1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * net/sched/cls_u32.c Ugly (or Universal) 32bit key Packet Classifier. 4 * 5 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 6 * 7 * The filters are packed to hash tables of key nodes 8 * with a set of 32bit key/mask pairs at every node. 9 * Nodes reference next level hash tables etc. 10 * 11 * This scheme is the best universal classifier I managed to 12 * invent; it is not super-fast, but it is not slow (provided you 13 * program it correctly), and general enough. And its relative 14 * speed grows as the number of rules becomes larger. 15 * 16 * It seems that it represents the best middle point between 17 * speed and manageability both by human and by machine. 18 * 19 * It is especially useful for link sharing combined with QoS; 20 * pure RSVP doesn't need such a general approach and can use 21 * much simpler (and faster) schemes, sort of cls_rsvp.c. 22 * 23 * nfmark match added by Catalin(ux aka Dino) BOIE <catab at umbrella.ro> 24 */ 25 26 #include <linux/module.h> 27 #include <linux/slab.h> 28 #include <linux/types.h> 29 #include <linux/kernel.h> 30 #include <linux/string.h> 31 #include <linux/errno.h> 32 #include <linux/percpu.h> 33 #include <linux/rtnetlink.h> 34 #include <linux/skbuff.h> 35 #include <linux/bitmap.h> 36 #include <linux/netdevice.h> 37 #include <linux/hash.h> 38 #include <net/netlink.h> 39 #include <net/act_api.h> 40 #include <net/pkt_cls.h> 41 #include <linux/idr.h> 42 #include <net/tc_wrapper.h> 43 44 struct tc_u_knode { 45 struct tc_u_knode __rcu *next; 46 u32 handle; 47 struct tc_u_hnode __rcu *ht_up; 48 struct tcf_exts exts; 49 int ifindex; 50 u8 fshift; 51 struct tcf_result res; 52 struct tc_u_hnode __rcu *ht_down; 53 #ifdef CONFIG_CLS_U32_PERF 54 struct tc_u32_pcnt __percpu *pf; 55 #endif 56 u32 flags; 57 unsigned int in_hw_count; 58 #ifdef CONFIG_CLS_U32_MARK 59 u32 val; 60 u32 mask; 61 u32 __percpu *pcpu_success; 62 #endif 63 struct rcu_work rwork; 64 /* The 'sel' field MUST be the last field in structure to allow for 65 * tc_u32_keys allocated at end of structure. 66 */ 67 struct tc_u32_sel sel; 68 }; 69 70 struct tc_u_hnode { 71 struct tc_u_hnode __rcu *next; 72 u32 handle; 73 u32 prio; 74 int refcnt; 75 unsigned int divisor; 76 struct idr handle_idr; 77 bool is_root; 78 struct rcu_head rcu; 79 u32 flags; 80 /* The 'ht' field MUST be the last field in structure to allow for 81 * more entries allocated at end of structure. 82 */ 83 struct tc_u_knode __rcu *ht[]; 84 }; 85 86 struct tc_u_common { 87 struct tc_u_hnode __rcu *hlist; 88 void *ptr; 89 int refcnt; 90 struct idr handle_idr; 91 struct hlist_node hnode; 92 long knodes; 93 }; 94 95 static inline unsigned int u32_hash_fold(__be32 key, 96 const struct tc_u32_sel *sel, 97 u8 fshift) 98 { 99 unsigned int h = ntohl(key & sel->hmask) >> fshift; 100 101 return h; 102 } 103 104 TC_INDIRECT_SCOPE int u32_classify(struct sk_buff *skb, 105 const struct tcf_proto *tp, 106 struct tcf_result *res) 107 { 108 struct { 109 struct tc_u_knode *knode; 110 unsigned int off; 111 } stack[TC_U32_MAXDEPTH]; 112 113 struct tc_u_hnode *ht = rcu_dereference_bh(tp->root); 114 unsigned int off = skb_network_offset(skb); 115 struct tc_u_knode *n; 116 int sdepth = 0; 117 int off2 = 0; 118 int sel = 0; 119 #ifdef CONFIG_CLS_U32_PERF 120 int j; 121 #endif 122 int i, r; 123 124 next_ht: 125 n = rcu_dereference_bh(ht->ht[sel]); 126 127 next_knode: 128 if (n) { 129 struct tc_u32_key *key = n->sel.keys; 130 131 #ifdef CONFIG_CLS_U32_PERF 132 __this_cpu_inc(n->pf->rcnt); 133 j = 0; 134 #endif 135 136 if (tc_skip_sw(n->flags)) { 137 n = rcu_dereference_bh(n->next); 138 goto next_knode; 139 } 140 141 #ifdef CONFIG_CLS_U32_MARK 142 if ((skb->mark & n->mask) != n->val) { 143 n = rcu_dereference_bh(n->next); 144 goto next_knode; 145 } else { 146 __this_cpu_inc(*n->pcpu_success); 147 } 148 #endif 149 150 for (i = n->sel.nkeys; i > 0; i--, key++) { 151 int toff = off + key->off + (off2 & key->offmask); 152 __be32 *data, hdata; 153 154 if (skb_headroom(skb) + toff > INT_MAX) 155 goto out; 156 157 data = skb_header_pointer(skb, toff, 4, &hdata); 158 if (!data) 159 goto out; 160 if ((*data ^ key->val) & key->mask) { 161 n = rcu_dereference_bh(n->next); 162 goto next_knode; 163 } 164 #ifdef CONFIG_CLS_U32_PERF 165 __this_cpu_inc(n->pf->kcnts[j]); 166 j++; 167 #endif 168 } 169 170 ht = rcu_dereference_bh(n->ht_down); 171 if (!ht) { 172 check_terminal: 173 if (n->sel.flags & TC_U32_TERMINAL) { 174 175 *res = n->res; 176 if (!tcf_match_indev(skb, n->ifindex)) { 177 n = rcu_dereference_bh(n->next); 178 goto next_knode; 179 } 180 #ifdef CONFIG_CLS_U32_PERF 181 __this_cpu_inc(n->pf->rhit); 182 #endif 183 r = tcf_exts_exec(skb, &n->exts, res); 184 if (r < 0) { 185 n = rcu_dereference_bh(n->next); 186 goto next_knode; 187 } 188 189 return r; 190 } 191 n = rcu_dereference_bh(n->next); 192 goto next_knode; 193 } 194 195 /* PUSH */ 196 if (sdepth >= TC_U32_MAXDEPTH) 197 goto deadloop; 198 stack[sdepth].knode = n; 199 stack[sdepth].off = off; 200 sdepth++; 201 202 ht = rcu_dereference_bh(n->ht_down); 203 sel = 0; 204 if (ht->divisor) { 205 __be32 *data, hdata; 206 207 data = skb_header_pointer(skb, off + n->sel.hoff, 4, 208 &hdata); 209 if (!data) 210 goto out; 211 sel = ht->divisor & u32_hash_fold(*data, &n->sel, 212 n->fshift); 213 } 214 if (!(n->sel.flags & (TC_U32_VAROFFSET | TC_U32_OFFSET | TC_U32_EAT))) 215 goto next_ht; 216 217 if (n->sel.flags & (TC_U32_OFFSET | TC_U32_VAROFFSET)) { 218 off2 = n->sel.off + 3; 219 if (n->sel.flags & TC_U32_VAROFFSET) { 220 __be16 *data, hdata; 221 222 data = skb_header_pointer(skb, 223 off + n->sel.offoff, 224 2, &hdata); 225 if (!data) 226 goto out; 227 off2 += ntohs(n->sel.offmask & *data) >> 228 n->sel.offshift; 229 } 230 off2 &= ~3; 231 } 232 if (n->sel.flags & TC_U32_EAT) { 233 off += off2; 234 off2 = 0; 235 } 236 237 if (off < skb->len) 238 goto next_ht; 239 } 240 241 /* POP */ 242 if (sdepth--) { 243 n = stack[sdepth].knode; 244 ht = rcu_dereference_bh(n->ht_up); 245 off = stack[sdepth].off; 246 goto check_terminal; 247 } 248 out: 249 return -1; 250 251 deadloop: 252 net_warn_ratelimited("cls_u32: dead loop\n"); 253 return -1; 254 } 255 256 static struct tc_u_hnode *u32_lookup_ht(struct tc_u_common *tp_c, u32 handle) 257 { 258 struct tc_u_hnode *ht; 259 260 for (ht = rtnl_dereference(tp_c->hlist); 261 ht; 262 ht = rtnl_dereference(ht->next)) 263 if (ht->handle == handle) 264 break; 265 266 return ht; 267 } 268 269 static struct tc_u_knode *u32_lookup_key(struct tc_u_hnode *ht, u32 handle) 270 { 271 unsigned int sel; 272 struct tc_u_knode *n = NULL; 273 274 sel = TC_U32_HASH(handle); 275 if (sel > ht->divisor) 276 goto out; 277 278 for (n = rtnl_dereference(ht->ht[sel]); 279 n; 280 n = rtnl_dereference(n->next)) 281 if (n->handle == handle) 282 break; 283 out: 284 return n; 285 } 286 287 288 static void *u32_get(struct tcf_proto *tp, u32 handle) 289 { 290 struct tc_u_hnode *ht; 291 struct tc_u_common *tp_c = tp->data; 292 293 if (TC_U32_HTID(handle) == TC_U32_ROOT) 294 ht = rtnl_dereference(tp->root); 295 else 296 ht = u32_lookup_ht(tp_c, TC_U32_HTID(handle)); 297 298 if (!ht) 299 return NULL; 300 301 if (TC_U32_KEY(handle) == 0) 302 return ht; 303 304 return u32_lookup_key(ht, handle); 305 } 306 307 /* Protected by rtnl lock */ 308 static u32 gen_new_htid(struct tc_u_common *tp_c, struct tc_u_hnode *ptr) 309 { 310 int id = idr_alloc_cyclic(&tp_c->handle_idr, ptr, 1, 0x7FF, GFP_KERNEL); 311 if (id < 0) 312 return 0; 313 return (id | 0x800U) << 20; 314 } 315 316 static struct hlist_head *tc_u_common_hash; 317 318 #define U32_HASH_SHIFT 10 319 #define U32_HASH_SIZE (1 << U32_HASH_SHIFT) 320 321 static void *tc_u_common_ptr(const struct tcf_proto *tp) 322 { 323 struct tcf_block *block = tp->chain->block; 324 325 /* The block sharing is currently supported only 326 * for classless qdiscs. In that case we use block 327 * for tc_u_common identification. In case the 328 * block is not shared, block->q is a valid pointer 329 * and we can use that. That works for classful qdiscs. 330 */ 331 if (tcf_block_shared(block)) 332 return block; 333 else 334 return block->q; 335 } 336 337 static struct hlist_head *tc_u_hash(void *key) 338 { 339 return tc_u_common_hash + hash_ptr(key, U32_HASH_SHIFT); 340 } 341 342 static struct tc_u_common *tc_u_common_find(void *key) 343 { 344 struct tc_u_common *tc; 345 hlist_for_each_entry(tc, tc_u_hash(key), hnode) { 346 if (tc->ptr == key) 347 return tc; 348 } 349 return NULL; 350 } 351 352 static int u32_init(struct tcf_proto *tp) 353 { 354 struct tc_u_hnode *root_ht; 355 void *key = tc_u_common_ptr(tp); 356 struct tc_u_common *tp_c = tc_u_common_find(key); 357 358 root_ht = kzalloc(struct_size(root_ht, ht, 1), GFP_KERNEL); 359 if (root_ht == NULL) 360 return -ENOBUFS; 361 362 root_ht->refcnt++; 363 root_ht->handle = tp_c ? gen_new_htid(tp_c, root_ht) : 0x80000000; 364 root_ht->prio = tp->prio; 365 root_ht->is_root = true; 366 idr_init(&root_ht->handle_idr); 367 368 if (tp_c == NULL) { 369 tp_c = kzalloc(struct_size(tp_c, hlist->ht, 1), GFP_KERNEL); 370 if (tp_c == NULL) { 371 kfree(root_ht); 372 return -ENOBUFS; 373 } 374 tp_c->ptr = key; 375 INIT_HLIST_NODE(&tp_c->hnode); 376 idr_init(&tp_c->handle_idr); 377 378 hlist_add_head(&tp_c->hnode, tc_u_hash(key)); 379 } 380 381 tp_c->refcnt++; 382 RCU_INIT_POINTER(root_ht->next, tp_c->hlist); 383 rcu_assign_pointer(tp_c->hlist, root_ht); 384 385 root_ht->refcnt++; 386 rcu_assign_pointer(tp->root, root_ht); 387 tp->data = tp_c; 388 return 0; 389 } 390 391 static void __u32_destroy_key(struct tc_u_knode *n) 392 { 393 struct tc_u_hnode *ht = rtnl_dereference(n->ht_down); 394 395 tcf_exts_destroy(&n->exts); 396 if (ht && --ht->refcnt == 0) 397 kfree(ht); 398 kfree(n); 399 } 400 401 static void u32_destroy_key(struct tc_u_knode *n, bool free_pf) 402 { 403 tcf_exts_put_net(&n->exts); 404 #ifdef CONFIG_CLS_U32_PERF 405 if (free_pf) 406 free_percpu(n->pf); 407 #endif 408 #ifdef CONFIG_CLS_U32_MARK 409 if (free_pf) 410 free_percpu(n->pcpu_success); 411 #endif 412 __u32_destroy_key(n); 413 } 414 415 /* u32_delete_key_rcu should be called when free'ing a copied 416 * version of a tc_u_knode obtained from u32_init_knode(). When 417 * copies are obtained from u32_init_knode() the statistics are 418 * shared between the old and new copies to allow readers to 419 * continue to update the statistics during the copy. To support 420 * this the u32_delete_key_rcu variant does not free the percpu 421 * statistics. 422 */ 423 static void u32_delete_key_work(struct work_struct *work) 424 { 425 struct tc_u_knode *key = container_of(to_rcu_work(work), 426 struct tc_u_knode, 427 rwork); 428 rtnl_lock(); 429 u32_destroy_key(key, false); 430 rtnl_unlock(); 431 } 432 433 /* u32_delete_key_freepf_rcu is the rcu callback variant 434 * that free's the entire structure including the statistics 435 * percpu variables. Only use this if the key is not a copy 436 * returned by u32_init_knode(). See u32_delete_key_rcu() 437 * for the variant that should be used with keys return from 438 * u32_init_knode() 439 */ 440 static void u32_delete_key_freepf_work(struct work_struct *work) 441 { 442 struct tc_u_knode *key = container_of(to_rcu_work(work), 443 struct tc_u_knode, 444 rwork); 445 rtnl_lock(); 446 u32_destroy_key(key, true); 447 rtnl_unlock(); 448 } 449 450 static int u32_delete_key(struct tcf_proto *tp, struct tc_u_knode *key) 451 { 452 struct tc_u_common *tp_c = tp->data; 453 struct tc_u_knode __rcu **kp; 454 struct tc_u_knode *pkp; 455 struct tc_u_hnode *ht = rtnl_dereference(key->ht_up); 456 457 if (ht) { 458 kp = &ht->ht[TC_U32_HASH(key->handle)]; 459 for (pkp = rtnl_dereference(*kp); pkp; 460 kp = &pkp->next, pkp = rtnl_dereference(*kp)) { 461 if (pkp == key) { 462 RCU_INIT_POINTER(*kp, key->next); 463 tp_c->knodes--; 464 465 tcf_unbind_filter(tp, &key->res); 466 idr_remove(&ht->handle_idr, key->handle); 467 tcf_exts_get_net(&key->exts); 468 tcf_queue_work(&key->rwork, u32_delete_key_freepf_work); 469 return 0; 470 } 471 } 472 } 473 WARN_ON(1); 474 return 0; 475 } 476 477 static void u32_clear_hw_hnode(struct tcf_proto *tp, struct tc_u_hnode *h, 478 struct netlink_ext_ack *extack) 479 { 480 struct tcf_block *block = tp->chain->block; 481 struct tc_cls_u32_offload cls_u32 = {}; 482 483 tc_cls_common_offload_init(&cls_u32.common, tp, h->flags, extack); 484 cls_u32.command = TC_CLSU32_DELETE_HNODE; 485 cls_u32.hnode.divisor = h->divisor; 486 cls_u32.hnode.handle = h->handle; 487 cls_u32.hnode.prio = h->prio; 488 489 tc_setup_cb_call(block, TC_SETUP_CLSU32, &cls_u32, false, true); 490 } 491 492 static int u32_replace_hw_hnode(struct tcf_proto *tp, struct tc_u_hnode *h, 493 u32 flags, struct netlink_ext_ack *extack) 494 { 495 struct tcf_block *block = tp->chain->block; 496 struct tc_cls_u32_offload cls_u32 = {}; 497 bool skip_sw = tc_skip_sw(flags); 498 bool offloaded = false; 499 int err; 500 501 tc_cls_common_offload_init(&cls_u32.common, tp, flags, extack); 502 cls_u32.command = TC_CLSU32_NEW_HNODE; 503 cls_u32.hnode.divisor = h->divisor; 504 cls_u32.hnode.handle = h->handle; 505 cls_u32.hnode.prio = h->prio; 506 507 err = tc_setup_cb_call(block, TC_SETUP_CLSU32, &cls_u32, skip_sw, true); 508 if (err < 0) { 509 u32_clear_hw_hnode(tp, h, NULL); 510 return err; 511 } else if (err > 0) { 512 offloaded = true; 513 } 514 515 if (skip_sw && !offloaded) 516 return -EINVAL; 517 518 return 0; 519 } 520 521 static void u32_remove_hw_knode(struct tcf_proto *tp, struct tc_u_knode *n, 522 struct netlink_ext_ack *extack) 523 { 524 struct tcf_block *block = tp->chain->block; 525 struct tc_cls_u32_offload cls_u32 = {}; 526 527 tc_cls_common_offload_init(&cls_u32.common, tp, n->flags, extack); 528 cls_u32.command = TC_CLSU32_DELETE_KNODE; 529 cls_u32.knode.handle = n->handle; 530 531 tc_setup_cb_destroy(block, tp, TC_SETUP_CLSU32, &cls_u32, false, 532 &n->flags, &n->in_hw_count, true); 533 } 534 535 static int u32_replace_hw_knode(struct tcf_proto *tp, struct tc_u_knode *n, 536 u32 flags, struct netlink_ext_ack *extack) 537 { 538 struct tc_u_hnode *ht = rtnl_dereference(n->ht_down); 539 struct tcf_block *block = tp->chain->block; 540 struct tc_cls_u32_offload cls_u32 = {}; 541 bool skip_sw = tc_skip_sw(flags); 542 int err; 543 544 tc_cls_common_offload_init(&cls_u32.common, tp, flags, extack); 545 cls_u32.command = TC_CLSU32_REPLACE_KNODE; 546 cls_u32.knode.handle = n->handle; 547 cls_u32.knode.fshift = n->fshift; 548 #ifdef CONFIG_CLS_U32_MARK 549 cls_u32.knode.val = n->val; 550 cls_u32.knode.mask = n->mask; 551 #else 552 cls_u32.knode.val = 0; 553 cls_u32.knode.mask = 0; 554 #endif 555 cls_u32.knode.sel = &n->sel; 556 cls_u32.knode.res = &n->res; 557 cls_u32.knode.exts = &n->exts; 558 if (n->ht_down) 559 cls_u32.knode.link_handle = ht->handle; 560 561 err = tc_setup_cb_add(block, tp, TC_SETUP_CLSU32, &cls_u32, skip_sw, 562 &n->flags, &n->in_hw_count, true); 563 if (err) { 564 u32_remove_hw_knode(tp, n, NULL); 565 return err; 566 } 567 568 if (skip_sw && !(n->flags & TCA_CLS_FLAGS_IN_HW)) 569 return -EINVAL; 570 571 return 0; 572 } 573 574 static void u32_clear_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht, 575 struct netlink_ext_ack *extack) 576 { 577 struct tc_u_common *tp_c = tp->data; 578 struct tc_u_knode *n; 579 unsigned int h; 580 581 for (h = 0; h <= ht->divisor; h++) { 582 while ((n = rtnl_dereference(ht->ht[h])) != NULL) { 583 RCU_INIT_POINTER(ht->ht[h], 584 rtnl_dereference(n->next)); 585 tp_c->knodes--; 586 tcf_unbind_filter(tp, &n->res); 587 u32_remove_hw_knode(tp, n, extack); 588 idr_remove(&ht->handle_idr, n->handle); 589 if (tcf_exts_get_net(&n->exts)) 590 tcf_queue_work(&n->rwork, u32_delete_key_freepf_work); 591 else 592 u32_destroy_key(n, true); 593 } 594 } 595 } 596 597 static int u32_destroy_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht, 598 struct netlink_ext_ack *extack) 599 { 600 struct tc_u_common *tp_c = tp->data; 601 struct tc_u_hnode __rcu **hn; 602 struct tc_u_hnode *phn; 603 604 WARN_ON(--ht->refcnt); 605 606 u32_clear_hnode(tp, ht, extack); 607 608 hn = &tp_c->hlist; 609 for (phn = rtnl_dereference(*hn); 610 phn; 611 hn = &phn->next, phn = rtnl_dereference(*hn)) { 612 if (phn == ht) { 613 u32_clear_hw_hnode(tp, ht, extack); 614 idr_destroy(&ht->handle_idr); 615 idr_remove(&tp_c->handle_idr, ht->handle); 616 RCU_INIT_POINTER(*hn, ht->next); 617 kfree_rcu(ht, rcu); 618 return 0; 619 } 620 } 621 622 return -ENOENT; 623 } 624 625 static void u32_destroy(struct tcf_proto *tp, bool rtnl_held, 626 struct netlink_ext_ack *extack) 627 { 628 struct tc_u_common *tp_c = tp->data; 629 struct tc_u_hnode *root_ht = rtnl_dereference(tp->root); 630 631 WARN_ON(root_ht == NULL); 632 633 if (root_ht && --root_ht->refcnt == 1) 634 u32_destroy_hnode(tp, root_ht, extack); 635 636 if (--tp_c->refcnt == 0) { 637 struct tc_u_hnode *ht; 638 639 hlist_del(&tp_c->hnode); 640 641 while ((ht = rtnl_dereference(tp_c->hlist)) != NULL) { 642 u32_clear_hnode(tp, ht, extack); 643 RCU_INIT_POINTER(tp_c->hlist, ht->next); 644 645 /* u32_destroy_key() will later free ht for us, if it's 646 * still referenced by some knode 647 */ 648 if (--ht->refcnt == 0) 649 kfree_rcu(ht, rcu); 650 } 651 652 idr_destroy(&tp_c->handle_idr); 653 kfree(tp_c); 654 } 655 656 tp->data = NULL; 657 } 658 659 static int u32_delete(struct tcf_proto *tp, void *arg, bool *last, 660 bool rtnl_held, struct netlink_ext_ack *extack) 661 { 662 struct tc_u_hnode *ht = arg; 663 struct tc_u_common *tp_c = tp->data; 664 int ret = 0; 665 666 if (TC_U32_KEY(ht->handle)) { 667 u32_remove_hw_knode(tp, (struct tc_u_knode *)ht, extack); 668 ret = u32_delete_key(tp, (struct tc_u_knode *)ht); 669 goto out; 670 } 671 672 if (ht->is_root) { 673 NL_SET_ERR_MSG_MOD(extack, "Not allowed to delete root node"); 674 return -EINVAL; 675 } 676 677 if (ht->refcnt == 1) { 678 u32_destroy_hnode(tp, ht, extack); 679 } else { 680 NL_SET_ERR_MSG_MOD(extack, "Can not delete in-use filter"); 681 return -EBUSY; 682 } 683 684 out: 685 *last = tp_c->refcnt == 1 && tp_c->knodes == 0; 686 return ret; 687 } 688 689 static u32 gen_new_kid(struct tc_u_hnode *ht, u32 htid) 690 { 691 u32 index = htid | 0x800; 692 u32 max = htid | 0xFFF; 693 694 if (idr_alloc_u32(&ht->handle_idr, NULL, &index, max, GFP_KERNEL)) { 695 index = htid + 1; 696 if (idr_alloc_u32(&ht->handle_idr, NULL, &index, max, 697 GFP_KERNEL)) 698 index = max; 699 } 700 701 return index; 702 } 703 704 static const struct nla_policy u32_policy[TCA_U32_MAX + 1] = { 705 [TCA_U32_CLASSID] = { .type = NLA_U32 }, 706 [TCA_U32_HASH] = { .type = NLA_U32 }, 707 [TCA_U32_LINK] = { .type = NLA_U32 }, 708 [TCA_U32_DIVISOR] = { .type = NLA_U32 }, 709 [TCA_U32_SEL] = { .len = sizeof(struct tc_u32_sel) }, 710 [TCA_U32_INDEV] = { .type = NLA_STRING, .len = IFNAMSIZ }, 711 [TCA_U32_MARK] = { .len = sizeof(struct tc_u32_mark) }, 712 [TCA_U32_FLAGS] = { .type = NLA_U32 }, 713 }; 714 715 static void u32_unbind_filter(struct tcf_proto *tp, struct tc_u_knode *n, 716 struct nlattr **tb) 717 { 718 if (tb[TCA_U32_CLASSID]) 719 tcf_unbind_filter(tp, &n->res); 720 } 721 722 static void u32_bind_filter(struct tcf_proto *tp, struct tc_u_knode *n, 723 unsigned long base, struct nlattr **tb) 724 { 725 if (tb[TCA_U32_CLASSID]) { 726 n->res.classid = nla_get_u32(tb[TCA_U32_CLASSID]); 727 tcf_bind_filter(tp, &n->res, base); 728 } 729 } 730 731 static int u32_set_parms(struct net *net, struct tcf_proto *tp, 732 struct tc_u_knode *n, struct nlattr **tb, 733 struct nlattr *est, u32 flags, u32 fl_flags, 734 struct netlink_ext_ack *extack) 735 { 736 int err, ifindex = -1; 737 738 err = tcf_exts_validate_ex(net, tp, tb, est, &n->exts, flags, 739 fl_flags, extack); 740 if (err < 0) 741 return err; 742 743 if (tb[TCA_U32_INDEV]) { 744 ifindex = tcf_change_indev(net, tb[TCA_U32_INDEV], extack); 745 if (ifindex < 0) 746 return -EINVAL; 747 } 748 749 if (tb[TCA_U32_LINK]) { 750 u32 handle = nla_get_u32(tb[TCA_U32_LINK]); 751 struct tc_u_hnode *ht_down = NULL, *ht_old; 752 753 if (TC_U32_KEY(handle)) { 754 NL_SET_ERR_MSG_MOD(extack, "u32 Link handle must be a hash table"); 755 return -EINVAL; 756 } 757 758 if (handle) { 759 ht_down = u32_lookup_ht(tp->data, handle); 760 761 if (!ht_down) { 762 NL_SET_ERR_MSG_MOD(extack, "Link hash table not found"); 763 return -EINVAL; 764 } 765 if (ht_down->is_root) { 766 NL_SET_ERR_MSG_MOD(extack, "Not linking to root node"); 767 return -EINVAL; 768 } 769 ht_down->refcnt++; 770 } 771 772 ht_old = rtnl_dereference(n->ht_down); 773 rcu_assign_pointer(n->ht_down, ht_down); 774 775 if (ht_old) 776 ht_old->refcnt--; 777 } 778 779 if (ifindex >= 0) 780 n->ifindex = ifindex; 781 782 return 0; 783 } 784 785 static void u32_replace_knode(struct tcf_proto *tp, struct tc_u_common *tp_c, 786 struct tc_u_knode *n) 787 { 788 struct tc_u_knode __rcu **ins; 789 struct tc_u_knode *pins; 790 struct tc_u_hnode *ht; 791 792 if (TC_U32_HTID(n->handle) == TC_U32_ROOT) 793 ht = rtnl_dereference(tp->root); 794 else 795 ht = u32_lookup_ht(tp_c, TC_U32_HTID(n->handle)); 796 797 ins = &ht->ht[TC_U32_HASH(n->handle)]; 798 799 /* The node must always exist for it to be replaced if this is not the 800 * case then something went very wrong elsewhere. 801 */ 802 for (pins = rtnl_dereference(*ins); ; 803 ins = &pins->next, pins = rtnl_dereference(*ins)) 804 if (pins->handle == n->handle) 805 break; 806 807 idr_replace(&ht->handle_idr, n, n->handle); 808 RCU_INIT_POINTER(n->next, pins->next); 809 rcu_assign_pointer(*ins, n); 810 } 811 812 static struct tc_u_knode *u32_init_knode(struct net *net, struct tcf_proto *tp, 813 struct tc_u_knode *n) 814 { 815 struct tc_u_hnode *ht = rtnl_dereference(n->ht_down); 816 struct tc_u32_sel *s = &n->sel; 817 struct tc_u_knode *new; 818 819 new = kzalloc(struct_size(new, sel.keys, s->nkeys), GFP_KERNEL); 820 if (!new) 821 return NULL; 822 823 RCU_INIT_POINTER(new->next, n->next); 824 new->handle = n->handle; 825 RCU_INIT_POINTER(new->ht_up, n->ht_up); 826 827 new->ifindex = n->ifindex; 828 new->fshift = n->fshift; 829 new->res = n->res; 830 new->flags = n->flags; 831 RCU_INIT_POINTER(new->ht_down, ht); 832 833 #ifdef CONFIG_CLS_U32_PERF 834 /* Statistics may be incremented by readers during update 835 * so we must keep them in tact. When the node is later destroyed 836 * a special destroy call must be made to not free the pf memory. 837 */ 838 new->pf = n->pf; 839 #endif 840 841 #ifdef CONFIG_CLS_U32_MARK 842 new->val = n->val; 843 new->mask = n->mask; 844 /* Similarly success statistics must be moved as pointers */ 845 new->pcpu_success = n->pcpu_success; 846 #endif 847 memcpy(&new->sel, s, struct_size(s, keys, s->nkeys)); 848 849 if (tcf_exts_init(&new->exts, net, TCA_U32_ACT, TCA_U32_POLICE)) { 850 kfree(new); 851 return NULL; 852 } 853 854 /* bump reference count as long as we hold pointer to structure */ 855 if (ht) 856 ht->refcnt++; 857 858 return new; 859 } 860 861 static int u32_change(struct net *net, struct sk_buff *in_skb, 862 struct tcf_proto *tp, unsigned long base, u32 handle, 863 struct nlattr **tca, void **arg, u32 flags, 864 struct netlink_ext_ack *extack) 865 { 866 struct tc_u_common *tp_c = tp->data; 867 struct tc_u_hnode *ht; 868 struct tc_u_knode *n; 869 struct tc_u32_sel *s; 870 struct nlattr *opt = tca[TCA_OPTIONS]; 871 struct nlattr *tb[TCA_U32_MAX + 1]; 872 u32 htid, userflags = 0; 873 size_t sel_size; 874 int err; 875 876 if (!opt) { 877 if (handle) { 878 NL_SET_ERR_MSG_MOD(extack, "Filter handle requires options"); 879 return -EINVAL; 880 } else { 881 return 0; 882 } 883 } 884 885 err = nla_parse_nested_deprecated(tb, TCA_U32_MAX, opt, u32_policy, 886 extack); 887 if (err < 0) 888 return err; 889 890 if (tb[TCA_U32_FLAGS]) { 891 userflags = nla_get_u32(tb[TCA_U32_FLAGS]); 892 if (!tc_flags_valid(userflags)) { 893 NL_SET_ERR_MSG_MOD(extack, "Invalid filter flags"); 894 return -EINVAL; 895 } 896 } 897 898 n = *arg; 899 if (n) { 900 struct tc_u_knode *new; 901 902 if (TC_U32_KEY(n->handle) == 0) { 903 NL_SET_ERR_MSG_MOD(extack, "Key node id cannot be zero"); 904 return -EINVAL; 905 } 906 907 if ((n->flags ^ userflags) & 908 ~(TCA_CLS_FLAGS_IN_HW | TCA_CLS_FLAGS_NOT_IN_HW)) { 909 NL_SET_ERR_MSG_MOD(extack, "Key node flags do not match passed flags"); 910 return -EINVAL; 911 } 912 913 new = u32_init_knode(net, tp, n); 914 if (!new) 915 return -ENOMEM; 916 917 err = u32_set_parms(net, tp, new, tb, tca[TCA_RATE], 918 flags, new->flags, extack); 919 920 if (err) { 921 __u32_destroy_key(new); 922 return err; 923 } 924 925 u32_bind_filter(tp, new, base, tb); 926 927 err = u32_replace_hw_knode(tp, new, flags, extack); 928 if (err) { 929 u32_unbind_filter(tp, new, tb); 930 931 if (tb[TCA_U32_LINK]) { 932 struct tc_u_hnode *ht_old; 933 934 ht_old = rtnl_dereference(n->ht_down); 935 if (ht_old) 936 ht_old->refcnt++; 937 } 938 __u32_destroy_key(new); 939 return err; 940 } 941 942 if (!tc_in_hw(new->flags)) 943 new->flags |= TCA_CLS_FLAGS_NOT_IN_HW; 944 945 u32_replace_knode(tp, tp_c, new); 946 tcf_unbind_filter(tp, &n->res); 947 tcf_exts_get_net(&n->exts); 948 tcf_queue_work(&n->rwork, u32_delete_key_work); 949 return 0; 950 } 951 952 if (tb[TCA_U32_DIVISOR]) { 953 unsigned int divisor = nla_get_u32(tb[TCA_U32_DIVISOR]); 954 955 if (!is_power_of_2(divisor)) { 956 NL_SET_ERR_MSG_MOD(extack, "Divisor is not a power of 2"); 957 return -EINVAL; 958 } 959 if (divisor-- > 0x100) { 960 NL_SET_ERR_MSG_MOD(extack, "Exceeded maximum 256 hash buckets"); 961 return -EINVAL; 962 } 963 if (TC_U32_KEY(handle)) { 964 NL_SET_ERR_MSG_MOD(extack, "Divisor can only be used on a hash table"); 965 return -EINVAL; 966 } 967 ht = kzalloc(struct_size(ht, ht, divisor + 1), GFP_KERNEL); 968 if (ht == NULL) 969 return -ENOBUFS; 970 if (handle == 0) { 971 handle = gen_new_htid(tp->data, ht); 972 if (handle == 0) { 973 kfree(ht); 974 return -ENOMEM; 975 } 976 } else { 977 err = idr_alloc_u32(&tp_c->handle_idr, ht, &handle, 978 handle, GFP_KERNEL); 979 if (err) { 980 kfree(ht); 981 return err; 982 } 983 } 984 ht->refcnt = 1; 985 ht->divisor = divisor; 986 ht->handle = handle; 987 ht->prio = tp->prio; 988 idr_init(&ht->handle_idr); 989 ht->flags = userflags; 990 991 err = u32_replace_hw_hnode(tp, ht, userflags, extack); 992 if (err) { 993 idr_remove(&tp_c->handle_idr, handle); 994 kfree(ht); 995 return err; 996 } 997 998 RCU_INIT_POINTER(ht->next, tp_c->hlist); 999 rcu_assign_pointer(tp_c->hlist, ht); 1000 *arg = ht; 1001 1002 return 0; 1003 } 1004 1005 if (tb[TCA_U32_HASH]) { 1006 htid = nla_get_u32(tb[TCA_U32_HASH]); 1007 if (TC_U32_HTID(htid) == TC_U32_ROOT) { 1008 ht = rtnl_dereference(tp->root); 1009 htid = ht->handle; 1010 } else { 1011 ht = u32_lookup_ht(tp->data, TC_U32_HTID(htid)); 1012 if (!ht) { 1013 NL_SET_ERR_MSG_MOD(extack, "Specified hash table not found"); 1014 return -EINVAL; 1015 } 1016 } 1017 } else { 1018 ht = rtnl_dereference(tp->root); 1019 htid = ht->handle; 1020 } 1021 1022 if (ht->divisor < TC_U32_HASH(htid)) { 1023 NL_SET_ERR_MSG_MOD(extack, "Specified hash table buckets exceed configured value"); 1024 return -EINVAL; 1025 } 1026 1027 if (handle) { 1028 if (TC_U32_HTID(handle) && TC_U32_HTID(handle ^ htid)) { 1029 NL_SET_ERR_MSG_MOD(extack, "Handle specified hash table address mismatch"); 1030 return -EINVAL; 1031 } 1032 handle = htid | TC_U32_NODE(handle); 1033 err = idr_alloc_u32(&ht->handle_idr, NULL, &handle, handle, 1034 GFP_KERNEL); 1035 if (err) 1036 return err; 1037 } else 1038 handle = gen_new_kid(ht, htid); 1039 1040 if (tb[TCA_U32_SEL] == NULL) { 1041 NL_SET_ERR_MSG_MOD(extack, "Selector not specified"); 1042 err = -EINVAL; 1043 goto erridr; 1044 } 1045 1046 s = nla_data(tb[TCA_U32_SEL]); 1047 sel_size = struct_size(s, keys, s->nkeys); 1048 if (nla_len(tb[TCA_U32_SEL]) < sel_size) { 1049 err = -EINVAL; 1050 goto erridr; 1051 } 1052 1053 n = kzalloc(struct_size(n, sel.keys, s->nkeys), GFP_KERNEL); 1054 if (n == NULL) { 1055 err = -ENOBUFS; 1056 goto erridr; 1057 } 1058 1059 #ifdef CONFIG_CLS_U32_PERF 1060 n->pf = __alloc_percpu(struct_size(n->pf, kcnts, s->nkeys), 1061 __alignof__(struct tc_u32_pcnt)); 1062 if (!n->pf) { 1063 err = -ENOBUFS; 1064 goto errfree; 1065 } 1066 #endif 1067 1068 unsafe_memcpy(&n->sel, s, sel_size, 1069 /* A composite flex-array structure destination, 1070 * which was correctly sized with struct_size(), 1071 * bounds-checked against nla_len(), and allocated 1072 * above. */); 1073 RCU_INIT_POINTER(n->ht_up, ht); 1074 n->handle = handle; 1075 n->fshift = s->hmask ? ffs(ntohl(s->hmask)) - 1 : 0; 1076 n->flags = userflags; 1077 1078 err = tcf_exts_init(&n->exts, net, TCA_U32_ACT, TCA_U32_POLICE); 1079 if (err < 0) 1080 goto errout; 1081 1082 #ifdef CONFIG_CLS_U32_MARK 1083 n->pcpu_success = alloc_percpu(u32); 1084 if (!n->pcpu_success) { 1085 err = -ENOMEM; 1086 goto errout; 1087 } 1088 1089 if (tb[TCA_U32_MARK]) { 1090 struct tc_u32_mark *mark; 1091 1092 mark = nla_data(tb[TCA_U32_MARK]); 1093 n->val = mark->val; 1094 n->mask = mark->mask; 1095 } 1096 #endif 1097 1098 err = u32_set_parms(net, tp, n, tb, tca[TCA_RATE], 1099 flags, n->flags, extack); 1100 1101 u32_bind_filter(tp, n, base, tb); 1102 1103 if (err == 0) { 1104 struct tc_u_knode __rcu **ins; 1105 struct tc_u_knode *pins; 1106 1107 err = u32_replace_hw_knode(tp, n, flags, extack); 1108 if (err) 1109 goto errunbind; 1110 1111 if (!tc_in_hw(n->flags)) 1112 n->flags |= TCA_CLS_FLAGS_NOT_IN_HW; 1113 1114 ins = &ht->ht[TC_U32_HASH(handle)]; 1115 for (pins = rtnl_dereference(*ins); pins; 1116 ins = &pins->next, pins = rtnl_dereference(*ins)) 1117 if (TC_U32_NODE(handle) < TC_U32_NODE(pins->handle)) 1118 break; 1119 1120 RCU_INIT_POINTER(n->next, pins); 1121 rcu_assign_pointer(*ins, n); 1122 tp_c->knodes++; 1123 *arg = n; 1124 return 0; 1125 } 1126 1127 errunbind: 1128 u32_unbind_filter(tp, n, tb); 1129 1130 #ifdef CONFIG_CLS_U32_MARK 1131 free_percpu(n->pcpu_success); 1132 #endif 1133 1134 errout: 1135 tcf_exts_destroy(&n->exts); 1136 #ifdef CONFIG_CLS_U32_PERF 1137 errfree: 1138 free_percpu(n->pf); 1139 #endif 1140 kfree(n); 1141 erridr: 1142 idr_remove(&ht->handle_idr, handle); 1143 return err; 1144 } 1145 1146 static void u32_walk(struct tcf_proto *tp, struct tcf_walker *arg, 1147 bool rtnl_held) 1148 { 1149 struct tc_u_common *tp_c = tp->data; 1150 struct tc_u_hnode *ht; 1151 struct tc_u_knode *n; 1152 unsigned int h; 1153 1154 if (arg->stop) 1155 return; 1156 1157 for (ht = rtnl_dereference(tp_c->hlist); 1158 ht; 1159 ht = rtnl_dereference(ht->next)) { 1160 if (ht->prio != tp->prio) 1161 continue; 1162 1163 if (!tc_cls_stats_dump(tp, arg, ht)) 1164 return; 1165 1166 for (h = 0; h <= ht->divisor; h++) { 1167 for (n = rtnl_dereference(ht->ht[h]); 1168 n; 1169 n = rtnl_dereference(n->next)) { 1170 if (!tc_cls_stats_dump(tp, arg, n)) 1171 return; 1172 } 1173 } 1174 } 1175 } 1176 1177 static int u32_reoffload_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht, 1178 bool add, flow_setup_cb_t *cb, void *cb_priv, 1179 struct netlink_ext_ack *extack) 1180 { 1181 struct tc_cls_u32_offload cls_u32 = {}; 1182 int err; 1183 1184 tc_cls_common_offload_init(&cls_u32.common, tp, ht->flags, extack); 1185 cls_u32.command = add ? TC_CLSU32_NEW_HNODE : TC_CLSU32_DELETE_HNODE; 1186 cls_u32.hnode.divisor = ht->divisor; 1187 cls_u32.hnode.handle = ht->handle; 1188 cls_u32.hnode.prio = ht->prio; 1189 1190 err = cb(TC_SETUP_CLSU32, &cls_u32, cb_priv); 1191 if (err && add && tc_skip_sw(ht->flags)) 1192 return err; 1193 1194 return 0; 1195 } 1196 1197 static int u32_reoffload_knode(struct tcf_proto *tp, struct tc_u_knode *n, 1198 bool add, flow_setup_cb_t *cb, void *cb_priv, 1199 struct netlink_ext_ack *extack) 1200 { 1201 struct tc_u_hnode *ht = rtnl_dereference(n->ht_down); 1202 struct tcf_block *block = tp->chain->block; 1203 struct tc_cls_u32_offload cls_u32 = {}; 1204 1205 tc_cls_common_offload_init(&cls_u32.common, tp, n->flags, extack); 1206 cls_u32.command = add ? 1207 TC_CLSU32_REPLACE_KNODE : TC_CLSU32_DELETE_KNODE; 1208 cls_u32.knode.handle = n->handle; 1209 1210 if (add) { 1211 cls_u32.knode.fshift = n->fshift; 1212 #ifdef CONFIG_CLS_U32_MARK 1213 cls_u32.knode.val = n->val; 1214 cls_u32.knode.mask = n->mask; 1215 #else 1216 cls_u32.knode.val = 0; 1217 cls_u32.knode.mask = 0; 1218 #endif 1219 cls_u32.knode.sel = &n->sel; 1220 cls_u32.knode.res = &n->res; 1221 cls_u32.knode.exts = &n->exts; 1222 if (n->ht_down) 1223 cls_u32.knode.link_handle = ht->handle; 1224 } 1225 1226 return tc_setup_cb_reoffload(block, tp, add, cb, TC_SETUP_CLSU32, 1227 &cls_u32, cb_priv, &n->flags, 1228 &n->in_hw_count); 1229 } 1230 1231 static int u32_reoffload(struct tcf_proto *tp, bool add, flow_setup_cb_t *cb, 1232 void *cb_priv, struct netlink_ext_ack *extack) 1233 { 1234 struct tc_u_common *tp_c = tp->data; 1235 struct tc_u_hnode *ht; 1236 struct tc_u_knode *n; 1237 unsigned int h; 1238 int err; 1239 1240 for (ht = rtnl_dereference(tp_c->hlist); 1241 ht; 1242 ht = rtnl_dereference(ht->next)) { 1243 if (ht->prio != tp->prio) 1244 continue; 1245 1246 /* When adding filters to a new dev, try to offload the 1247 * hashtable first. When removing, do the filters before the 1248 * hashtable. 1249 */ 1250 if (add && !tc_skip_hw(ht->flags)) { 1251 err = u32_reoffload_hnode(tp, ht, add, cb, cb_priv, 1252 extack); 1253 if (err) 1254 return err; 1255 } 1256 1257 for (h = 0; h <= ht->divisor; h++) { 1258 for (n = rtnl_dereference(ht->ht[h]); 1259 n; 1260 n = rtnl_dereference(n->next)) { 1261 if (tc_skip_hw(n->flags)) 1262 continue; 1263 1264 err = u32_reoffload_knode(tp, n, add, cb, 1265 cb_priv, extack); 1266 if (err) 1267 return err; 1268 } 1269 } 1270 1271 if (!add && !tc_skip_hw(ht->flags)) 1272 u32_reoffload_hnode(tp, ht, add, cb, cb_priv, extack); 1273 } 1274 1275 return 0; 1276 } 1277 1278 static void u32_bind_class(void *fh, u32 classid, unsigned long cl, void *q, 1279 unsigned long base) 1280 { 1281 struct tc_u_knode *n = fh; 1282 1283 tc_cls_bind_class(classid, cl, q, &n->res, base); 1284 } 1285 1286 static int u32_dump(struct net *net, struct tcf_proto *tp, void *fh, 1287 struct sk_buff *skb, struct tcmsg *t, bool rtnl_held) 1288 { 1289 struct tc_u_knode *n = fh; 1290 struct tc_u_hnode *ht_up, *ht_down; 1291 struct nlattr *nest; 1292 1293 if (n == NULL) 1294 return skb->len; 1295 1296 t->tcm_handle = n->handle; 1297 1298 nest = nla_nest_start_noflag(skb, TCA_OPTIONS); 1299 if (nest == NULL) 1300 goto nla_put_failure; 1301 1302 if (TC_U32_KEY(n->handle) == 0) { 1303 struct tc_u_hnode *ht = fh; 1304 u32 divisor = ht->divisor + 1; 1305 1306 if (nla_put_u32(skb, TCA_U32_DIVISOR, divisor)) 1307 goto nla_put_failure; 1308 } else { 1309 #ifdef CONFIG_CLS_U32_PERF 1310 struct tc_u32_pcnt *gpf; 1311 int cpu; 1312 #endif 1313 1314 if (nla_put(skb, TCA_U32_SEL, struct_size(&n->sel, keys, n->sel.nkeys), 1315 &n->sel)) 1316 goto nla_put_failure; 1317 1318 ht_up = rtnl_dereference(n->ht_up); 1319 if (ht_up) { 1320 u32 htid = n->handle & 0xFFFFF000; 1321 if (nla_put_u32(skb, TCA_U32_HASH, htid)) 1322 goto nla_put_failure; 1323 } 1324 if (n->res.classid && 1325 nla_put_u32(skb, TCA_U32_CLASSID, n->res.classid)) 1326 goto nla_put_failure; 1327 1328 ht_down = rtnl_dereference(n->ht_down); 1329 if (ht_down && 1330 nla_put_u32(skb, TCA_U32_LINK, ht_down->handle)) 1331 goto nla_put_failure; 1332 1333 if (n->flags && nla_put_u32(skb, TCA_U32_FLAGS, n->flags)) 1334 goto nla_put_failure; 1335 1336 #ifdef CONFIG_CLS_U32_MARK 1337 if ((n->val || n->mask)) { 1338 struct tc_u32_mark mark = {.val = n->val, 1339 .mask = n->mask, 1340 .success = 0}; 1341 int cpum; 1342 1343 for_each_possible_cpu(cpum) { 1344 __u32 cnt = *per_cpu_ptr(n->pcpu_success, cpum); 1345 1346 mark.success += cnt; 1347 } 1348 1349 if (nla_put(skb, TCA_U32_MARK, sizeof(mark), &mark)) 1350 goto nla_put_failure; 1351 } 1352 #endif 1353 1354 if (tcf_exts_dump(skb, &n->exts) < 0) 1355 goto nla_put_failure; 1356 1357 if (n->ifindex) { 1358 struct net_device *dev; 1359 dev = __dev_get_by_index(net, n->ifindex); 1360 if (dev && nla_put_string(skb, TCA_U32_INDEV, dev->name)) 1361 goto nla_put_failure; 1362 } 1363 #ifdef CONFIG_CLS_U32_PERF 1364 gpf = kzalloc(struct_size(gpf, kcnts, n->sel.nkeys), GFP_KERNEL); 1365 if (!gpf) 1366 goto nla_put_failure; 1367 1368 for_each_possible_cpu(cpu) { 1369 int i; 1370 struct tc_u32_pcnt *pf = per_cpu_ptr(n->pf, cpu); 1371 1372 gpf->rcnt += pf->rcnt; 1373 gpf->rhit += pf->rhit; 1374 for (i = 0; i < n->sel.nkeys; i++) 1375 gpf->kcnts[i] += pf->kcnts[i]; 1376 } 1377 1378 if (nla_put_64bit(skb, TCA_U32_PCNT, struct_size(gpf, kcnts, n->sel.nkeys), 1379 gpf, TCA_U32_PAD)) { 1380 kfree(gpf); 1381 goto nla_put_failure; 1382 } 1383 kfree(gpf); 1384 #endif 1385 } 1386 1387 nla_nest_end(skb, nest); 1388 1389 if (TC_U32_KEY(n->handle)) 1390 if (tcf_exts_dump_stats(skb, &n->exts) < 0) 1391 goto nla_put_failure; 1392 return skb->len; 1393 1394 nla_put_failure: 1395 nla_nest_cancel(skb, nest); 1396 return -1; 1397 } 1398 1399 static struct tcf_proto_ops cls_u32_ops __read_mostly = { 1400 .kind = "u32", 1401 .classify = u32_classify, 1402 .init = u32_init, 1403 .destroy = u32_destroy, 1404 .get = u32_get, 1405 .change = u32_change, 1406 .delete = u32_delete, 1407 .walk = u32_walk, 1408 .reoffload = u32_reoffload, 1409 .dump = u32_dump, 1410 .bind_class = u32_bind_class, 1411 .owner = THIS_MODULE, 1412 }; 1413 1414 static int __init init_u32(void) 1415 { 1416 int i, ret; 1417 1418 pr_info("u32 classifier\n"); 1419 #ifdef CONFIG_CLS_U32_PERF 1420 pr_info(" Performance counters on\n"); 1421 #endif 1422 pr_info(" input device check on\n"); 1423 #ifdef CONFIG_NET_CLS_ACT 1424 pr_info(" Actions configured\n"); 1425 #endif 1426 tc_u_common_hash = kvmalloc_array(U32_HASH_SIZE, 1427 sizeof(struct hlist_head), 1428 GFP_KERNEL); 1429 if (!tc_u_common_hash) 1430 return -ENOMEM; 1431 1432 for (i = 0; i < U32_HASH_SIZE; i++) 1433 INIT_HLIST_HEAD(&tc_u_common_hash[i]); 1434 1435 ret = register_tcf_proto_ops(&cls_u32_ops); 1436 if (ret) 1437 kvfree(tc_u_common_hash); 1438 return ret; 1439 } 1440 1441 static void __exit exit_u32(void) 1442 { 1443 unregister_tcf_proto_ops(&cls_u32_ops); 1444 kvfree(tc_u_common_hash); 1445 } 1446 1447 module_init(init_u32) 1448 module_exit(exit_u32) 1449 MODULE_LICENSE("GPL"); 1450