereference(n->ht_up); 1157 if (ht_up) { 1158 u32 htid = n->handle & 0xFFFFF000; 1159 if (nla_put_u32(skb, TCA_U32_HASH, htid)) 1160 goto nla_put_failure; 1161 } 1162 if (n->res.classid && 1163 nla_put_u32(skb, TCA_U32_CLASSID, n->res.classid)) 1164 goto nla_put_failure; 1165 1166 ht_down = rtnl_dereference(n->ht_down); 1167 if (ht_down && 1168 nla_put_u32(skb, TCA_U32_LINK, ht_down->handle)) 1169 goto nla_put_failure; 1170 1171 if (n->flags && nla_put_u32(skb, TCA_U32_FLAGS, n->flags)) 1172 goto nla_put_failure; 1173 1174 #ifdef CONFIG_CLS_U32_MARK 1175 if ((n->val || n->mask)) { 1176 struct tc_u32_mark mark = {.val = n->val, 1177 .mask = n->mask, 1178 .success = 0}; 1179 int cpum; 1180 1181 for_each_possible_cpu(cpum) { 1182 __u32 cnt = *per_cpu_ptr(n->pcpu_success, cpum); 1183 1184 mark.success += cnt; 1185 } 1186 1187 if (nla_put(skb, TCA_U32_MARK, sizeof(mark), &mark)) 1188 goto nla_put_failure; 1189 } 1190 #endif 1191 1192 if (tcf_exts_dump(skb, &n->exts) < 0) 1193 goto nla_put_failure; 1194 1195 #ifdef CONFIG_NET_CLS_IND 1196 if (n->ifindex) { 1197 struct net_device *dev; 1198 dev = __dev_get_by_index(net, n->ifindex); 1199 if (dev && nla_put_string(skb, TCA_U32_INDEV, dev->name)) 1200 goto nla_put_failure; 1201 } 1202 #endif 1203 #ifdef CONFIG_CLS_U32_PERF 1204 gpf = kzalloc(sizeof(struct tc_u32_pcnt) + 1205 n->sel.nkeys * sizeof(u64), 1206 GFP_KERNEL); 1207 if (!gpf) 1208 goto nla_put_failure; 1209 1210 for_each_possible_cpu(cpu) { 1211 int i; 1212 struct tc_u32_pcnt *pf = per_cpu_ptr(n->pf, cpu); 1213 1214 gpf->rcnt += pf->rcnt; 1215 gpf->rhit += pf->rhit; 1216 for (i = 0; i < n->sel.nkeys; i++) 1217 gpf->kcnts[i] += pf->kcnts[i]; 1218 } 1219 1220 if (nla_put_64bit(skb, TCA_U32_PCNT, 1221 sizeof(struct tc_u32_pcnt) + 1222 n->sel.nkeys * sizeof(u64), 1223 gpf, TCA_U32_PAD)) { 1224 kfree(gpf); 1225 goto nla_put_failure; 1226 } 1227 kfree(gpf); 1228 #endif 1229 } 1230 1231 nla_nest_end(skb, nest); 1232 1233 if (TC_U32_KEY(n->handle)) 1234 if (tcf_exts_dump_stats(skb, &n->exts) < 0) 1235 goto nla_put_failure; 1236 return skb->len; 1237 1238 nla_put_failure: 1239 nla_nest_cancel(skb, nest); 1240 return -1; 1241 } 1242 1243 static struct tcf_proto_ops cls_u32_ops __read_mostly = { 1244 .kind = "u32", 1245 .classify = u32_classify, 1246 .init = u32_init, 1247 .destroy = u32_destroy, 1248 .get = u32_get, 1249 .change = u32_change, 1250 .delete = u32_delete, 1251 .walk = u32_walk, 1252 .dump = u32_dump, 1253 .bind_class = u32_bind_class, 1254 .owner = THIS_MODULE, 1255 }; 1256 1257 static int __init init_u32(void) 1258 { 1259 int i, ret; 1260 1261 pr_info("u32 classifier\n"); 1262 #ifdef CONFIG_CLS_U32_PERF 1263 pr_info(" Performance counters on\n"); 1264 #endif 1265 #ifdef CONFIG_NET_CLS_IND 1266 pr_info(" input device check on\n"); 1267 #endif 1268 #ifdef CONFIG_NET_CLS_ACT 1269 pr_info(" Actions configured\n"); 1270 #endif 1271 tc_u_common_hash = kvmalloc_array(U32_HASH_SIZE, 1272 sizeof(struct hlist_head), 1273 GFP_KERNEL); 1274 if (!tc_u_common_hash) 1275 return -ENOMEM; 1276 1277 for (i = 0; i < U32_HASH_SIZE; i++) 1278 INIT_HLIST_HEAD(&tc_u_common_hash[i]); 1279 1280 ret = register_tcf_proto_ops(&cls_u32_ops); 1281 if (ret) 1282 kvfree(tc_u_common_hash); 1283 return ret; 1284 } 1285 1286 static void __exit exit_u32(void) 1287 { 1288 unregister_tcf_proto_ops(&cls_u32_ops); 1289 kvfree(tc_u_common_hash); 1290 } 1291 1292 module_init(init_u32) 1293 module_exit(exit_u32) 1294 MODULE_LICENSE("GPL"); 1295