xref: /openbmc/linux/net/sched/cls_flow.c (revision b34e08d5)
1 /*
2  * net/sched/cls_flow.c		Generic flow classifier
3  *
4  * Copyright (c) 2007, 2008 Patrick McHardy <kaber@trash.net>
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/kernel.h>
13 #include <linux/init.h>
14 #include <linux/list.h>
15 #include <linux/jhash.h>
16 #include <linux/random.h>
17 #include <linux/pkt_cls.h>
18 #include <linux/skbuff.h>
19 #include <linux/in.h>
20 #include <linux/ip.h>
21 #include <linux/ipv6.h>
22 #include <linux/if_vlan.h>
23 #include <linux/slab.h>
24 #include <linux/module.h>
25 
26 #include <net/pkt_cls.h>
27 #include <net/ip.h>
28 #include <net/route.h>
29 #include <net/flow_keys.h>
30 
31 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
32 #include <net/netfilter/nf_conntrack.h>
33 #endif
34 
35 struct flow_head {
36 	struct list_head	filters;
37 };
38 
39 struct flow_filter {
40 	struct list_head	list;
41 	struct tcf_exts		exts;
42 	struct tcf_ematch_tree	ematches;
43 	struct timer_list	perturb_timer;
44 	u32			perturb_period;
45 	u32			handle;
46 
47 	u32			nkeys;
48 	u32			keymask;
49 	u32			mode;
50 	u32			mask;
51 	u32			xor;
52 	u32			rshift;
53 	u32			addend;
54 	u32			divisor;
55 	u32			baseclass;
56 	u32			hashrnd;
57 };
58 
59 static inline u32 addr_fold(void *addr)
60 {
61 	unsigned long a = (unsigned long)addr;
62 
63 	return (a & 0xFFFFFFFF) ^ (BITS_PER_LONG > 32 ? a >> 32 : 0);
64 }
65 
66 static u32 flow_get_src(const struct sk_buff *skb, const struct flow_keys *flow)
67 {
68 	if (flow->src)
69 		return ntohl(flow->src);
70 	return addr_fold(skb->sk);
71 }
72 
73 static u32 flow_get_dst(const struct sk_buff *skb, const struct flow_keys *flow)
74 {
75 	if (flow->dst)
76 		return ntohl(flow->dst);
77 	return addr_fold(skb_dst(skb)) ^ (__force u16)skb->protocol;
78 }
79 
80 static u32 flow_get_proto(const struct sk_buff *skb, const struct flow_keys *flow)
81 {
82 	return flow->ip_proto;
83 }
84 
85 static u32 flow_get_proto_src(const struct sk_buff *skb, const struct flow_keys *flow)
86 {
87 	if (flow->ports)
88 		return ntohs(flow->port16[0]);
89 
90 	return addr_fold(skb->sk);
91 }
92 
93 static u32 flow_get_proto_dst(const struct sk_buff *skb, const struct flow_keys *flow)
94 {
95 	if (flow->ports)
96 		return ntohs(flow->port16[1]);
97 
98 	return addr_fold(skb_dst(skb)) ^ (__force u16)skb->protocol;
99 }
100 
101 static u32 flow_get_iif(const struct sk_buff *skb)
102 {
103 	return skb->skb_iif;
104 }
105 
106 static u32 flow_get_priority(const struct sk_buff *skb)
107 {
108 	return skb->priority;
109 }
110 
111 static u32 flow_get_mark(const struct sk_buff *skb)
112 {
113 	return skb->mark;
114 }
115 
116 static u32 flow_get_nfct(const struct sk_buff *skb)
117 {
118 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
119 	return addr_fold(skb->nfct);
120 #else
121 	return 0;
122 #endif
123 }
124 
125 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
126 #define CTTUPLE(skb, member)						\
127 ({									\
128 	enum ip_conntrack_info ctinfo;					\
129 	const struct nf_conn *ct = nf_ct_get(skb, &ctinfo);		\
130 	if (ct == NULL)							\
131 		goto fallback;						\
132 	ct->tuplehash[CTINFO2DIR(ctinfo)].tuple.member;			\
133 })
134 #else
135 #define CTTUPLE(skb, member)						\
136 ({									\
137 	goto fallback;							\
138 	0;								\
139 })
140 #endif
141 
142 static u32 flow_get_nfct_src(const struct sk_buff *skb, const struct flow_keys *flow)
143 {
144 	switch (skb->protocol) {
145 	case htons(ETH_P_IP):
146 		return ntohl(CTTUPLE(skb, src.u3.ip));
147 	case htons(ETH_P_IPV6):
148 		return ntohl(CTTUPLE(skb, src.u3.ip6[3]));
149 	}
150 fallback:
151 	return flow_get_src(skb, flow);
152 }
153 
154 static u32 flow_get_nfct_dst(const struct sk_buff *skb, const struct flow_keys *flow)
155 {
156 	switch (skb->protocol) {
157 	case htons(ETH_P_IP):
158 		return ntohl(CTTUPLE(skb, dst.u3.ip));
159 	case htons(ETH_P_IPV6):
160 		return ntohl(CTTUPLE(skb, dst.u3.ip6[3]));
161 	}
162 fallback:
163 	return flow_get_dst(skb, flow);
164 }
165 
166 static u32 flow_get_nfct_proto_src(const struct sk_buff *skb, const struct flow_keys *flow)
167 {
168 	return ntohs(CTTUPLE(skb, src.u.all));
169 fallback:
170 	return flow_get_proto_src(skb, flow);
171 }
172 
173 static u32 flow_get_nfct_proto_dst(const struct sk_buff *skb, const struct flow_keys *flow)
174 {
175 	return ntohs(CTTUPLE(skb, dst.u.all));
176 fallback:
177 	return flow_get_proto_dst(skb, flow);
178 }
179 
180 static u32 flow_get_rtclassid(const struct sk_buff *skb)
181 {
182 #ifdef CONFIG_IP_ROUTE_CLASSID
183 	if (skb_dst(skb))
184 		return skb_dst(skb)->tclassid;
185 #endif
186 	return 0;
187 }
188 
189 static u32 flow_get_skuid(const struct sk_buff *skb)
190 {
191 	if (skb->sk && skb->sk->sk_socket && skb->sk->sk_socket->file) {
192 		kuid_t skuid = skb->sk->sk_socket->file->f_cred->fsuid;
193 		return from_kuid(&init_user_ns, skuid);
194 	}
195 	return 0;
196 }
197 
198 static u32 flow_get_skgid(const struct sk_buff *skb)
199 {
200 	if (skb->sk && skb->sk->sk_socket && skb->sk->sk_socket->file) {
201 		kgid_t skgid = skb->sk->sk_socket->file->f_cred->fsgid;
202 		return from_kgid(&init_user_ns, skgid);
203 	}
204 	return 0;
205 }
206 
207 static u32 flow_get_vlan_tag(const struct sk_buff *skb)
208 {
209 	u16 uninitialized_var(tag);
210 
211 	if (vlan_get_tag(skb, &tag) < 0)
212 		return 0;
213 	return tag & VLAN_VID_MASK;
214 }
215 
216 static u32 flow_get_rxhash(struct sk_buff *skb)
217 {
218 	return skb_get_hash(skb);
219 }
220 
221 static u32 flow_key_get(struct sk_buff *skb, int key, struct flow_keys *flow)
222 {
223 	switch (key) {
224 	case FLOW_KEY_SRC:
225 		return flow_get_src(skb, flow);
226 	case FLOW_KEY_DST:
227 		return flow_get_dst(skb, flow);
228 	case FLOW_KEY_PROTO:
229 		return flow_get_proto(skb, flow);
230 	case FLOW_KEY_PROTO_SRC:
231 		return flow_get_proto_src(skb, flow);
232 	case FLOW_KEY_PROTO_DST:
233 		return flow_get_proto_dst(skb, flow);
234 	case FLOW_KEY_IIF:
235 		return flow_get_iif(skb);
236 	case FLOW_KEY_PRIORITY:
237 		return flow_get_priority(skb);
238 	case FLOW_KEY_MARK:
239 		return flow_get_mark(skb);
240 	case FLOW_KEY_NFCT:
241 		return flow_get_nfct(skb);
242 	case FLOW_KEY_NFCT_SRC:
243 		return flow_get_nfct_src(skb, flow);
244 	case FLOW_KEY_NFCT_DST:
245 		return flow_get_nfct_dst(skb, flow);
246 	case FLOW_KEY_NFCT_PROTO_SRC:
247 		return flow_get_nfct_proto_src(skb, flow);
248 	case FLOW_KEY_NFCT_PROTO_DST:
249 		return flow_get_nfct_proto_dst(skb, flow);
250 	case FLOW_KEY_RTCLASSID:
251 		return flow_get_rtclassid(skb);
252 	case FLOW_KEY_SKUID:
253 		return flow_get_skuid(skb);
254 	case FLOW_KEY_SKGID:
255 		return flow_get_skgid(skb);
256 	case FLOW_KEY_VLAN_TAG:
257 		return flow_get_vlan_tag(skb);
258 	case FLOW_KEY_RXHASH:
259 		return flow_get_rxhash(skb);
260 	default:
261 		WARN_ON(1);
262 		return 0;
263 	}
264 }
265 
266 #define FLOW_KEYS_NEEDED ((1 << FLOW_KEY_SRC) | 		\
267 			  (1 << FLOW_KEY_DST) |			\
268 			  (1 << FLOW_KEY_PROTO) |		\
269 			  (1 << FLOW_KEY_PROTO_SRC) |		\
270 			  (1 << FLOW_KEY_PROTO_DST) | 		\
271 			  (1 << FLOW_KEY_NFCT_SRC) |		\
272 			  (1 << FLOW_KEY_NFCT_DST) |		\
273 			  (1 << FLOW_KEY_NFCT_PROTO_SRC) |	\
274 			  (1 << FLOW_KEY_NFCT_PROTO_DST))
275 
276 static int flow_classify(struct sk_buff *skb, const struct tcf_proto *tp,
277 			 struct tcf_result *res)
278 {
279 	struct flow_head *head = tp->root;
280 	struct flow_filter *f;
281 	u32 keymask;
282 	u32 classid;
283 	unsigned int n, key;
284 	int r;
285 
286 	list_for_each_entry(f, &head->filters, list) {
287 		u32 keys[FLOW_KEY_MAX + 1];
288 		struct flow_keys flow_keys;
289 
290 		if (!tcf_em_tree_match(skb, &f->ematches, NULL))
291 			continue;
292 
293 		keymask = f->keymask;
294 		if (keymask & FLOW_KEYS_NEEDED)
295 			skb_flow_dissect(skb, &flow_keys);
296 
297 		for (n = 0; n < f->nkeys; n++) {
298 			key = ffs(keymask) - 1;
299 			keymask &= ~(1 << key);
300 			keys[n] = flow_key_get(skb, key, &flow_keys);
301 		}
302 
303 		if (f->mode == FLOW_MODE_HASH)
304 			classid = jhash2(keys, f->nkeys, f->hashrnd);
305 		else {
306 			classid = keys[0];
307 			classid = (classid & f->mask) ^ f->xor;
308 			classid = (classid >> f->rshift) + f->addend;
309 		}
310 
311 		if (f->divisor)
312 			classid %= f->divisor;
313 
314 		res->class   = 0;
315 		res->classid = TC_H_MAKE(f->baseclass, f->baseclass + classid);
316 
317 		r = tcf_exts_exec(skb, &f->exts, res);
318 		if (r < 0)
319 			continue;
320 		return r;
321 	}
322 	return -1;
323 }
324 
325 static void flow_perturbation(unsigned long arg)
326 {
327 	struct flow_filter *f = (struct flow_filter *)arg;
328 
329 	get_random_bytes(&f->hashrnd, 4);
330 	if (f->perturb_period)
331 		mod_timer(&f->perturb_timer, jiffies + f->perturb_period);
332 }
333 
334 static const struct nla_policy flow_policy[TCA_FLOW_MAX + 1] = {
335 	[TCA_FLOW_KEYS]		= { .type = NLA_U32 },
336 	[TCA_FLOW_MODE]		= { .type = NLA_U32 },
337 	[TCA_FLOW_BASECLASS]	= { .type = NLA_U32 },
338 	[TCA_FLOW_RSHIFT]	= { .type = NLA_U32 },
339 	[TCA_FLOW_ADDEND]	= { .type = NLA_U32 },
340 	[TCA_FLOW_MASK]		= { .type = NLA_U32 },
341 	[TCA_FLOW_XOR]		= { .type = NLA_U32 },
342 	[TCA_FLOW_DIVISOR]	= { .type = NLA_U32 },
343 	[TCA_FLOW_ACT]		= { .type = NLA_NESTED },
344 	[TCA_FLOW_POLICE]	= { .type = NLA_NESTED },
345 	[TCA_FLOW_EMATCHES]	= { .type = NLA_NESTED },
346 	[TCA_FLOW_PERTURB]	= { .type = NLA_U32 },
347 };
348 
349 static int flow_change(struct net *net, struct sk_buff *in_skb,
350 		       struct tcf_proto *tp, unsigned long base,
351 		       u32 handle, struct nlattr **tca,
352 		       unsigned long *arg)
353 {
354 	struct flow_head *head = tp->root;
355 	struct flow_filter *f;
356 	struct nlattr *opt = tca[TCA_OPTIONS];
357 	struct nlattr *tb[TCA_FLOW_MAX + 1];
358 	struct tcf_exts e;
359 	struct tcf_ematch_tree t;
360 	unsigned int nkeys = 0;
361 	unsigned int perturb_period = 0;
362 	u32 baseclass = 0;
363 	u32 keymask = 0;
364 	u32 mode;
365 	int err;
366 
367 	if (opt == NULL)
368 		return -EINVAL;
369 
370 	err = nla_parse_nested(tb, TCA_FLOW_MAX, opt, flow_policy);
371 	if (err < 0)
372 		return err;
373 
374 	if (tb[TCA_FLOW_BASECLASS]) {
375 		baseclass = nla_get_u32(tb[TCA_FLOW_BASECLASS]);
376 		if (TC_H_MIN(baseclass) == 0)
377 			return -EINVAL;
378 	}
379 
380 	if (tb[TCA_FLOW_KEYS]) {
381 		keymask = nla_get_u32(tb[TCA_FLOW_KEYS]);
382 
383 		nkeys = hweight32(keymask);
384 		if (nkeys == 0)
385 			return -EINVAL;
386 
387 		if (fls(keymask) - 1 > FLOW_KEY_MAX)
388 			return -EOPNOTSUPP;
389 
390 		if ((keymask & (FLOW_KEY_SKUID|FLOW_KEY_SKGID)) &&
391 		    sk_user_ns(NETLINK_CB(in_skb).sk) != &init_user_ns)
392 			return -EOPNOTSUPP;
393 	}
394 
395 	tcf_exts_init(&e, TCA_FLOW_ACT, TCA_FLOW_POLICE);
396 	err = tcf_exts_validate(net, tp, tb, tca[TCA_RATE], &e);
397 	if (err < 0)
398 		return err;
399 
400 	err = tcf_em_tree_validate(tp, tb[TCA_FLOW_EMATCHES], &t);
401 	if (err < 0)
402 		goto err1;
403 
404 	f = (struct flow_filter *)*arg;
405 	if (f != NULL) {
406 		err = -EINVAL;
407 		if (f->handle != handle && handle)
408 			goto err2;
409 
410 		mode = f->mode;
411 		if (tb[TCA_FLOW_MODE])
412 			mode = nla_get_u32(tb[TCA_FLOW_MODE]);
413 		if (mode != FLOW_MODE_HASH && nkeys > 1)
414 			goto err2;
415 
416 		if (mode == FLOW_MODE_HASH)
417 			perturb_period = f->perturb_period;
418 		if (tb[TCA_FLOW_PERTURB]) {
419 			if (mode != FLOW_MODE_HASH)
420 				goto err2;
421 			perturb_period = nla_get_u32(tb[TCA_FLOW_PERTURB]) * HZ;
422 		}
423 	} else {
424 		err = -EINVAL;
425 		if (!handle)
426 			goto err2;
427 		if (!tb[TCA_FLOW_KEYS])
428 			goto err2;
429 
430 		mode = FLOW_MODE_MAP;
431 		if (tb[TCA_FLOW_MODE])
432 			mode = nla_get_u32(tb[TCA_FLOW_MODE]);
433 		if (mode != FLOW_MODE_HASH && nkeys > 1)
434 			goto err2;
435 
436 		if (tb[TCA_FLOW_PERTURB]) {
437 			if (mode != FLOW_MODE_HASH)
438 				goto err2;
439 			perturb_period = nla_get_u32(tb[TCA_FLOW_PERTURB]) * HZ;
440 		}
441 
442 		if (TC_H_MAJ(baseclass) == 0)
443 			baseclass = TC_H_MAKE(tp->q->handle, baseclass);
444 		if (TC_H_MIN(baseclass) == 0)
445 			baseclass = TC_H_MAKE(baseclass, 1);
446 
447 		err = -ENOBUFS;
448 		f = kzalloc(sizeof(*f), GFP_KERNEL);
449 		if (f == NULL)
450 			goto err2;
451 
452 		f->handle = handle;
453 		f->mask	  = ~0U;
454 		tcf_exts_init(&f->exts, TCA_FLOW_ACT, TCA_FLOW_POLICE);
455 
456 		get_random_bytes(&f->hashrnd, 4);
457 		f->perturb_timer.function = flow_perturbation;
458 		f->perturb_timer.data = (unsigned long)f;
459 		init_timer_deferrable(&f->perturb_timer);
460 	}
461 
462 	tcf_exts_change(tp, &f->exts, &e);
463 	tcf_em_tree_change(tp, &f->ematches, &t);
464 
465 	tcf_tree_lock(tp);
466 
467 	if (tb[TCA_FLOW_KEYS]) {
468 		f->keymask = keymask;
469 		f->nkeys   = nkeys;
470 	}
471 
472 	f->mode = mode;
473 
474 	if (tb[TCA_FLOW_MASK])
475 		f->mask = nla_get_u32(tb[TCA_FLOW_MASK]);
476 	if (tb[TCA_FLOW_XOR])
477 		f->xor = nla_get_u32(tb[TCA_FLOW_XOR]);
478 	if (tb[TCA_FLOW_RSHIFT])
479 		f->rshift = nla_get_u32(tb[TCA_FLOW_RSHIFT]);
480 	if (tb[TCA_FLOW_ADDEND])
481 		f->addend = nla_get_u32(tb[TCA_FLOW_ADDEND]);
482 
483 	if (tb[TCA_FLOW_DIVISOR])
484 		f->divisor = nla_get_u32(tb[TCA_FLOW_DIVISOR]);
485 	if (baseclass)
486 		f->baseclass = baseclass;
487 
488 	f->perturb_period = perturb_period;
489 	del_timer(&f->perturb_timer);
490 	if (perturb_period)
491 		mod_timer(&f->perturb_timer, jiffies + perturb_period);
492 
493 	if (*arg == 0)
494 		list_add_tail(&f->list, &head->filters);
495 
496 	tcf_tree_unlock(tp);
497 
498 	*arg = (unsigned long)f;
499 	return 0;
500 
501 err2:
502 	tcf_em_tree_destroy(tp, &t);
503 err1:
504 	tcf_exts_destroy(tp, &e);
505 	return err;
506 }
507 
508 static void flow_destroy_filter(struct tcf_proto *tp, struct flow_filter *f)
509 {
510 	del_timer_sync(&f->perturb_timer);
511 	tcf_exts_destroy(tp, &f->exts);
512 	tcf_em_tree_destroy(tp, &f->ematches);
513 	kfree(f);
514 }
515 
516 static int flow_delete(struct tcf_proto *tp, unsigned long arg)
517 {
518 	struct flow_filter *f = (struct flow_filter *)arg;
519 
520 	tcf_tree_lock(tp);
521 	list_del(&f->list);
522 	tcf_tree_unlock(tp);
523 	flow_destroy_filter(tp, f);
524 	return 0;
525 }
526 
527 static int flow_init(struct tcf_proto *tp)
528 {
529 	struct flow_head *head;
530 
531 	head = kzalloc(sizeof(*head), GFP_KERNEL);
532 	if (head == NULL)
533 		return -ENOBUFS;
534 	INIT_LIST_HEAD(&head->filters);
535 	tp->root = head;
536 	return 0;
537 }
538 
539 static void flow_destroy(struct tcf_proto *tp)
540 {
541 	struct flow_head *head = tp->root;
542 	struct flow_filter *f, *next;
543 
544 	list_for_each_entry_safe(f, next, &head->filters, list) {
545 		list_del(&f->list);
546 		flow_destroy_filter(tp, f);
547 	}
548 	kfree(head);
549 }
550 
551 static unsigned long flow_get(struct tcf_proto *tp, u32 handle)
552 {
553 	struct flow_head *head = tp->root;
554 	struct flow_filter *f;
555 
556 	list_for_each_entry(f, &head->filters, list)
557 		if (f->handle == handle)
558 			return (unsigned long)f;
559 	return 0;
560 }
561 
562 static void flow_put(struct tcf_proto *tp, unsigned long f)
563 {
564 }
565 
566 static int flow_dump(struct net *net, struct tcf_proto *tp, unsigned long fh,
567 		     struct sk_buff *skb, struct tcmsg *t)
568 {
569 	struct flow_filter *f = (struct flow_filter *)fh;
570 	struct nlattr *nest;
571 
572 	if (f == NULL)
573 		return skb->len;
574 
575 	t->tcm_handle = f->handle;
576 
577 	nest = nla_nest_start(skb, TCA_OPTIONS);
578 	if (nest == NULL)
579 		goto nla_put_failure;
580 
581 	if (nla_put_u32(skb, TCA_FLOW_KEYS, f->keymask) ||
582 	    nla_put_u32(skb, TCA_FLOW_MODE, f->mode))
583 		goto nla_put_failure;
584 
585 	if (f->mask != ~0 || f->xor != 0) {
586 		if (nla_put_u32(skb, TCA_FLOW_MASK, f->mask) ||
587 		    nla_put_u32(skb, TCA_FLOW_XOR, f->xor))
588 			goto nla_put_failure;
589 	}
590 	if (f->rshift &&
591 	    nla_put_u32(skb, TCA_FLOW_RSHIFT, f->rshift))
592 		goto nla_put_failure;
593 	if (f->addend &&
594 	    nla_put_u32(skb, TCA_FLOW_ADDEND, f->addend))
595 		goto nla_put_failure;
596 
597 	if (f->divisor &&
598 	    nla_put_u32(skb, TCA_FLOW_DIVISOR, f->divisor))
599 		goto nla_put_failure;
600 	if (f->baseclass &&
601 	    nla_put_u32(skb, TCA_FLOW_BASECLASS, f->baseclass))
602 		goto nla_put_failure;
603 
604 	if (f->perturb_period &&
605 	    nla_put_u32(skb, TCA_FLOW_PERTURB, f->perturb_period / HZ))
606 		goto nla_put_failure;
607 
608 	if (tcf_exts_dump(skb, &f->exts) < 0)
609 		goto nla_put_failure;
610 #ifdef CONFIG_NET_EMATCH
611 	if (f->ematches.hdr.nmatches &&
612 	    tcf_em_tree_dump(skb, &f->ematches, TCA_FLOW_EMATCHES) < 0)
613 		goto nla_put_failure;
614 #endif
615 	nla_nest_end(skb, nest);
616 
617 	if (tcf_exts_dump_stats(skb, &f->exts) < 0)
618 		goto nla_put_failure;
619 
620 	return skb->len;
621 
622 nla_put_failure:
623 	nlmsg_trim(skb, nest);
624 	return -1;
625 }
626 
627 static void flow_walk(struct tcf_proto *tp, struct tcf_walker *arg)
628 {
629 	struct flow_head *head = tp->root;
630 	struct flow_filter *f;
631 
632 	list_for_each_entry(f, &head->filters, list) {
633 		if (arg->count < arg->skip)
634 			goto skip;
635 		if (arg->fn(tp, (unsigned long)f, arg) < 0) {
636 			arg->stop = 1;
637 			break;
638 		}
639 skip:
640 		arg->count++;
641 	}
642 }
643 
644 static struct tcf_proto_ops cls_flow_ops __read_mostly = {
645 	.kind		= "flow",
646 	.classify	= flow_classify,
647 	.init		= flow_init,
648 	.destroy	= flow_destroy,
649 	.change		= flow_change,
650 	.delete		= flow_delete,
651 	.get		= flow_get,
652 	.put		= flow_put,
653 	.dump		= flow_dump,
654 	.walk		= flow_walk,
655 	.owner		= THIS_MODULE,
656 };
657 
658 static int __init cls_flow_init(void)
659 {
660 	return register_tcf_proto_ops(&cls_flow_ops);
661 }
662 
663 static void __exit cls_flow_exit(void)
664 {
665 	unregister_tcf_proto_ops(&cls_flow_ops);
666 }
667 
668 module_init(cls_flow_init);
669 module_exit(cls_flow_exit);
670 
671 MODULE_LICENSE("GPL");
672 MODULE_AUTHOR("Patrick McHardy <kaber@trash.net>");
673 MODULE_DESCRIPTION("TC flow classifier");
674