xref: /openbmc/linux/net/sched/cls_flow.c (revision d003d772)
1 /*
2  * net/sched/cls_flow.c		Generic flow classifier
3  *
4  * Copyright (c) 2007, 2008 Patrick McHardy <kaber@trash.net>
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/kernel.h>
13 #include <linux/init.h>
14 #include <linux/list.h>
15 #include <linux/jhash.h>
16 #include <linux/random.h>
17 #include <linux/pkt_cls.h>
18 #include <linux/skbuff.h>
19 #include <linux/in.h>
20 #include <linux/ip.h>
21 #include <linux/ipv6.h>
22 #include <linux/if_vlan.h>
23 #include <linux/slab.h>
24 #include <linux/module.h>
25 #include <net/inet_sock.h>
26 
27 #include <net/pkt_cls.h>
28 #include <net/ip.h>
29 #include <net/route.h>
30 #include <net/flow_dissector.h>
31 
32 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
33 #include <net/netfilter/nf_conntrack.h>
34 #endif
35 
36 struct flow_head {
37 	struct list_head	filters;
38 	struct rcu_head		rcu;
39 };
40 
41 struct flow_filter {
42 	struct list_head	list;
43 	struct tcf_exts		exts;
44 	struct tcf_ematch_tree	ematches;
45 	struct tcf_proto	*tp;
46 	struct timer_list	perturb_timer;
47 	u32			perturb_period;
48 	u32			handle;
49 
50 	u32			nkeys;
51 	u32			keymask;
52 	u32			mode;
53 	u32			mask;
54 	u32			xor;
55 	u32			rshift;
56 	u32			addend;
57 	u32			divisor;
58 	u32			baseclass;
59 	u32			hashrnd;
60 	struct rcu_work		rwork;
61 };
62 
63 static inline u32 addr_fold(void *addr)
64 {
65 	unsigned long a = (unsigned long)addr;
66 
67 	return (a & 0xFFFFFFFF) ^ (BITS_PER_LONG > 32 ? a >> 32 : 0);
68 }
69 
70 static u32 flow_get_src(const struct sk_buff *skb, const struct flow_keys *flow)
71 {
72 	__be32 src = flow_get_u32_src(flow);
73 
74 	if (src)
75 		return ntohl(src);
76 
77 	return addr_fold(skb->sk);
78 }
79 
80 static u32 flow_get_dst(const struct sk_buff *skb, const struct flow_keys *flow)
81 {
82 	__be32 dst = flow_get_u32_dst(flow);
83 
84 	if (dst)
85 		return ntohl(dst);
86 
87 	return addr_fold(skb_dst(skb)) ^ (__force u16) tc_skb_protocol(skb);
88 }
89 
90 static u32 flow_get_proto(const struct sk_buff *skb,
91 			  const struct flow_keys *flow)
92 {
93 	return flow->basic.ip_proto;
94 }
95 
96 static u32 flow_get_proto_src(const struct sk_buff *skb,
97 			      const struct flow_keys *flow)
98 {
99 	if (flow->ports.ports)
100 		return ntohs(flow->ports.src);
101 
102 	return addr_fold(skb->sk);
103 }
104 
105 static u32 flow_get_proto_dst(const struct sk_buff *skb,
106 			      const struct flow_keys *flow)
107 {
108 	if (flow->ports.ports)
109 		return ntohs(flow->ports.dst);
110 
111 	return addr_fold(skb_dst(skb)) ^ (__force u16) tc_skb_protocol(skb);
112 }
113 
114 static u32 flow_get_iif(const struct sk_buff *skb)
115 {
116 	return skb->skb_iif;
117 }
118 
119 static u32 flow_get_priority(const struct sk_buff *skb)
120 {
121 	return skb->priority;
122 }
123 
124 static u32 flow_get_mark(const struct sk_buff *skb)
125 {
126 	return skb->mark;
127 }
128 
129 static u32 flow_get_nfct(const struct sk_buff *skb)
130 {
131 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
132 	return addr_fold(skb_nfct(skb));
133 #else
134 	return 0;
135 #endif
136 }
137 
138 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
139 #define CTTUPLE(skb, member)						\
140 ({									\
141 	enum ip_conntrack_info ctinfo;					\
142 	const struct nf_conn *ct = nf_ct_get(skb, &ctinfo);		\
143 	if (ct == NULL)							\
144 		goto fallback;						\
145 	ct->tuplehash[CTINFO2DIR(ctinfo)].tuple.member;			\
146 })
147 #else
148 #define CTTUPLE(skb, member)						\
149 ({									\
150 	goto fallback;							\
151 	0;								\
152 })
153 #endif
154 
155 static u32 flow_get_nfct_src(const struct sk_buff *skb,
156 			     const struct flow_keys *flow)
157 {
158 	switch (tc_skb_protocol(skb)) {
159 	case htons(ETH_P_IP):
160 		return ntohl(CTTUPLE(skb, src.u3.ip));
161 	case htons(ETH_P_IPV6):
162 		return ntohl(CTTUPLE(skb, src.u3.ip6[3]));
163 	}
164 fallback:
165 	return flow_get_src(skb, flow);
166 }
167 
168 static u32 flow_get_nfct_dst(const struct sk_buff *skb,
169 			     const struct flow_keys *flow)
170 {
171 	switch (tc_skb_protocol(skb)) {
172 	case htons(ETH_P_IP):
173 		return ntohl(CTTUPLE(skb, dst.u3.ip));
174 	case htons(ETH_P_IPV6):
175 		return ntohl(CTTUPLE(skb, dst.u3.ip6[3]));
176 	}
177 fallback:
178 	return flow_get_dst(skb, flow);
179 }
180 
181 static u32 flow_get_nfct_proto_src(const struct sk_buff *skb,
182 				   const struct flow_keys *flow)
183 {
184 	return ntohs(CTTUPLE(skb, src.u.all));
185 fallback:
186 	return flow_get_proto_src(skb, flow);
187 }
188 
189 static u32 flow_get_nfct_proto_dst(const struct sk_buff *skb,
190 				   const struct flow_keys *flow)
191 {
192 	return ntohs(CTTUPLE(skb, dst.u.all));
193 fallback:
194 	return flow_get_proto_dst(skb, flow);
195 }
196 
197 static u32 flow_get_rtclassid(const struct sk_buff *skb)
198 {
199 #ifdef CONFIG_IP_ROUTE_CLASSID
200 	if (skb_dst(skb))
201 		return skb_dst(skb)->tclassid;
202 #endif
203 	return 0;
204 }
205 
206 static u32 flow_get_skuid(const struct sk_buff *skb)
207 {
208 	struct sock *sk = skb_to_full_sk(skb);
209 
210 	if (sk && sk->sk_socket && sk->sk_socket->file) {
211 		kuid_t skuid = sk->sk_socket->file->f_cred->fsuid;
212 
213 		return from_kuid(&init_user_ns, skuid);
214 	}
215 	return 0;
216 }
217 
218 static u32 flow_get_skgid(const struct sk_buff *skb)
219 {
220 	struct sock *sk = skb_to_full_sk(skb);
221 
222 	if (sk && sk->sk_socket && sk->sk_socket->file) {
223 		kgid_t skgid = sk->sk_socket->file->f_cred->fsgid;
224 
225 		return from_kgid(&init_user_ns, skgid);
226 	}
227 	return 0;
228 }
229 
230 static u32 flow_get_vlan_tag(const struct sk_buff *skb)
231 {
232 	u16 uninitialized_var(tag);
233 
234 	if (vlan_get_tag(skb, &tag) < 0)
235 		return 0;
236 	return tag & VLAN_VID_MASK;
237 }
238 
239 static u32 flow_get_rxhash(struct sk_buff *skb)
240 {
241 	return skb_get_hash(skb);
242 }
243 
244 static u32 flow_key_get(struct sk_buff *skb, int key, struct flow_keys *flow)
245 {
246 	switch (key) {
247 	case FLOW_KEY_SRC:
248 		return flow_get_src(skb, flow);
249 	case FLOW_KEY_DST:
250 		return flow_get_dst(skb, flow);
251 	case FLOW_KEY_PROTO:
252 		return flow_get_proto(skb, flow);
253 	case FLOW_KEY_PROTO_SRC:
254 		return flow_get_proto_src(skb, flow);
255 	case FLOW_KEY_PROTO_DST:
256 		return flow_get_proto_dst(skb, flow);
257 	case FLOW_KEY_IIF:
258 		return flow_get_iif(skb);
259 	case FLOW_KEY_PRIORITY:
260 		return flow_get_priority(skb);
261 	case FLOW_KEY_MARK:
262 		return flow_get_mark(skb);
263 	case FLOW_KEY_NFCT:
264 		return flow_get_nfct(skb);
265 	case FLOW_KEY_NFCT_SRC:
266 		return flow_get_nfct_src(skb, flow);
267 	case FLOW_KEY_NFCT_DST:
268 		return flow_get_nfct_dst(skb, flow);
269 	case FLOW_KEY_NFCT_PROTO_SRC:
270 		return flow_get_nfct_proto_src(skb, flow);
271 	case FLOW_KEY_NFCT_PROTO_DST:
272 		return flow_get_nfct_proto_dst(skb, flow);
273 	case FLOW_KEY_RTCLASSID:
274 		return flow_get_rtclassid(skb);
275 	case FLOW_KEY_SKUID:
276 		return flow_get_skuid(skb);
277 	case FLOW_KEY_SKGID:
278 		return flow_get_skgid(skb);
279 	case FLOW_KEY_VLAN_TAG:
280 		return flow_get_vlan_tag(skb);
281 	case FLOW_KEY_RXHASH:
282 		return flow_get_rxhash(skb);
283 	default:
284 		WARN_ON(1);
285 		return 0;
286 	}
287 }
288 
289 #define FLOW_KEYS_NEEDED ((1 << FLOW_KEY_SRC) | 		\
290 			  (1 << FLOW_KEY_DST) |			\
291 			  (1 << FLOW_KEY_PROTO) |		\
292 			  (1 << FLOW_KEY_PROTO_SRC) |		\
293 			  (1 << FLOW_KEY_PROTO_DST) | 		\
294 			  (1 << FLOW_KEY_NFCT_SRC) |		\
295 			  (1 << FLOW_KEY_NFCT_DST) |		\
296 			  (1 << FLOW_KEY_NFCT_PROTO_SRC) |	\
297 			  (1 << FLOW_KEY_NFCT_PROTO_DST))
298 
299 static int flow_classify(struct sk_buff *skb, const struct tcf_proto *tp,
300 			 struct tcf_result *res)
301 {
302 	struct flow_head *head = rcu_dereference_bh(tp->root);
303 	struct flow_filter *f;
304 	u32 keymask;
305 	u32 classid;
306 	unsigned int n, key;
307 	int r;
308 
309 	list_for_each_entry_rcu(f, &head->filters, list) {
310 		u32 keys[FLOW_KEY_MAX + 1];
311 		struct flow_keys flow_keys;
312 
313 		if (!tcf_em_tree_match(skb, &f->ematches, NULL))
314 			continue;
315 
316 		keymask = f->keymask;
317 		if (keymask & FLOW_KEYS_NEEDED)
318 			skb_flow_dissect_flow_keys(skb, &flow_keys, 0);
319 
320 		for (n = 0; n < f->nkeys; n++) {
321 			key = ffs(keymask) - 1;
322 			keymask &= ~(1 << key);
323 			keys[n] = flow_key_get(skb, key, &flow_keys);
324 		}
325 
326 		if (f->mode == FLOW_MODE_HASH)
327 			classid = jhash2(keys, f->nkeys, f->hashrnd);
328 		else {
329 			classid = keys[0];
330 			classid = (classid & f->mask) ^ f->xor;
331 			classid = (classid >> f->rshift) + f->addend;
332 		}
333 
334 		if (f->divisor)
335 			classid %= f->divisor;
336 
337 		res->class   = 0;
338 		res->classid = TC_H_MAKE(f->baseclass, f->baseclass + classid);
339 
340 		r = tcf_exts_exec(skb, &f->exts, res);
341 		if (r < 0)
342 			continue;
343 		return r;
344 	}
345 	return -1;
346 }
347 
348 static void flow_perturbation(struct timer_list *t)
349 {
350 	struct flow_filter *f = from_timer(f, t, perturb_timer);
351 
352 	get_random_bytes(&f->hashrnd, 4);
353 	if (f->perturb_period)
354 		mod_timer(&f->perturb_timer, jiffies + f->perturb_period);
355 }
356 
357 static const struct nla_policy flow_policy[TCA_FLOW_MAX + 1] = {
358 	[TCA_FLOW_KEYS]		= { .type = NLA_U32 },
359 	[TCA_FLOW_MODE]		= { .type = NLA_U32 },
360 	[TCA_FLOW_BASECLASS]	= { .type = NLA_U32 },
361 	[TCA_FLOW_RSHIFT]	= { .type = NLA_U32 },
362 	[TCA_FLOW_ADDEND]	= { .type = NLA_U32 },
363 	[TCA_FLOW_MASK]		= { .type = NLA_U32 },
364 	[TCA_FLOW_XOR]		= { .type = NLA_U32 },
365 	[TCA_FLOW_DIVISOR]	= { .type = NLA_U32 },
366 	[TCA_FLOW_ACT]		= { .type = NLA_NESTED },
367 	[TCA_FLOW_POLICE]	= { .type = NLA_NESTED },
368 	[TCA_FLOW_EMATCHES]	= { .type = NLA_NESTED },
369 	[TCA_FLOW_PERTURB]	= { .type = NLA_U32 },
370 };
371 
372 static void __flow_destroy_filter(struct flow_filter *f)
373 {
374 	del_timer_sync(&f->perturb_timer);
375 	tcf_exts_destroy(&f->exts);
376 	tcf_em_tree_destroy(&f->ematches);
377 	tcf_exts_put_net(&f->exts);
378 	kfree(f);
379 }
380 
381 static void flow_destroy_filter_work(struct work_struct *work)
382 {
383 	struct flow_filter *f = container_of(to_rcu_work(work),
384 					     struct flow_filter,
385 					     rwork);
386 	rtnl_lock();
387 	__flow_destroy_filter(f);
388 	rtnl_unlock();
389 }
390 
391 static int flow_change(struct net *net, struct sk_buff *in_skb,
392 		       struct tcf_proto *tp, unsigned long base,
393 		       u32 handle, struct nlattr **tca,
394 		       void **arg, bool ovr, bool rtnl_held,
395 		       struct netlink_ext_ack *extack)
396 {
397 	struct flow_head *head = rtnl_dereference(tp->root);
398 	struct flow_filter *fold, *fnew;
399 	struct nlattr *opt = tca[TCA_OPTIONS];
400 	struct nlattr *tb[TCA_FLOW_MAX + 1];
401 	unsigned int nkeys = 0;
402 	unsigned int perturb_period = 0;
403 	u32 baseclass = 0;
404 	u32 keymask = 0;
405 	u32 mode;
406 	int err;
407 
408 	if (opt == NULL)
409 		return -EINVAL;
410 
411 	err = nla_parse_nested(tb, TCA_FLOW_MAX, opt, flow_policy, NULL);
412 	if (err < 0)
413 		return err;
414 
415 	if (tb[TCA_FLOW_BASECLASS]) {
416 		baseclass = nla_get_u32(tb[TCA_FLOW_BASECLASS]);
417 		if (TC_H_MIN(baseclass) == 0)
418 			return -EINVAL;
419 	}
420 
421 	if (tb[TCA_FLOW_KEYS]) {
422 		keymask = nla_get_u32(tb[TCA_FLOW_KEYS]);
423 
424 		nkeys = hweight32(keymask);
425 		if (nkeys == 0)
426 			return -EINVAL;
427 
428 		if (fls(keymask) - 1 > FLOW_KEY_MAX)
429 			return -EOPNOTSUPP;
430 
431 		if ((keymask & (FLOW_KEY_SKUID|FLOW_KEY_SKGID)) &&
432 		    sk_user_ns(NETLINK_CB(in_skb).sk) != &init_user_ns)
433 			return -EOPNOTSUPP;
434 	}
435 
436 	fnew = kzalloc(sizeof(*fnew), GFP_KERNEL);
437 	if (!fnew)
438 		return -ENOBUFS;
439 
440 	err = tcf_em_tree_validate(tp, tb[TCA_FLOW_EMATCHES], &fnew->ematches);
441 	if (err < 0)
442 		goto err1;
443 
444 	err = tcf_exts_init(&fnew->exts, net, TCA_FLOW_ACT, TCA_FLOW_POLICE);
445 	if (err < 0)
446 		goto err2;
447 
448 	err = tcf_exts_validate(net, tp, tb, tca[TCA_RATE], &fnew->exts, ovr,
449 				true, extack);
450 	if (err < 0)
451 		goto err2;
452 
453 	fold = *arg;
454 	if (fold) {
455 		err = -EINVAL;
456 		if (fold->handle != handle && handle)
457 			goto err2;
458 
459 		/* Copy fold into fnew */
460 		fnew->tp = fold->tp;
461 		fnew->handle = fold->handle;
462 		fnew->nkeys = fold->nkeys;
463 		fnew->keymask = fold->keymask;
464 		fnew->mode = fold->mode;
465 		fnew->mask = fold->mask;
466 		fnew->xor = fold->xor;
467 		fnew->rshift = fold->rshift;
468 		fnew->addend = fold->addend;
469 		fnew->divisor = fold->divisor;
470 		fnew->baseclass = fold->baseclass;
471 		fnew->hashrnd = fold->hashrnd;
472 
473 		mode = fold->mode;
474 		if (tb[TCA_FLOW_MODE])
475 			mode = nla_get_u32(tb[TCA_FLOW_MODE]);
476 		if (mode != FLOW_MODE_HASH && nkeys > 1)
477 			goto err2;
478 
479 		if (mode == FLOW_MODE_HASH)
480 			perturb_period = fold->perturb_period;
481 		if (tb[TCA_FLOW_PERTURB]) {
482 			if (mode != FLOW_MODE_HASH)
483 				goto err2;
484 			perturb_period = nla_get_u32(tb[TCA_FLOW_PERTURB]) * HZ;
485 		}
486 	} else {
487 		err = -EINVAL;
488 		if (!handle)
489 			goto err2;
490 		if (!tb[TCA_FLOW_KEYS])
491 			goto err2;
492 
493 		mode = FLOW_MODE_MAP;
494 		if (tb[TCA_FLOW_MODE])
495 			mode = nla_get_u32(tb[TCA_FLOW_MODE]);
496 		if (mode != FLOW_MODE_HASH && nkeys > 1)
497 			goto err2;
498 
499 		if (tb[TCA_FLOW_PERTURB]) {
500 			if (mode != FLOW_MODE_HASH)
501 				goto err2;
502 			perturb_period = nla_get_u32(tb[TCA_FLOW_PERTURB]) * HZ;
503 		}
504 
505 		if (TC_H_MAJ(baseclass) == 0) {
506 			struct Qdisc *q = tcf_block_q(tp->chain->block);
507 
508 			baseclass = TC_H_MAKE(q->handle, baseclass);
509 		}
510 		if (TC_H_MIN(baseclass) == 0)
511 			baseclass = TC_H_MAKE(baseclass, 1);
512 
513 		fnew->handle = handle;
514 		fnew->mask  = ~0U;
515 		fnew->tp = tp;
516 		get_random_bytes(&fnew->hashrnd, 4);
517 	}
518 
519 	timer_setup(&fnew->perturb_timer, flow_perturbation, TIMER_DEFERRABLE);
520 
521 	tcf_block_netif_keep_dst(tp->chain->block);
522 
523 	if (tb[TCA_FLOW_KEYS]) {
524 		fnew->keymask = keymask;
525 		fnew->nkeys   = nkeys;
526 	}
527 
528 	fnew->mode = mode;
529 
530 	if (tb[TCA_FLOW_MASK])
531 		fnew->mask = nla_get_u32(tb[TCA_FLOW_MASK]);
532 	if (tb[TCA_FLOW_XOR])
533 		fnew->xor = nla_get_u32(tb[TCA_FLOW_XOR]);
534 	if (tb[TCA_FLOW_RSHIFT])
535 		fnew->rshift = nla_get_u32(tb[TCA_FLOW_RSHIFT]);
536 	if (tb[TCA_FLOW_ADDEND])
537 		fnew->addend = nla_get_u32(tb[TCA_FLOW_ADDEND]);
538 
539 	if (tb[TCA_FLOW_DIVISOR])
540 		fnew->divisor = nla_get_u32(tb[TCA_FLOW_DIVISOR]);
541 	if (baseclass)
542 		fnew->baseclass = baseclass;
543 
544 	fnew->perturb_period = perturb_period;
545 	if (perturb_period)
546 		mod_timer(&fnew->perturb_timer, jiffies + perturb_period);
547 
548 	if (!*arg)
549 		list_add_tail_rcu(&fnew->list, &head->filters);
550 	else
551 		list_replace_rcu(&fold->list, &fnew->list);
552 
553 	*arg = fnew;
554 
555 	if (fold) {
556 		tcf_exts_get_net(&fold->exts);
557 		tcf_queue_work(&fold->rwork, flow_destroy_filter_work);
558 	}
559 	return 0;
560 
561 err2:
562 	tcf_exts_destroy(&fnew->exts);
563 	tcf_em_tree_destroy(&fnew->ematches);
564 err1:
565 	kfree(fnew);
566 	return err;
567 }
568 
569 static int flow_delete(struct tcf_proto *tp, void *arg, bool *last,
570 		       bool rtnl_held, struct netlink_ext_ack *extack)
571 {
572 	struct flow_head *head = rtnl_dereference(tp->root);
573 	struct flow_filter *f = arg;
574 
575 	list_del_rcu(&f->list);
576 	tcf_exts_get_net(&f->exts);
577 	tcf_queue_work(&f->rwork, flow_destroy_filter_work);
578 	*last = list_empty(&head->filters);
579 	return 0;
580 }
581 
582 static int flow_init(struct tcf_proto *tp)
583 {
584 	struct flow_head *head;
585 
586 	head = kzalloc(sizeof(*head), GFP_KERNEL);
587 	if (head == NULL)
588 		return -ENOBUFS;
589 	INIT_LIST_HEAD(&head->filters);
590 	rcu_assign_pointer(tp->root, head);
591 	return 0;
592 }
593 
594 static void flow_destroy(struct tcf_proto *tp, bool rtnl_held,
595 			 struct netlink_ext_ack *extack)
596 {
597 	struct flow_head *head = rtnl_dereference(tp->root);
598 	struct flow_filter *f, *next;
599 
600 	list_for_each_entry_safe(f, next, &head->filters, list) {
601 		list_del_rcu(&f->list);
602 		if (tcf_exts_get_net(&f->exts))
603 			tcf_queue_work(&f->rwork, flow_destroy_filter_work);
604 		else
605 			__flow_destroy_filter(f);
606 	}
607 	kfree_rcu(head, rcu);
608 }
609 
610 static void *flow_get(struct tcf_proto *tp, u32 handle)
611 {
612 	struct flow_head *head = rtnl_dereference(tp->root);
613 	struct flow_filter *f;
614 
615 	list_for_each_entry(f, &head->filters, list)
616 		if (f->handle == handle)
617 			return f;
618 	return NULL;
619 }
620 
621 static int flow_dump(struct net *net, struct tcf_proto *tp, void *fh,
622 		     struct sk_buff *skb, struct tcmsg *t, bool rtnl_held)
623 {
624 	struct flow_filter *f = fh;
625 	struct nlattr *nest;
626 
627 	if (f == NULL)
628 		return skb->len;
629 
630 	t->tcm_handle = f->handle;
631 
632 	nest = nla_nest_start(skb, TCA_OPTIONS);
633 	if (nest == NULL)
634 		goto nla_put_failure;
635 
636 	if (nla_put_u32(skb, TCA_FLOW_KEYS, f->keymask) ||
637 	    nla_put_u32(skb, TCA_FLOW_MODE, f->mode))
638 		goto nla_put_failure;
639 
640 	if (f->mask != ~0 || f->xor != 0) {
641 		if (nla_put_u32(skb, TCA_FLOW_MASK, f->mask) ||
642 		    nla_put_u32(skb, TCA_FLOW_XOR, f->xor))
643 			goto nla_put_failure;
644 	}
645 	if (f->rshift &&
646 	    nla_put_u32(skb, TCA_FLOW_RSHIFT, f->rshift))
647 		goto nla_put_failure;
648 	if (f->addend &&
649 	    nla_put_u32(skb, TCA_FLOW_ADDEND, f->addend))
650 		goto nla_put_failure;
651 
652 	if (f->divisor &&
653 	    nla_put_u32(skb, TCA_FLOW_DIVISOR, f->divisor))
654 		goto nla_put_failure;
655 	if (f->baseclass &&
656 	    nla_put_u32(skb, TCA_FLOW_BASECLASS, f->baseclass))
657 		goto nla_put_failure;
658 
659 	if (f->perturb_period &&
660 	    nla_put_u32(skb, TCA_FLOW_PERTURB, f->perturb_period / HZ))
661 		goto nla_put_failure;
662 
663 	if (tcf_exts_dump(skb, &f->exts) < 0)
664 		goto nla_put_failure;
665 #ifdef CONFIG_NET_EMATCH
666 	if (f->ematches.hdr.nmatches &&
667 	    tcf_em_tree_dump(skb, &f->ematches, TCA_FLOW_EMATCHES) < 0)
668 		goto nla_put_failure;
669 #endif
670 	nla_nest_end(skb, nest);
671 
672 	if (tcf_exts_dump_stats(skb, &f->exts) < 0)
673 		goto nla_put_failure;
674 
675 	return skb->len;
676 
677 nla_put_failure:
678 	nla_nest_cancel(skb, nest);
679 	return -1;
680 }
681 
682 static void flow_walk(struct tcf_proto *tp, struct tcf_walker *arg,
683 		      bool rtnl_held)
684 {
685 	struct flow_head *head = rtnl_dereference(tp->root);
686 	struct flow_filter *f;
687 
688 	list_for_each_entry(f, &head->filters, list) {
689 		if (arg->count < arg->skip)
690 			goto skip;
691 		if (arg->fn(tp, f, arg) < 0) {
692 			arg->stop = 1;
693 			break;
694 		}
695 skip:
696 		arg->count++;
697 	}
698 }
699 
700 static struct tcf_proto_ops cls_flow_ops __read_mostly = {
701 	.kind		= "flow",
702 	.classify	= flow_classify,
703 	.init		= flow_init,
704 	.destroy	= flow_destroy,
705 	.change		= flow_change,
706 	.delete		= flow_delete,
707 	.get		= flow_get,
708 	.dump		= flow_dump,
709 	.walk		= flow_walk,
710 	.owner		= THIS_MODULE,
711 };
712 
713 static int __init cls_flow_init(void)
714 {
715 	return register_tcf_proto_ops(&cls_flow_ops);
716 }
717 
718 static void __exit cls_flow_exit(void)
719 {
720 	unregister_tcf_proto_ops(&cls_flow_ops);
721 }
722 
723 module_init(cls_flow_init);
724 module_exit(cls_flow_exit);
725 
726 MODULE_LICENSE("GPL");
727 MODULE_AUTHOR("Patrick McHardy <kaber@trash.net>");
728 MODULE_DESCRIPTION("TC flow classifier");
729