1 /* 2 * net/sched/cls_u32.c Ugly (or Universal) 32bit key Packet Classifier. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 10 * 11 * The filters are packed to hash tables of key nodes 12 * with a set of 32bit key/mask pairs at every node. 13 * Nodes reference next level hash tables etc. 14 * 15 * This scheme is the best universal classifier I managed to 16 * invent; it is not super-fast, but it is not slow (provided you 17 * program it correctly), and general enough. And its relative 18 * speed grows as the number of rules becomes larger. 19 * 20 * It seems that it represents the best middle point between 21 * speed and manageability both by human and by machine. 22 * 23 * It is especially useful for link sharing combined with QoS; 24 * pure RSVP doesn't need such a general approach and can use 25 * much simpler (and faster) schemes, sort of cls_rsvp.c. 26 * 27 * JHS: We should remove the CONFIG_NET_CLS_IND from here 28 * eventually when the meta match extension is made available 29 * 30 * nfmark match added by Catalin(ux aka Dino) BOIE <catab at umbrella.ro> 31 */ 32 33 #include <linux/module.h> 34 #include <linux/slab.h> 35 #include <linux/types.h> 36 #include <linux/kernel.h> 37 #include <linux/string.h> 38 #include <linux/errno.h> 39 #include <linux/percpu.h> 40 #include <linux/rtnetlink.h> 41 #include <linux/skbuff.h> 42 #include <linux/bitmap.h> 43 #include <linux/netdevice.h> 44 #include <linux/hash.h> 45 #include <net/netlink.h> 46 #include <net/act_api.h> 47 #include <net/pkt_cls.h> 48 #include <linux/idr.h> 49 50 struct tc_u_knode { 51 struct tc_u_knode __rcu *next; 52 u32 handle; 53 struct tc_u_hnode __rcu *ht_up; 54 struct tcf_exts exts; 55 #ifdef CONFIG_NET_CLS_IND 56 int ifindex; 57 #endif 58 u8 fshift; 59 struct tcf_result res; 60 struct tc_u_hnode __rcu *ht_down; 61 #ifdef CONFIG_CLS_U32_PERF 62 struct tc_u32_pcnt __percpu *pf; 63 #endif 64 u32 flags; 65 unsigned int in_hw_count; 66 #ifdef CONFIG_CLS_U32_MARK 67 u32 val; 68 u32 mask; 69 u32 __percpu *pcpu_success; 70 #endif 71 struct rcu_work rwork; 72 /* The 'sel' field MUST be the last field in structure to allow for 73 * tc_u32_keys allocated at end of structure. 74 */ 75 struct tc_u32_sel sel; 76 }; 77 78 struct tc_u_hnode { 79 struct tc_u_hnode __rcu *next; 80 u32 handle; 81 u32 prio; 82 int refcnt; 83 unsigned int divisor; 84 struct idr handle_idr; 85 bool is_root; 86 struct rcu_head rcu; 87 u32 flags; 88 /* The 'ht' field MUST be the last field in structure to allow for 89 * more entries allocated at end of structure. 90 */ 91 struct tc_u_knode __rcu *ht[1]; 92 }; 93 94 struct tc_u_common { 95 struct tc_u_hnode __rcu *hlist; 96 void *ptr; 97 int refcnt; 98 struct idr handle_idr; 99 struct hlist_node hnode; 100 long knodes; 101 }; 102 103 static inline unsigned int u32_hash_fold(__be32 key, 104 const struct tc_u32_sel *sel, 105 u8 fshift) 106 { 107 unsigned int h = ntohl(key & sel->hmask) >> fshift; 108 109 return h; 110 } 111 112 static int u32_classify(struct sk_buff *skb, const struct tcf_proto *tp, 113 struct tcf_result *res) 114 { 115 struct { 116 struct tc_u_knode *knode; 117 unsigned int off; 118 } stack[TC_U32_MAXDEPTH]; 119 120 struct tc_u_hnode *ht = rcu_dereference_bh(tp->root); 121 unsigned int off = skb_network_offset(skb); 122 struct tc_u_knode *n; 123 int sdepth = 0; 124 int off2 = 0; 125 int sel = 0; 126 #ifdef CONFIG_CLS_U32_PERF 127 int j; 128 #endif 129 int i, r; 130 131 next_ht: 132 n = rcu_dereference_bh(ht->ht[sel]); 133 134 next_knode: 135 if (n) { 136 struct tc_u32_key *key = n->sel.keys; 137 138 #ifdef CONFIG_CLS_U32_PERF 139 __this_cpu_inc(n->pf->rcnt); 140 j = 0; 141 #endif 142 143 if (tc_skip_sw(n->flags)) { 144 n = rcu_dereference_bh(n->next); 145 goto next_knode; 146 } 147 148 #ifdef CONFIG_CLS_U32_MARK 149 if ((skb->mark & n->mask) != n->val) { 150 n = rcu_dereference_bh(n->next); 151 goto next_knode; 152 } else { 153 __this_cpu_inc(*n->pcpu_success); 154 } 155 #endif 156 157 for (i = n->sel.nkeys; i > 0; i--, key++) { 158 int toff = off + key->off + (off2 & key->offmask); 159 __be32 *data, hdata; 160 161 if (skb_headroom(skb) + toff > INT_MAX) 162 goto out; 163 164 data = skb_header_pointer(skb, toff, 4, &hdata); 165 if (!data) 166 goto out; 167 if ((*data ^ key->val) & key->mask) { 168 n = rcu_dereference_bh(n->next); 169 goto next_knode; 170 } 171 #ifdef CONFIG_CLS_U32_PERF 172 __this_cpu_inc(n->pf->kcnts[j]); 173 j++; 174 #endif 175 } 176 177 ht = rcu_dereference_bh(n->ht_down); 178 if (!ht) { 179 check_terminal: 180 if (n->sel.flags & TC_U32_TERMINAL) { 181 182 *res = n->res; 183 #ifdef CONFIG_NET_CLS_IND 184 if (!tcf_match_indev(skb, n->ifindex)) { 185 n = rcu_dereference_bh(n->next); 186 goto next_knode; 187 } 188 #endif 189 #ifdef CONFIG_CLS_U32_PERF 190 __this_cpu_inc(n->pf->rhit); 191 #endif 192 r = tcf_exts_exec(skb, &n->exts, res); 193 if (r < 0) { 194 n = rcu_dereference_bh(n->next); 195 goto next_knode; 196 } 197 198 return r; 199 } 200 n = rcu_dereference_bh(n->next); 201 goto next_knode; 202 } 203 204 /* PUSH */ 205 if (sdepth >= TC_U32_MAXDEPTH) 206 goto deadloop; 207 stack[sdepth].knode = n; 208 stack[sdepth].off = off; 209 sdepth++; 210 211 ht = rcu_dereference_bh(n->ht_down); 212 sel = 0; 213 if (ht->divisor) { 214 __be32 *data, hdata; 215 216 data = skb_header_pointer(skb, off + n->sel.hoff, 4, 217 &hdata); 218 if (!data) 219 goto out; 220 sel = ht->divisor & u32_hash_fold(*data, &n->sel, 221 n->fshift); 222 } 223 if (!(n->sel.flags & (TC_U32_VAROFFSET | TC_U32_OFFSET | TC_U32_EAT))) 224 goto next_ht; 225 226 if (n->sel.flags & (TC_U32_OFFSET | TC_U32_VAROFFSET)) { 227 off2 = n->sel.off + 3; 228 if (n->sel.flags & TC_U32_VAROFFSET) { 229 __be16 *data, hdata; 230 231 data = skb_header_pointer(skb, 232 off + n->sel.offoff, 233 2, &hdata); 234 if (!data) 235 goto out; 236 off2 += ntohs(n->sel.offmask & *data) >> 237 n->sel.offshift; 238 } 239 off2 &= ~3; 240 } 241 if (n->sel.flags & TC_U32_EAT) { 242 off += off2; 243 off2 = 0; 244 } 245 246 if (off < skb->len) 247 goto next_ht; 248 } 249 250 /* POP */ 251 if (sdepth--) { 252 n = stack[sdepth].knode; 253 ht = rcu_dereference_bh(n->ht_up); 254 off = stack[sdepth].off; 255 goto check_terminal; 256 } 257 out: 258 return -1; 259 260 deadloop: 261 net_warn_ratelimited("cls_u32: dead loop\n"); 262 return -1; 263 } 264 265 static struct tc_u_hnode *u32_lookup_ht(struct tc_u_common *tp_c, u32 handle) 266 { 267 struct tc_u_hnode *ht; 268 269 for (ht = rtnl_dereference(tp_c->hlist); 270 ht; 271 ht = rtnl_dereference(ht->next)) 272 if (ht->handle == handle) 273 break; 274 275 return ht; 276 } 277 278 static struct tc_u_knode *u32_lookup_key(struct tc_u_hnode *ht, u32 handle) 279 { 280 unsigned int sel; 281 struct tc_u_knode *n = NULL; 282 283 sel = TC_U32_HASH(handle); 284 if (sel > ht->divisor) 285 goto out; 286 287 for (n = rtnl_dereference(ht->ht[sel]); 288 n; 289 n = rtnl_dereference(n->next)) 290 if (n->handle == handle) 291 break; 292 out: 293 return n; 294 } 295 296 297 static void *u32_get(struct tcf_proto *tp, u32 handle) 298 { 299 struct tc_u_hnode *ht; 300 struct tc_u_common *tp_c = tp->data; 301 302 if (TC_U32_HTID(handle) == TC_U32_ROOT) 303 ht = rtnl_dereference(tp->root); 304 else 305 ht = u32_lookup_ht(tp_c, TC_U32_HTID(handle)); 306 307 if (!ht) 308 return NULL; 309 310 if (TC_U32_KEY(handle) == 0) 311 return ht; 312 313 return u32_lookup_key(ht, handle); 314 } 315 316 /* Protected by rtnl lock */ 317 static u32 gen_new_htid(struct tc_u_common *tp_c, struct tc_u_hnode *ptr) 318 { 319 int id = idr_alloc_cyclic(&tp_c->handle_idr, ptr, 1, 0x7FF, GFP_KERNEL); 320 if (id < 0) 321 return 0; 322 return (id | 0x800U) << 20; 323 } 324 325 static struct hlist_head *tc_u_common_hash; 326 327 #define U32_HASH_SHIFT 10 328 #define U32_HASH_SIZE (1 << U32_HASH_SHIFT) 329 330 static void *tc_u_common_ptr(const struct tcf_proto *tp) 331 { 332 struct tcf_block *block = tp->chain->block; 333 334 /* The block sharing is currently supported only 335 * for classless qdiscs. In that case we use block 336 * for tc_u_common identification. In case the 337 * block is not shared, block->q is a valid pointer 338 * and we can use that. That works for classful qdiscs. 339 */ 340 if (tcf_block_shared(block)) 341 return block; 342 else 343 return block->q; 344 } 345 346 static struct hlist_head *tc_u_hash(void *key) 347 { 348 return tc_u_common_hash + hash_ptr(key, U32_HASH_SHIFT); 349 } 350 351 static struct tc_u_common *tc_u_common_find(void *key) 352 { 353 struct tc_u_common *tc; 354 hlist_for_each_entry(tc, tc_u_hash(key), hnode) { 355 if (tc->ptr == key) 356 return tc; 357 } 358 return NULL; 359 } 360 361 static int u32_init(struct tcf_proto *tp) 362 { 363 struct tc_u_hnode *root_ht; 364 void *key = tc_u_common_ptr(tp); 365 struct tc_u_common *tp_c = tc_u_common_find(key); 366 367 root_ht = kzalloc(sizeof(*root_ht), GFP_KERNEL); 368 if (root_ht == NULL) 369 return -ENOBUFS; 370 371 root_ht->refcnt++; 372 root_ht->handle = tp_c ? gen_new_htid(tp_c, root_ht) : 0x80000000; 373 root_ht->prio = tp->prio; 374 root_ht->is_root = true; 375 idr_init(&root_ht->handle_idr); 376 377 if (tp_c == NULL) { 378 tp_c = kzalloc(sizeof(*tp_c), GFP_KERNEL); 379 if (tp_c == NULL) { 380 kfree(root_ht); 381 return -ENOBUFS; 382 } 383 tp_c->ptr = key; 384 INIT_HLIST_NODE(&tp_c->hnode); 385 idr_init(&tp_c->handle_idr); 386 387 hlist_add_head(&tp_c->hnode, tc_u_hash(key)); 388 } 389 390 tp_c->refcnt++; 391 RCU_INIT_POINTER(root_ht->next, tp_c->hlist); 392 rcu_assign_pointer(tp_c->hlist, root_ht); 393 394 root_ht->refcnt++; 395 rcu_assign_pointer(tp->root, root_ht); 396 tp->data = tp_c; 397 return 0; 398 } 399 400 static int u32_destroy_key(struct tc_u_knode *n, bool free_pf) 401 { 402 struct tc_u_hnode *ht = rtnl_dereference(n->ht_down); 403 404 tcf_exts_destroy(&n->exts); 405 tcf_exts_put_net(&n->exts); 406 if (ht && --ht->refcnt == 0) 407 kfree(ht); 408 #ifdef CONFIG_CLS_U32_PERF 409 if (free_pf) 410 free_percpu(n->pf); 411 #endif 412 #ifdef CONFIG_CLS_U32_MARK 413 if (free_pf) 414 free_percpu(n->pcpu_success); 415 #endif 416 kfree(n); 417 return 0; 418 } 419 420 /* u32_delete_key_rcu should be called when free'ing a copied 421 * version of a tc_u_knode obtained from u32_init_knode(). When 422 * copies are obtained from u32_init_knode() the statistics are 423 * shared between the old and new copies to allow readers to 424 * continue to update the statistics during the copy. To support 425 * this the u32_delete_key_rcu variant does not free the percpu 426 * statistics. 427 */ 428 static void u32_delete_key_work(struct work_struct *work) 429 { 430 struct tc_u_knode *key = container_of(to_rcu_work(work), 431 struct tc_u_knode, 432 rwork); 433 rtnl_lock(); 434 u32_destroy_key(key, false); 435 rtnl_unlock(); 436 } 437 438 /* u32_delete_key_freepf_rcu is the rcu callback variant 439 * that free's the entire structure including the statistics 440 * percpu variables. Only use this if the key is not a copy 441 * returned by u32_init_knode(). See u32_delete_key_rcu() 442 * for the variant that should be used with keys return from 443 * u32_init_knode() 444 */ 445 static void u32_delete_key_freepf_work(struct work_struct *work) 446 { 447 struct tc_u_knode *key = container_of(to_rcu_work(work), 448 struct tc_u_knode, 449 rwork); 450 rtnl_lock(); 451 u32_destroy_key(key, true); 452 rtnl_unlock(); 453 } 454 455 static int u32_delete_key(struct tcf_proto *tp, struct tc_u_knode *key) 456 { 457 struct tc_u_common *tp_c = tp->data; 458 struct tc_u_knode __rcu **kp; 459 struct tc_u_knode *pkp; 460 struct tc_u_hnode *ht = rtnl_dereference(key->ht_up); 461 462 if (ht) { 463 kp = &ht->ht[TC_U32_HASH(key->handle)]; 464 for (pkp = rtnl_dereference(*kp); pkp; 465 kp = &pkp->next, pkp = rtnl_dereference(*kp)) { 466 if (pkp == key) { 467 RCU_INIT_POINTER(*kp, key->next); 468 tp_c->knodes--; 469 470 tcf_unbind_filter(tp, &key->res); 471 idr_remove(&ht->handle_idr, key->handle); 472 tcf_exts_get_net(&key->exts); 473 tcf_queue_work(&key->rwork, u32_delete_key_freepf_work); 474 return 0; 475 } 476 } 477 } 478 WARN_ON(1); 479 return 0; 480 } 481 482 static void u32_clear_hw_hnode(struct tcf_proto *tp, struct tc_u_hnode *h, 483 struct netlink_ext_ack *extack) 484 { 485 struct tcf_block *block = tp->chain->block; 486 struct tc_cls_u32_offload cls_u32 = {}; 487 488 tc_cls_common_offload_init(&cls_u32.common, tp, h->flags, extack); 489 cls_u32.command = TC_CLSU32_DELETE_HNODE; 490 cls_u32.hnode.divisor = h->divisor; 491 cls_u32.hnode.handle = h->handle; 492 cls_u32.hnode.prio = h->prio; 493 494 tc_setup_cb_call(block, TC_SETUP_CLSU32, &cls_u32, false); 495 } 496 497 static int u32_replace_hw_hnode(struct tcf_proto *tp, struct tc_u_hnode *h, 498 u32 flags, struct netlink_ext_ack *extack) 499 { 500 struct tcf_block *block = tp->chain->block; 501 struct tc_cls_u32_offload cls_u32 = {}; 502 bool skip_sw = tc_skip_sw(flags); 503 bool offloaded = false; 504 int err; 505 506 tc_cls_common_offload_init(&cls_u32.common, tp, flags, extack); 507 cls_u32.command = TC_CLSU32_NEW_HNODE; 508 cls_u32.hnode.divisor = h->divisor; 509 cls_u32.hnode.handle = h->handle; 510 cls_u32.hnode.prio = h->prio; 511 512 err = tc_setup_cb_call(block, TC_SETUP_CLSU32, &cls_u32, skip_sw); 513 if (err < 0) { 514 u32_clear_hw_hnode(tp, h, NULL); 515 return err; 516 } else if (err > 0) { 517 offloaded = true; 518 } 519 520 if (skip_sw && !offloaded) 521 return -EINVAL; 522 523 return 0; 524 } 525 526 static void u32_remove_hw_knode(struct tcf_proto *tp, struct tc_u_knode *n, 527 struct netlink_ext_ack *extack) 528 { 529 struct tcf_block *block = tp->chain->block; 530 struct tc_cls_u32_offload cls_u32 = {}; 531 532 tc_cls_common_offload_init(&cls_u32.common, tp, n->flags, extack); 533 cls_u32.command = TC_CLSU32_DELETE_KNODE; 534 cls_u32.knode.handle = n->handle; 535 536 tc_setup_cb_call(block, TC_SETUP_CLSU32, &cls_u32, false); 537 tcf_block_offload_dec(block, &n->flags); 538 } 539 540 static int u32_replace_hw_knode(struct tcf_proto *tp, struct tc_u_knode *n, 541 u32 flags, struct netlink_ext_ack *extack) 542 { 543 struct tc_u_hnode *ht = rtnl_dereference(n->ht_down); 544 struct tcf_block *block = tp->chain->block; 545 struct tc_cls_u32_offload cls_u32 = {}; 546 bool skip_sw = tc_skip_sw(flags); 547 int err; 548 549 tc_cls_common_offload_init(&cls_u32.common, tp, flags, extack); 550 cls_u32.command = TC_CLSU32_REPLACE_KNODE; 551 cls_u32.knode.handle = n->handle; 552 cls_u32.knode.fshift = n->fshift; 553 #ifdef CONFIG_CLS_U32_MARK 554 cls_u32.knode.val = n->val; 555 cls_u32.knode.mask = n->mask; 556 #else 557 cls_u32.knode.val = 0; 558 cls_u32.knode.mask = 0; 559 #endif 560 cls_u32.knode.sel = &n->sel; 561 cls_u32.knode.res = &n->res; 562 cls_u32.knode.exts = &n->exts; 563 if (n->ht_down) 564 cls_u32.knode.link_handle = ht->handle; 565 566 err = tc_setup_cb_call(block, TC_SETUP_CLSU32, &cls_u32, skip_sw); 567 if (err < 0) { 568 u32_remove_hw_knode(tp, n, NULL); 569 return err; 570 } else if (err > 0) { 571 n->in_hw_count = err; 572 tcf_block_offload_inc(block, &n->flags); 573 } 574 575 if (skip_sw && !(n->flags & TCA_CLS_FLAGS_IN_HW)) 576 return -EINVAL; 577 578 return 0; 579 } 580 581 static void u32_clear_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht, 582 struct netlink_ext_ack *extack) 583 { 584 struct tc_u_common *tp_c = tp->data; 585 struct tc_u_knode *n; 586 unsigned int h; 587 588 for (h = 0; h <= ht->divisor; h++) { 589 while ((n = rtnl_dereference(ht->ht[h])) != NULL) { 590 RCU_INIT_POINTER(ht->ht[h], 591 rtnl_dereference(n->next)); 592 tp_c->knodes--; 593 tcf_unbind_filter(tp, &n->res); 594 u32_remove_hw_knode(tp, n, extack); 595 idr_remove(&ht->handle_idr, n->handle); 596 if (tcf_exts_get_net(&n->exts)) 597 tcf_queue_work(&n->rwork, u32_delete_key_freepf_work); 598 else 599 u32_destroy_key(n, true); 600 } 601 } 602 } 603 604 static int u32_destroy_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht, 605 struct netlink_ext_ack *extack) 606 { 607 struct tc_u_common *tp_c = tp->data; 608 struct tc_u_hnode __rcu **hn; 609 struct tc_u_hnode *phn; 610 611 WARN_ON(--ht->refcnt); 612 613 u32_clear_hnode(tp, ht, extack); 614 615 hn = &tp_c->hlist; 616 for (phn = rtnl_dereference(*hn); 617 phn; 618 hn = &phn->next, phn = rtnl_dereference(*hn)) { 619 if (phn == ht) { 620 u32_clear_hw_hnode(tp, ht, extack); 621 idr_destroy(&ht->handle_idr); 622 idr_remove(&tp_c->handle_idr, ht->handle); 623 RCU_INIT_POINTER(*hn, ht->next); 624 kfree_rcu(ht, rcu); 625 return 0; 626 } 627 } 628 629 return -ENOENT; 630 } 631 632 static void u32_destroy(struct tcf_proto *tp, bool rtnl_held, 633 struct netlink_ext_ack *extack) 634 { 635 struct tc_u_common *tp_c = tp->data; 636 struct tc_u_hnode *root_ht = rtnl_dereference(tp->root); 637 638 WARN_ON(root_ht == NULL); 639 640 if (root_ht && --root_ht->refcnt == 1) 641 u32_destroy_hnode(tp, root_ht, extack); 642 643 if (--tp_c->refcnt == 0) { 644 struct tc_u_hnode *ht; 645 646 hlist_del(&tp_c->hnode); 647 648 while ((ht = rtnl_dereference(tp_c->hlist)) != NULL) { 649 u32_clear_hnode(tp, ht, extack); 650 RCU_INIT_POINTER(tp_c->hlist, ht->next); 651 652 /* u32_destroy_key() will later free ht for us, if it's 653 * still referenced by some knode 654 */ 655 if (--ht->refcnt == 0) 656 kfree_rcu(ht, rcu); 657 } 658 659 idr_destroy(&tp_c->handle_idr); 660 kfree(tp_c); 661 } 662 663 tp->data = NULL; 664 } 665 666 static int u32_delete(struct tcf_proto *tp, void *arg, bool *last, 667 bool rtnl_held, struct netlink_ext_ack *extack) 668 { 669 struct tc_u_hnode *ht = arg; 670 struct tc_u_common *tp_c = tp->data; 671 int ret = 0; 672 673 if (TC_U32_KEY(ht->handle)) { 674 u32_remove_hw_knode(tp, (struct tc_u_knode *)ht, extack); 675 ret = u32_delete_key(tp, (struct tc_u_knode *)ht); 676 goto out; 677 } 678 679 if (ht->is_root) { 680 NL_SET_ERR_MSG_MOD(extack, "Not allowed to delete root node"); 681 return -EINVAL; 682 } 683 684 if (ht->refcnt == 1) { 685 u32_destroy_hnode(tp, ht, extack); 686 } else { 687 NL_SET_ERR_MSG_MOD(extack, "Can not delete in-use filter"); 688 return -EBUSY; 689 } 690 691 out: 692 *last = tp_c->refcnt == 1 && tp_c->knodes == 0; 693 return ret; 694 } 695 696 static u32 gen_new_kid(struct tc_u_hnode *ht, u32 htid) 697 { 698 u32 index = htid | 0x800; 699 u32 max = htid | 0xFFF; 700 701 if (idr_alloc_u32(&ht->handle_idr, NULL, &index, max, GFP_KERNEL)) { 702 index = htid + 1; 703 if (idr_alloc_u32(&ht->handle_idr, NULL, &index, max, 704 GFP_KERNEL)) 705 index = max; 706 } 707 708 return index; 709 } 710 711 static const struct nla_policy u32_policy[TCA_U32_MAX + 1] = { 712 [TCA_U32_CLASSID] = { .type = NLA_U32 }, 713 [TCA_U32_HASH] = { .type = NLA_U32 }, 714 [TCA_U32_LINK] = { .type = NLA_U32 }, 715 [TCA_U32_DIVISOR] = { .type = NLA_U32 }, 716 [TCA_U32_SEL] = { .len = sizeof(struct tc_u32_sel) }, 717 [TCA_U32_INDEV] = { .type = NLA_STRING, .len = IFNAMSIZ }, 718 [TCA_U32_MARK] = { .len = sizeof(struct tc_u32_mark) }, 719 [TCA_U32_FLAGS] = { .type = NLA_U32 }, 720 }; 721 722 static int u32_set_parms(struct net *net, struct tcf_proto *tp, 723 unsigned long base, 724 struct tc_u_knode *n, struct nlattr **tb, 725 struct nlattr *est, bool ovr, 726 struct netlink_ext_ack *extack) 727 { 728 int err; 729 730 err = tcf_exts_validate(net, tp, tb, est, &n->exts, ovr, true, extack); 731 if (err < 0) 732 return err; 733 734 if (tb[TCA_U32_LINK]) { 735 u32 handle = nla_get_u32(tb[TCA_U32_LINK]); 736 struct tc_u_hnode *ht_down = NULL, *ht_old; 737 738 if (TC_U32_KEY(handle)) { 739 NL_SET_ERR_MSG_MOD(extack, "u32 Link handle must be a hash table"); 740 return -EINVAL; 741 } 742 743 if (handle) { 744 ht_down = u32_lookup_ht(tp->data, handle); 745 746 if (!ht_down) { 747 NL_SET_ERR_MSG_MOD(extack, "Link hash table not found"); 748 return -EINVAL; 749 } 750 if (ht_down->is_root) { 751 NL_SET_ERR_MSG_MOD(extack, "Not linking to root node"); 752 return -EINVAL; 753 } 754 ht_down->refcnt++; 755 } 756 757 ht_old = rtnl_dereference(n->ht_down); 758 rcu_assign_pointer(n->ht_down, ht_down); 759 760 if (ht_old) 761 ht_old->refcnt--; 762 } 763 if (tb[TCA_U32_CLASSID]) { 764 n->res.classid = nla_get_u32(tb[TCA_U32_CLASSID]); 765 tcf_bind_filter(tp, &n->res, base); 766 } 767 768 #ifdef CONFIG_NET_CLS_IND 769 if (tb[TCA_U32_INDEV]) { 770 int ret; 771 ret = tcf_change_indev(net, tb[TCA_U32_INDEV], extack); 772 if (ret < 0) 773 return -EINVAL; 774 n->ifindex = ret; 775 } 776 #endif 777 return 0; 778 } 779 780 static void u32_replace_knode(struct tcf_proto *tp, struct tc_u_common *tp_c, 781 struct tc_u_knode *n) 782 { 783 struct tc_u_knode __rcu **ins; 784 struct tc_u_knode *pins; 785 struct tc_u_hnode *ht; 786 787 if (TC_U32_HTID(n->handle) == TC_U32_ROOT) 788 ht = rtnl_dereference(tp->root); 789 else 790 ht = u32_lookup_ht(tp_c, TC_U32_HTID(n->handle)); 791 792 ins = &ht->ht[TC_U32_HASH(n->handle)]; 793 794 /* The node must always exist for it to be replaced if this is not the 795 * case then something went very wrong elsewhere. 796 */ 797 for (pins = rtnl_dereference(*ins); ; 798 ins = &pins->next, pins = rtnl_dereference(*ins)) 799 if (pins->handle == n->handle) 800 break; 801 802 idr_replace(&ht->handle_idr, n, n->handle); 803 RCU_INIT_POINTER(n->next, pins->next); 804 rcu_assign_pointer(*ins, n); 805 } 806 807 static struct tc_u_knode *u32_init_knode(struct net *net, struct tcf_proto *tp, 808 struct tc_u_knode *n) 809 { 810 struct tc_u_hnode *ht = rtnl_dereference(n->ht_down); 811 struct tc_u32_sel *s = &n->sel; 812 struct tc_u_knode *new; 813 814 new = kzalloc(sizeof(*n) + s->nkeys*sizeof(struct tc_u32_key), 815 GFP_KERNEL); 816 817 if (!new) 818 return NULL; 819 820 RCU_INIT_POINTER(new->next, n->next); 821 new->handle = n->handle; 822 RCU_INIT_POINTER(new->ht_up, n->ht_up); 823 824 #ifdef CONFIG_NET_CLS_IND 825 new->ifindex = n->ifindex; 826 #endif 827 new->fshift = n->fshift; 828 new->res = n->res; 829 new->flags = n->flags; 830 RCU_INIT_POINTER(new->ht_down, ht); 831 832 /* bump reference count as long as we hold pointer to structure */ 833 if (ht) 834 ht->refcnt++; 835 836 #ifdef CONFIG_CLS_U32_PERF 837 /* Statistics may be incremented by readers during update 838 * so we must keep them in tact. When the node is later destroyed 839 * a special destroy call must be made to not free the pf memory. 840 */ 841 new->pf = n->pf; 842 #endif 843 844 #ifdef CONFIG_CLS_U32_MARK 845 new->val = n->val; 846 new->mask = n->mask; 847 /* Similarly success statistics must be moved as pointers */ 848 new->pcpu_success = n->pcpu_success; 849 #endif 850 memcpy(&new->sel, s, sizeof(*s) + s->nkeys*sizeof(struct tc_u32_key)); 851 852 if (tcf_exts_init(&new->exts, net, TCA_U32_ACT, TCA_U32_POLICE)) { 853 kfree(new); 854 return NULL; 855 } 856 857 return new; 858 } 859 860 static int u32_change(struct net *net, struct sk_buff *in_skb, 861 struct tcf_proto *tp, unsigned long base, u32 handle, 862 struct nlattr **tca, void **arg, bool ovr, bool rtnl_held, 863 struct netlink_ext_ack *extack) 864 { 865 struct tc_u_common *tp_c = tp->data; 866 struct tc_u_hnode *ht; 867 struct tc_u_knode *n; 868 struct tc_u32_sel *s; 869 struct nlattr *opt = tca[TCA_OPTIONS]; 870 struct nlattr *tb[TCA_U32_MAX + 1]; 871 u32 htid, flags = 0; 872 size_t sel_size; 873 int err; 874 #ifdef CONFIG_CLS_U32_PERF 875 size_t size; 876 #endif 877 878 if (!opt) { 879 if (handle) { 880 NL_SET_ERR_MSG_MOD(extack, "Filter handle requires options"); 881 return -EINVAL; 882 } else { 883 return 0; 884 } 885 } 886 887 err = nla_parse_nested(tb, TCA_U32_MAX, opt, u32_policy, extack); 888 if (err < 0) 889 return err; 890 891 if (tb[TCA_U32_FLAGS]) { 892 flags = nla_get_u32(tb[TCA_U32_FLAGS]); 893 if (!tc_flags_valid(flags)) { 894 NL_SET_ERR_MSG_MOD(extack, "Invalid filter flags"); 895 return -EINVAL; 896 } 897 } 898 899 n = *arg; 900 if (n) { 901 struct tc_u_knode *new; 902 903 if (TC_U32_KEY(n->handle) == 0) { 904 NL_SET_ERR_MSG_MOD(extack, "Key node id cannot be zero"); 905 return -EINVAL; 906 } 907 908 if ((n->flags ^ flags) & 909 ~(TCA_CLS_FLAGS_IN_HW | TCA_CLS_FLAGS_NOT_IN_HW)) { 910 NL_SET_ERR_MSG_MOD(extack, "Key node flags do not match passed flags"); 911 return -EINVAL; 912 } 913 914 new = u32_init_knode(net, tp, n); 915 if (!new) 916 return -ENOMEM; 917 918 err = u32_set_parms(net, tp, base, new, tb, 919 tca[TCA_RATE], ovr, extack); 920 921 if (err) { 922 u32_destroy_key(new, false); 923 return err; 924 } 925 926 err = u32_replace_hw_knode(tp, new, flags, extack); 927 if (err) { 928 u32_destroy_key(new, false); 929 return err; 930 } 931 932 if (!tc_in_hw(new->flags)) 933 new->flags |= TCA_CLS_FLAGS_NOT_IN_HW; 934 935 u32_replace_knode(tp, tp_c, new); 936 tcf_unbind_filter(tp, &n->res); 937 tcf_exts_get_net(&n->exts); 938 tcf_queue_work(&n->rwork, u32_delete_key_work); 939 return 0; 940 } 941 942 if (tb[TCA_U32_DIVISOR]) { 943 unsigned int divisor = nla_get_u32(tb[TCA_U32_DIVISOR]); 944 945 if (!is_power_of_2(divisor)) { 946 NL_SET_ERR_MSG_MOD(extack, "Divisor is not a power of 2"); 947 return -EINVAL; 948 } 949 if (divisor-- > 0x100) { 950 NL_SET_ERR_MSG_MOD(extack, "Exceeded maximum 256 hash buckets"); 951 return -EINVAL; 952 } 953 if (TC_U32_KEY(handle)) { 954 NL_SET_ERR_MSG_MOD(extack, "Divisor can only be used on a hash table"); 955 return -EINVAL; 956 } 957 ht = kzalloc(sizeof(*ht) + divisor*sizeof(void *), GFP_KERNEL); 958 if (ht == NULL) 959 return -ENOBUFS; 960 if (handle == 0) { 961 handle = gen_new_htid(tp->data, ht); 962 if (handle == 0) { 963 kfree(ht); 964 return -ENOMEM; 965 } 966 } else { 967 err = idr_alloc_u32(&tp_c->handle_idr, ht, &handle, 968 handle, GFP_KERNEL); 969 if (err) { 970 kfree(ht); 971 return err; 972 } 973 } 974 ht->refcnt = 1; 975 ht->divisor = divisor; 976 ht->handle = handle; 977 ht->prio = tp->prio; 978 idr_init(&ht->handle_idr); 979 ht->flags = flags; 980 981 err = u32_replace_hw_hnode(tp, ht, flags, extack); 982 if (err) { 983 idr_remove(&tp_c->handle_idr, handle); 984 kfree(ht); 985 return err; 986 } 987 988 RCU_INIT_POINTER(ht->next, tp_c->hlist); 989 rcu_assign_pointer(tp_c->hlist, ht); 990 *arg = ht; 991 992 return 0; 993 } 994 995 if (tb[TCA_U32_HASH]) { 996 htid = nla_get_u32(tb[TCA_U32_HASH]); 997 if (TC_U32_HTID(htid) == TC_U32_ROOT) { 998 ht = rtnl_dereference(tp->root); 999 htid = ht->handle; 1000 } else { 1001 ht = u32_lookup_ht(tp->data, TC_U32_HTID(htid)); 1002 if (!ht) { 1003 NL_SET_ERR_MSG_MOD(extack, "Specified hash table not found"); 1004 return -EINVAL; 1005 } 1006 } 1007 } else { 1008 ht = rtnl_dereference(tp->root); 1009 htid = ht->handle; 1010 } 1011 1012 if (ht->divisor < TC_U32_HASH(htid)) { 1013 NL_SET_ERR_MSG_MOD(extack, "Specified hash table buckets exceed configured value"); 1014 return -EINVAL; 1015 } 1016 1017 if (handle) { 1018 if (TC_U32_HTID(handle) && TC_U32_HTID(handle ^ htid)) { 1019 NL_SET_ERR_MSG_MOD(extack, "Handle specified hash table address mismatch"); 1020 return -EINVAL; 1021 } 1022 handle = htid | TC_U32_NODE(handle); 1023 err = idr_alloc_u32(&ht->handle_idr, NULL, &handle, handle, 1024 GFP_KERNEL); 1025 if (err) 1026 return err; 1027 } else 1028 handle = gen_new_kid(ht, htid); 1029 1030 if (tb[TCA_U32_SEL] == NULL) { 1031 NL_SET_ERR_MSG_MOD(extack, "Selector not specified"); 1032 err = -EINVAL; 1033 goto erridr; 1034 } 1035 1036 s = nla_data(tb[TCA_U32_SEL]); 1037 sel_size = struct_size(s, keys, s->nkeys); 1038 if (nla_len(tb[TCA_U32_SEL]) < sel_size) { 1039 err = -EINVAL; 1040 goto erridr; 1041 } 1042 1043 n = kzalloc(offsetof(typeof(*n), sel) + sel_size, GFP_KERNEL); 1044 if (n == NULL) { 1045 err = -ENOBUFS; 1046 goto erridr; 1047 } 1048 1049 #ifdef CONFIG_CLS_U32_PERF 1050 size = sizeof(struct tc_u32_pcnt) + s->nkeys * sizeof(u64); 1051 n->pf = __alloc_percpu(size, __alignof__(struct tc_u32_pcnt)); 1052 if (!n->pf) { 1053 err = -ENOBUFS; 1054 goto errfree; 1055 } 1056 #endif 1057 1058 memcpy(&n->sel, s, sel_size); 1059 RCU_INIT_POINTER(n->ht_up, ht); 1060 n->handle = handle; 1061 n->fshift = s->hmask ? ffs(ntohl(s->hmask)) - 1 : 0; 1062 n->flags = flags; 1063 1064 err = tcf_exts_init(&n->exts, net, TCA_U32_ACT, TCA_U32_POLICE); 1065 if (err < 0) 1066 goto errout; 1067 1068 #ifdef CONFIG_CLS_U32_MARK 1069 n->pcpu_success = alloc_percpu(u32); 1070 if (!n->pcpu_success) { 1071 err = -ENOMEM; 1072 goto errout; 1073 } 1074 1075 if (tb[TCA_U32_MARK]) { 1076 struct tc_u32_mark *mark; 1077 1078 mark = nla_data(tb[TCA_U32_MARK]); 1079 n->val = mark->val; 1080 n->mask = mark->mask; 1081 } 1082 #endif 1083 1084 err = u32_set_parms(net, tp, base, n, tb, tca[TCA_RATE], ovr, 1085 extack); 1086 if (err == 0) { 1087 struct tc_u_knode __rcu **ins; 1088 struct tc_u_knode *pins; 1089 1090 err = u32_replace_hw_knode(tp, n, flags, extack); 1091 if (err) 1092 goto errhw; 1093 1094 if (!tc_in_hw(n->flags)) 1095 n->flags |= TCA_CLS_FLAGS_NOT_IN_HW; 1096 1097 ins = &ht->ht[TC_U32_HASH(handle)]; 1098 for (pins = rtnl_dereference(*ins); pins; 1099 ins = &pins->next, pins = rtnl_dereference(*ins)) 1100 if (TC_U32_NODE(handle) < TC_U32_NODE(pins->handle)) 1101 break; 1102 1103 RCU_INIT_POINTER(n->next, pins); 1104 rcu_assign_pointer(*ins, n); 1105 tp_c->knodes++; 1106 *arg = n; 1107 return 0; 1108 } 1109 1110 errhw: 1111 #ifdef CONFIG_CLS_U32_MARK 1112 free_percpu(n->pcpu_success); 1113 #endif 1114 1115 errout: 1116 tcf_exts_destroy(&n->exts); 1117 #ifdef CONFIG_CLS_U32_PERF 1118 errfree: 1119 free_percpu(n->pf); 1120 #endif 1121 kfree(n); 1122 erridr: 1123 idr_remove(&ht->handle_idr, handle); 1124 return err; 1125 } 1126 1127 static void u32_walk(struct tcf_proto *tp, struct tcf_walker *arg, 1128 bool rtnl_held) 1129 { 1130 struct tc_u_common *tp_c = tp->data; 1131 struct tc_u_hnode *ht; 1132 struct tc_u_knode *n; 1133 unsigned int h; 1134 1135 if (arg->stop) 1136 return; 1137 1138 for (ht = rtnl_dereference(tp_c->hlist); 1139 ht; 1140 ht = rtnl_dereference(ht->next)) { 1141 if (ht->prio != tp->prio) 1142 continue; 1143 if (arg->count >= arg->skip) { 1144 if (arg->fn(tp, ht, arg) < 0) { 1145 arg->stop = 1; 1146 return; 1147 } 1148 } 1149 arg->count++; 1150 for (h = 0; h <= ht->divisor; h++) { 1151 for (n = rtnl_dereference(ht->ht[h]); 1152 n; 1153 n = rtnl_dereference(n->next)) { 1154 if (arg->count < arg->skip) { 1155 arg->count++; 1156 continue; 1157 } 1158 if (arg->fn(tp, n, arg) < 0) { 1159 arg->stop = 1; 1160 return; 1161 } 1162 arg->count++; 1163 } 1164 } 1165 } 1166 } 1167 1168 static int u32_reoffload_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht, 1169 bool add, tc_setup_cb_t *cb, void *cb_priv, 1170 struct netlink_ext_ack *extack) 1171 { 1172 struct tc_cls_u32_offload cls_u32 = {}; 1173 int err; 1174 1175 tc_cls_common_offload_init(&cls_u32.common, tp, ht->flags, extack); 1176 cls_u32.command = add ? TC_CLSU32_NEW_HNODE : TC_CLSU32_DELETE_HNODE; 1177 cls_u32.hnode.divisor = ht->divisor; 1178 cls_u32.hnode.handle = ht->handle; 1179 cls_u32.hnode.prio = ht->prio; 1180 1181 err = cb(TC_SETUP_CLSU32, &cls_u32, cb_priv); 1182 if (err && add && tc_skip_sw(ht->flags)) 1183 return err; 1184 1185 return 0; 1186 } 1187 1188 static int u32_reoffload_knode(struct tcf_proto *tp, struct tc_u_knode *n, 1189 bool add, tc_setup_cb_t *cb, void *cb_priv, 1190 struct netlink_ext_ack *extack) 1191 { 1192 struct tc_u_hnode *ht = rtnl_dereference(n->ht_down); 1193 struct tcf_block *block = tp->chain->block; 1194 struct tc_cls_u32_offload cls_u32 = {}; 1195 int err; 1196 1197 tc_cls_common_offload_init(&cls_u32.common, tp, n->flags, extack); 1198 cls_u32.command = add ? 1199 TC_CLSU32_REPLACE_KNODE : TC_CLSU32_DELETE_KNODE; 1200 cls_u32.knode.handle = n->handle; 1201 1202 if (add) { 1203 cls_u32.knode.fshift = n->fshift; 1204 #ifdef CONFIG_CLS_U32_MARK 1205 cls_u32.knode.val = n->val; 1206 cls_u32.knode.mask = n->mask; 1207 #else 1208 cls_u32.knode.val = 0; 1209 cls_u32.knode.mask = 0; 1210 #endif 1211 cls_u32.knode.sel = &n->sel; 1212 cls_u32.knode.res = &n->res; 1213 cls_u32.knode.exts = &n->exts; 1214 if (n->ht_down) 1215 cls_u32.knode.link_handle = ht->handle; 1216 } 1217 1218 err = cb(TC_SETUP_CLSU32, &cls_u32, cb_priv); 1219 if (err) { 1220 if (add && tc_skip_sw(n->flags)) 1221 return err; 1222 return 0; 1223 } 1224 1225 tc_cls_offload_cnt_update(block, &n->in_hw_count, &n->flags, add); 1226 1227 return 0; 1228 } 1229 1230 static int u32_reoffload(struct tcf_proto *tp, bool add, tc_setup_cb_t *cb, 1231 void *cb_priv, struct netlink_ext_ack *extack) 1232 { 1233 struct tc_u_common *tp_c = tp->data; 1234 struct tc_u_hnode *ht; 1235 struct tc_u_knode *n; 1236 unsigned int h; 1237 int err; 1238 1239 for (ht = rtnl_dereference(tp_c->hlist); 1240 ht; 1241 ht = rtnl_dereference(ht->next)) { 1242 if (ht->prio != tp->prio) 1243 continue; 1244 1245 /* When adding filters to a new dev, try to offload the 1246 * hashtable first. When removing, do the filters before the 1247 * hashtable. 1248 */ 1249 if (add && !tc_skip_hw(ht->flags)) { 1250 err = u32_reoffload_hnode(tp, ht, add, cb, cb_priv, 1251 extack); 1252 if (err) 1253 return err; 1254 } 1255 1256 for (h = 0; h <= ht->divisor; h++) { 1257 for (n = rtnl_dereference(ht->ht[h]); 1258 n; 1259 n = rtnl_dereference(n->next)) { 1260 if (tc_skip_hw(n->flags)) 1261 continue; 1262 1263 err = u32_reoffload_knode(tp, n, add, cb, 1264 cb_priv, extack); 1265 if (err) 1266 return err; 1267 } 1268 } 1269 1270 if (!add && !tc_skip_hw(ht->flags)) 1271 u32_reoffload_hnode(tp, ht, add, cb, cb_priv, extack); 1272 } 1273 1274 return 0; 1275 } 1276 1277 static void u32_bind_class(void *fh, u32 classid, unsigned long cl) 1278 { 1279 struct tc_u_knode *n = fh; 1280 1281 if (n && n->res.classid == classid) 1282 n->res.class = cl; 1283 } 1284 1285 static int u32_dump(struct net *net, struct tcf_proto *tp, void *fh, 1286 struct sk_buff *skb, struct tcmsg *t, bool rtnl_held) 1287 { 1288 struct tc_u_knode *n = fh; 1289 struct tc_u_hnode *ht_up, *ht_down; 1290 struct nlattr *nest; 1291 1292 if (n == NULL) 1293 return skb->len; 1294 1295 t->tcm_handle = n->handle; 1296 1297 nest = nla_nest_start(skb, TCA_OPTIONS); 1298 if (nest == NULL) 1299 goto nla_put_failure; 1300 1301 if (TC_U32_KEY(n->handle) == 0) { 1302 struct tc_u_hnode *ht = fh; 1303 u32 divisor = ht->divisor + 1; 1304 1305 if (nla_put_u32(skb, TCA_U32_DIVISOR, divisor)) 1306 goto nla_put_failure; 1307 } else { 1308 #ifdef CONFIG_CLS_U32_PERF 1309 struct tc_u32_pcnt *gpf; 1310 int cpu; 1311 #endif 1312 1313 if (nla_put(skb, TCA_U32_SEL, 1314 sizeof(n->sel) + n->sel.nkeys*sizeof(struct tc_u32_key), 1315 &n->sel)) 1316 goto nla_put_failure; 1317 1318 ht_up = rtnl_dereference(n->ht_up); 1319 if (ht_up) { 1320 u32 htid = n->handle & 0xFFFFF000; 1321 if (nla_put_u32(skb, TCA_U32_HASH, htid)) 1322 goto nla_put_failure; 1323 } 1324 if (n->res.classid && 1325 nla_put_u32(skb, TCA_U32_CLASSID, n->res.classid)) 1326 goto nla_put_failure; 1327 1328 ht_down = rtnl_dereference(n->ht_down); 1329 if (ht_down && 1330 nla_put_u32(skb, TCA_U32_LINK, ht_down->handle)) 1331 goto nla_put_failure; 1332 1333 if (n->flags && nla_put_u32(skb, TCA_U32_FLAGS, n->flags)) 1334 goto nla_put_failure; 1335 1336 #ifdef CONFIG_CLS_U32_MARK 1337 if ((n->val || n->mask)) { 1338 struct tc_u32_mark mark = {.val = n->val, 1339 .mask = n->mask, 1340 .success = 0}; 1341 int cpum; 1342 1343 for_each_possible_cpu(cpum) { 1344 __u32 cnt = *per_cpu_ptr(n->pcpu_success, cpum); 1345 1346 mark.success += cnt; 1347 } 1348 1349 if (nla_put(skb, TCA_U32_MARK, sizeof(mark), &mark)) 1350 goto nla_put_failure; 1351 } 1352 #endif 1353 1354 if (tcf_exts_dump(skb, &n->exts) < 0) 1355 goto nla_put_failure; 1356 1357 #ifdef CONFIG_NET_CLS_IND 1358 if (n->ifindex) { 1359 struct net_device *dev; 1360 dev = __dev_get_by_index(net, n->ifindex); 1361 if (dev && nla_put_string(skb, TCA_U32_INDEV, dev->name)) 1362 goto nla_put_failure; 1363 } 1364 #endif 1365 #ifdef CONFIG_CLS_U32_PERF 1366 gpf = kzalloc(sizeof(struct tc_u32_pcnt) + 1367 n->sel.nkeys * sizeof(u64), 1368 GFP_KERNEL); 1369 if (!gpf) 1370 goto nla_put_failure; 1371 1372 for_each_possible_cpu(cpu) { 1373 int i; 1374 struct tc_u32_pcnt *pf = per_cpu_ptr(n->pf, cpu); 1375 1376 gpf->rcnt += pf->rcnt; 1377 gpf->rhit += pf->rhit; 1378 for (i = 0; i < n->sel.nkeys; i++) 1379 gpf->kcnts[i] += pf->kcnts[i]; 1380 } 1381 1382 if (nla_put_64bit(skb, TCA_U32_PCNT, 1383 sizeof(struct tc_u32_pcnt) + 1384 n->sel.nkeys * sizeof(u64), 1385 gpf, TCA_U32_PAD)) { 1386 kfree(gpf); 1387 goto nla_put_failure; 1388 } 1389 kfree(gpf); 1390 #endif 1391 } 1392 1393 nla_nest_end(skb, nest); 1394 1395 if (TC_U32_KEY(n->handle)) 1396 if (tcf_exts_dump_stats(skb, &n->exts) < 0) 1397 goto nla_put_failure; 1398 return skb->len; 1399 1400 nla_put_failure: 1401 nla_nest_cancel(skb, nest); 1402 return -1; 1403 } 1404 1405 static struct tcf_proto_ops cls_u32_ops __read_mostly = { 1406 .kind = "u32", 1407 .classify = u32_classify, 1408 .init = u32_init, 1409 .destroy = u32_destroy, 1410 .get = u32_get, 1411 .change = u32_change, 1412 .delete = u32_delete, 1413 .walk = u32_walk, 1414 .reoffload = u32_reoffload, 1415 .dump = u32_dump, 1416 .bind_class = u32_bind_class, 1417 .owner = THIS_MODULE, 1418 }; 1419 1420 static int __init init_u32(void) 1421 { 1422 int i, ret; 1423 1424 pr_info("u32 classifier\n"); 1425 #ifdef CONFIG_CLS_U32_PERF 1426 pr_info(" Performance counters on\n"); 1427 #endif 1428 #ifdef CONFIG_NET_CLS_IND 1429 pr_info(" input device check on\n"); 1430 #endif 1431 #ifdef CONFIG_NET_CLS_ACT 1432 pr_info(" Actions configured\n"); 1433 #endif 1434 tc_u_common_hash = kvmalloc_array(U32_HASH_SIZE, 1435 sizeof(struct hlist_head), 1436 GFP_KERNEL); 1437 if (!tc_u_common_hash) 1438 return -ENOMEM; 1439 1440 for (i = 0; i < U32_HASH_SIZE; i++) 1441 INIT_HLIST_HEAD(&tc_u_common_hash[i]); 1442 1443 ret = register_tcf_proto_ops(&cls_u32_ops); 1444 if (ret) 1445 kvfree(tc_u_common_hash); 1446 return ret; 1447 } 1448 1449 static void __exit exit_u32(void) 1450 { 1451 unregister_tcf_proto_ops(&cls_u32_ops); 1452 kvfree(tc_u_common_hash); 1453 } 1454 1455 module_init(init_u32) 1456 module_exit(exit_u32) 1457 MODULE_LICENSE("GPL"); 1458