xref: /openbmc/linux/net/sched/cls_flow.c (revision 9cfc5c90)
1 /*
2  * net/sched/cls_flow.c		Generic flow classifier
3  *
4  * Copyright (c) 2007, 2008 Patrick McHardy <kaber@trash.net>
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/kernel.h>
13 #include <linux/init.h>
14 #include <linux/list.h>
15 #include <linux/jhash.h>
16 #include <linux/random.h>
17 #include <linux/pkt_cls.h>
18 #include <linux/skbuff.h>
19 #include <linux/in.h>
20 #include <linux/ip.h>
21 #include <linux/ipv6.h>
22 #include <linux/if_vlan.h>
23 #include <linux/slab.h>
24 #include <linux/module.h>
25 #include <net/inet_sock.h>
26 
27 #include <net/pkt_cls.h>
28 #include <net/ip.h>
29 #include <net/route.h>
30 #include <net/flow_dissector.h>
31 
32 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
33 #include <net/netfilter/nf_conntrack.h>
34 #endif
35 
36 struct flow_head {
37 	struct list_head	filters;
38 	struct rcu_head		rcu;
39 };
40 
41 struct flow_filter {
42 	struct list_head	list;
43 	struct tcf_exts		exts;
44 	struct tcf_ematch_tree	ematches;
45 	struct tcf_proto	*tp;
46 	struct timer_list	perturb_timer;
47 	u32			perturb_period;
48 	u32			handle;
49 
50 	u32			nkeys;
51 	u32			keymask;
52 	u32			mode;
53 	u32			mask;
54 	u32			xor;
55 	u32			rshift;
56 	u32			addend;
57 	u32			divisor;
58 	u32			baseclass;
59 	u32			hashrnd;
60 	struct rcu_head		rcu;
61 };
62 
63 static inline u32 addr_fold(void *addr)
64 {
65 	unsigned long a = (unsigned long)addr;
66 
67 	return (a & 0xFFFFFFFF) ^ (BITS_PER_LONG > 32 ? a >> 32 : 0);
68 }
69 
70 static u32 flow_get_src(const struct sk_buff *skb, const struct flow_keys *flow)
71 {
72 	__be32 src = flow_get_u32_src(flow);
73 
74 	if (src)
75 		return ntohl(src);
76 
77 	return addr_fold(skb->sk);
78 }
79 
80 static u32 flow_get_dst(const struct sk_buff *skb, const struct flow_keys *flow)
81 {
82 	__be32 dst = flow_get_u32_dst(flow);
83 
84 	if (dst)
85 		return ntohl(dst);
86 
87 	return addr_fold(skb_dst(skb)) ^ (__force u16) tc_skb_protocol(skb);
88 }
89 
90 static u32 flow_get_proto(const struct sk_buff *skb, const struct flow_keys *flow)
91 {
92 	return flow->basic.ip_proto;
93 }
94 
95 static u32 flow_get_proto_src(const struct sk_buff *skb, const struct flow_keys *flow)
96 {
97 	if (flow->ports.ports)
98 		return ntohs(flow->ports.src);
99 
100 	return addr_fold(skb->sk);
101 }
102 
103 static u32 flow_get_proto_dst(const struct sk_buff *skb, const struct flow_keys *flow)
104 {
105 	if (flow->ports.ports)
106 		return ntohs(flow->ports.dst);
107 
108 	return addr_fold(skb_dst(skb)) ^ (__force u16) tc_skb_protocol(skb);
109 }
110 
111 static u32 flow_get_iif(const struct sk_buff *skb)
112 {
113 	return skb->skb_iif;
114 }
115 
116 static u32 flow_get_priority(const struct sk_buff *skb)
117 {
118 	return skb->priority;
119 }
120 
121 static u32 flow_get_mark(const struct sk_buff *skb)
122 {
123 	return skb->mark;
124 }
125 
126 static u32 flow_get_nfct(const struct sk_buff *skb)
127 {
128 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
129 	return addr_fold(skb->nfct);
130 #else
131 	return 0;
132 #endif
133 }
134 
135 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
136 #define CTTUPLE(skb, member)						\
137 ({									\
138 	enum ip_conntrack_info ctinfo;					\
139 	const struct nf_conn *ct = nf_ct_get(skb, &ctinfo);		\
140 	if (ct == NULL)							\
141 		goto fallback;						\
142 	ct->tuplehash[CTINFO2DIR(ctinfo)].tuple.member;			\
143 })
144 #else
145 #define CTTUPLE(skb, member)						\
146 ({									\
147 	goto fallback;							\
148 	0;								\
149 })
150 #endif
151 
152 static u32 flow_get_nfct_src(const struct sk_buff *skb, const struct flow_keys *flow)
153 {
154 	switch (tc_skb_protocol(skb)) {
155 	case htons(ETH_P_IP):
156 		return ntohl(CTTUPLE(skb, src.u3.ip));
157 	case htons(ETH_P_IPV6):
158 		return ntohl(CTTUPLE(skb, src.u3.ip6[3]));
159 	}
160 fallback:
161 	return flow_get_src(skb, flow);
162 }
163 
164 static u32 flow_get_nfct_dst(const struct sk_buff *skb, const struct flow_keys *flow)
165 {
166 	switch (tc_skb_protocol(skb)) {
167 	case htons(ETH_P_IP):
168 		return ntohl(CTTUPLE(skb, dst.u3.ip));
169 	case htons(ETH_P_IPV6):
170 		return ntohl(CTTUPLE(skb, dst.u3.ip6[3]));
171 	}
172 fallback:
173 	return flow_get_dst(skb, flow);
174 }
175 
176 static u32 flow_get_nfct_proto_src(const struct sk_buff *skb, const struct flow_keys *flow)
177 {
178 	return ntohs(CTTUPLE(skb, src.u.all));
179 fallback:
180 	return flow_get_proto_src(skb, flow);
181 }
182 
183 static u32 flow_get_nfct_proto_dst(const struct sk_buff *skb, const struct flow_keys *flow)
184 {
185 	return ntohs(CTTUPLE(skb, dst.u.all));
186 fallback:
187 	return flow_get_proto_dst(skb, flow);
188 }
189 
190 static u32 flow_get_rtclassid(const struct sk_buff *skb)
191 {
192 #ifdef CONFIG_IP_ROUTE_CLASSID
193 	if (skb_dst(skb))
194 		return skb_dst(skb)->tclassid;
195 #endif
196 	return 0;
197 }
198 
199 static u32 flow_get_skuid(const struct sk_buff *skb)
200 {
201 	struct sock *sk = skb_to_full_sk(skb);
202 
203 	if (sk && sk->sk_socket && sk->sk_socket->file) {
204 		kuid_t skuid = sk->sk_socket->file->f_cred->fsuid;
205 
206 		return from_kuid(&init_user_ns, skuid);
207 	}
208 	return 0;
209 }
210 
211 static u32 flow_get_skgid(const struct sk_buff *skb)
212 {
213 	struct sock *sk = skb_to_full_sk(skb);
214 
215 	if (sk && sk->sk_socket && sk->sk_socket->file) {
216 		kgid_t skgid = sk->sk_socket->file->f_cred->fsgid;
217 
218 		return from_kgid(&init_user_ns, skgid);
219 	}
220 	return 0;
221 }
222 
223 static u32 flow_get_vlan_tag(const struct sk_buff *skb)
224 {
225 	u16 uninitialized_var(tag);
226 
227 	if (vlan_get_tag(skb, &tag) < 0)
228 		return 0;
229 	return tag & VLAN_VID_MASK;
230 }
231 
232 static u32 flow_get_rxhash(struct sk_buff *skb)
233 {
234 	return skb_get_hash(skb);
235 }
236 
237 static u32 flow_key_get(struct sk_buff *skb, int key, struct flow_keys *flow)
238 {
239 	switch (key) {
240 	case FLOW_KEY_SRC:
241 		return flow_get_src(skb, flow);
242 	case FLOW_KEY_DST:
243 		return flow_get_dst(skb, flow);
244 	case FLOW_KEY_PROTO:
245 		return flow_get_proto(skb, flow);
246 	case FLOW_KEY_PROTO_SRC:
247 		return flow_get_proto_src(skb, flow);
248 	case FLOW_KEY_PROTO_DST:
249 		return flow_get_proto_dst(skb, flow);
250 	case FLOW_KEY_IIF:
251 		return flow_get_iif(skb);
252 	case FLOW_KEY_PRIORITY:
253 		return flow_get_priority(skb);
254 	case FLOW_KEY_MARK:
255 		return flow_get_mark(skb);
256 	case FLOW_KEY_NFCT:
257 		return flow_get_nfct(skb);
258 	case FLOW_KEY_NFCT_SRC:
259 		return flow_get_nfct_src(skb, flow);
260 	case FLOW_KEY_NFCT_DST:
261 		return flow_get_nfct_dst(skb, flow);
262 	case FLOW_KEY_NFCT_PROTO_SRC:
263 		return flow_get_nfct_proto_src(skb, flow);
264 	case FLOW_KEY_NFCT_PROTO_DST:
265 		return flow_get_nfct_proto_dst(skb, flow);
266 	case FLOW_KEY_RTCLASSID:
267 		return flow_get_rtclassid(skb);
268 	case FLOW_KEY_SKUID:
269 		return flow_get_skuid(skb);
270 	case FLOW_KEY_SKGID:
271 		return flow_get_skgid(skb);
272 	case FLOW_KEY_VLAN_TAG:
273 		return flow_get_vlan_tag(skb);
274 	case FLOW_KEY_RXHASH:
275 		return flow_get_rxhash(skb);
276 	default:
277 		WARN_ON(1);
278 		return 0;
279 	}
280 }
281 
282 #define FLOW_KEYS_NEEDED ((1 << FLOW_KEY_SRC) | 		\
283 			  (1 << FLOW_KEY_DST) |			\
284 			  (1 << FLOW_KEY_PROTO) |		\
285 			  (1 << FLOW_KEY_PROTO_SRC) |		\
286 			  (1 << FLOW_KEY_PROTO_DST) | 		\
287 			  (1 << FLOW_KEY_NFCT_SRC) |		\
288 			  (1 << FLOW_KEY_NFCT_DST) |		\
289 			  (1 << FLOW_KEY_NFCT_PROTO_SRC) |	\
290 			  (1 << FLOW_KEY_NFCT_PROTO_DST))
291 
292 static int flow_classify(struct sk_buff *skb, const struct tcf_proto *tp,
293 			 struct tcf_result *res)
294 {
295 	struct flow_head *head = rcu_dereference_bh(tp->root);
296 	struct flow_filter *f;
297 	u32 keymask;
298 	u32 classid;
299 	unsigned int n, key;
300 	int r;
301 
302 	list_for_each_entry_rcu(f, &head->filters, list) {
303 		u32 keys[FLOW_KEY_MAX + 1];
304 		struct flow_keys flow_keys;
305 
306 		if (!tcf_em_tree_match(skb, &f->ematches, NULL))
307 			continue;
308 
309 		keymask = f->keymask;
310 		if (keymask & FLOW_KEYS_NEEDED)
311 			skb_flow_dissect_flow_keys(skb, &flow_keys, 0);
312 
313 		for (n = 0; n < f->nkeys; n++) {
314 			key = ffs(keymask) - 1;
315 			keymask &= ~(1 << key);
316 			keys[n] = flow_key_get(skb, key, &flow_keys);
317 		}
318 
319 		if (f->mode == FLOW_MODE_HASH)
320 			classid = jhash2(keys, f->nkeys, f->hashrnd);
321 		else {
322 			classid = keys[0];
323 			classid = (classid & f->mask) ^ f->xor;
324 			classid = (classid >> f->rshift) + f->addend;
325 		}
326 
327 		if (f->divisor)
328 			classid %= f->divisor;
329 
330 		res->class   = 0;
331 		res->classid = TC_H_MAKE(f->baseclass, f->baseclass + classid);
332 
333 		r = tcf_exts_exec(skb, &f->exts, res);
334 		if (r < 0)
335 			continue;
336 		return r;
337 	}
338 	return -1;
339 }
340 
341 static void flow_perturbation(unsigned long arg)
342 {
343 	struct flow_filter *f = (struct flow_filter *)arg;
344 
345 	get_random_bytes(&f->hashrnd, 4);
346 	if (f->perturb_period)
347 		mod_timer(&f->perturb_timer, jiffies + f->perturb_period);
348 }
349 
350 static const struct nla_policy flow_policy[TCA_FLOW_MAX + 1] = {
351 	[TCA_FLOW_KEYS]		= { .type = NLA_U32 },
352 	[TCA_FLOW_MODE]		= { .type = NLA_U32 },
353 	[TCA_FLOW_BASECLASS]	= { .type = NLA_U32 },
354 	[TCA_FLOW_RSHIFT]	= { .type = NLA_U32 },
355 	[TCA_FLOW_ADDEND]	= { .type = NLA_U32 },
356 	[TCA_FLOW_MASK]		= { .type = NLA_U32 },
357 	[TCA_FLOW_XOR]		= { .type = NLA_U32 },
358 	[TCA_FLOW_DIVISOR]	= { .type = NLA_U32 },
359 	[TCA_FLOW_ACT]		= { .type = NLA_NESTED },
360 	[TCA_FLOW_POLICE]	= { .type = NLA_NESTED },
361 	[TCA_FLOW_EMATCHES]	= { .type = NLA_NESTED },
362 	[TCA_FLOW_PERTURB]	= { .type = NLA_U32 },
363 };
364 
365 static void flow_destroy_filter(struct rcu_head *head)
366 {
367 	struct flow_filter *f = container_of(head, struct flow_filter, rcu);
368 
369 	del_timer_sync(&f->perturb_timer);
370 	tcf_exts_destroy(&f->exts);
371 	tcf_em_tree_destroy(&f->ematches);
372 	kfree(f);
373 }
374 
375 static int flow_change(struct net *net, struct sk_buff *in_skb,
376 		       struct tcf_proto *tp, unsigned long base,
377 		       u32 handle, struct nlattr **tca,
378 		       unsigned long *arg, bool ovr)
379 {
380 	struct flow_head *head = rtnl_dereference(tp->root);
381 	struct flow_filter *fold, *fnew;
382 	struct nlattr *opt = tca[TCA_OPTIONS];
383 	struct nlattr *tb[TCA_FLOW_MAX + 1];
384 	struct tcf_exts e;
385 	struct tcf_ematch_tree t;
386 	unsigned int nkeys = 0;
387 	unsigned int perturb_period = 0;
388 	u32 baseclass = 0;
389 	u32 keymask = 0;
390 	u32 mode;
391 	int err;
392 
393 	if (opt == NULL)
394 		return -EINVAL;
395 
396 	err = nla_parse_nested(tb, TCA_FLOW_MAX, opt, flow_policy);
397 	if (err < 0)
398 		return err;
399 
400 	if (tb[TCA_FLOW_BASECLASS]) {
401 		baseclass = nla_get_u32(tb[TCA_FLOW_BASECLASS]);
402 		if (TC_H_MIN(baseclass) == 0)
403 			return -EINVAL;
404 	}
405 
406 	if (tb[TCA_FLOW_KEYS]) {
407 		keymask = nla_get_u32(tb[TCA_FLOW_KEYS]);
408 
409 		nkeys = hweight32(keymask);
410 		if (nkeys == 0)
411 			return -EINVAL;
412 
413 		if (fls(keymask) - 1 > FLOW_KEY_MAX)
414 			return -EOPNOTSUPP;
415 
416 		if ((keymask & (FLOW_KEY_SKUID|FLOW_KEY_SKGID)) &&
417 		    sk_user_ns(NETLINK_CB(in_skb).sk) != &init_user_ns)
418 			return -EOPNOTSUPP;
419 	}
420 
421 	tcf_exts_init(&e, TCA_FLOW_ACT, TCA_FLOW_POLICE);
422 	err = tcf_exts_validate(net, tp, tb, tca[TCA_RATE], &e, ovr);
423 	if (err < 0)
424 		return err;
425 
426 	err = tcf_em_tree_validate(tp, tb[TCA_FLOW_EMATCHES], &t);
427 	if (err < 0)
428 		goto err1;
429 
430 	err = -ENOBUFS;
431 	fnew = kzalloc(sizeof(*fnew), GFP_KERNEL);
432 	if (!fnew)
433 		goto err2;
434 
435 	tcf_exts_init(&fnew->exts, TCA_FLOW_ACT, TCA_FLOW_POLICE);
436 
437 	fold = (struct flow_filter *)*arg;
438 	if (fold) {
439 		err = -EINVAL;
440 		if (fold->handle != handle && handle)
441 			goto err2;
442 
443 		/* Copy fold into fnew */
444 		fnew->tp = fold->tp;
445 		fnew->handle = fold->handle;
446 		fnew->nkeys = fold->nkeys;
447 		fnew->keymask = fold->keymask;
448 		fnew->mode = fold->mode;
449 		fnew->mask = fold->mask;
450 		fnew->xor = fold->xor;
451 		fnew->rshift = fold->rshift;
452 		fnew->addend = fold->addend;
453 		fnew->divisor = fold->divisor;
454 		fnew->baseclass = fold->baseclass;
455 		fnew->hashrnd = fold->hashrnd;
456 
457 		mode = fold->mode;
458 		if (tb[TCA_FLOW_MODE])
459 			mode = nla_get_u32(tb[TCA_FLOW_MODE]);
460 		if (mode != FLOW_MODE_HASH && nkeys > 1)
461 			goto err2;
462 
463 		if (mode == FLOW_MODE_HASH)
464 			perturb_period = fold->perturb_period;
465 		if (tb[TCA_FLOW_PERTURB]) {
466 			if (mode != FLOW_MODE_HASH)
467 				goto err2;
468 			perturb_period = nla_get_u32(tb[TCA_FLOW_PERTURB]) * HZ;
469 		}
470 	} else {
471 		err = -EINVAL;
472 		if (!handle)
473 			goto err2;
474 		if (!tb[TCA_FLOW_KEYS])
475 			goto err2;
476 
477 		mode = FLOW_MODE_MAP;
478 		if (tb[TCA_FLOW_MODE])
479 			mode = nla_get_u32(tb[TCA_FLOW_MODE]);
480 		if (mode != FLOW_MODE_HASH && nkeys > 1)
481 			goto err2;
482 
483 		if (tb[TCA_FLOW_PERTURB]) {
484 			if (mode != FLOW_MODE_HASH)
485 				goto err2;
486 			perturb_period = nla_get_u32(tb[TCA_FLOW_PERTURB]) * HZ;
487 		}
488 
489 		if (TC_H_MAJ(baseclass) == 0)
490 			baseclass = TC_H_MAKE(tp->q->handle, baseclass);
491 		if (TC_H_MIN(baseclass) == 0)
492 			baseclass = TC_H_MAKE(baseclass, 1);
493 
494 		fnew->handle = handle;
495 		fnew->mask  = ~0U;
496 		fnew->tp = tp;
497 		get_random_bytes(&fnew->hashrnd, 4);
498 	}
499 
500 	fnew->perturb_timer.function = flow_perturbation;
501 	fnew->perturb_timer.data = (unsigned long)fnew;
502 	init_timer_deferrable(&fnew->perturb_timer);
503 
504 	tcf_exts_change(tp, &fnew->exts, &e);
505 	tcf_em_tree_change(tp, &fnew->ematches, &t);
506 
507 	netif_keep_dst(qdisc_dev(tp->q));
508 
509 	if (tb[TCA_FLOW_KEYS]) {
510 		fnew->keymask = keymask;
511 		fnew->nkeys   = nkeys;
512 	}
513 
514 	fnew->mode = mode;
515 
516 	if (tb[TCA_FLOW_MASK])
517 		fnew->mask = nla_get_u32(tb[TCA_FLOW_MASK]);
518 	if (tb[TCA_FLOW_XOR])
519 		fnew->xor = nla_get_u32(tb[TCA_FLOW_XOR]);
520 	if (tb[TCA_FLOW_RSHIFT])
521 		fnew->rshift = nla_get_u32(tb[TCA_FLOW_RSHIFT]);
522 	if (tb[TCA_FLOW_ADDEND])
523 		fnew->addend = nla_get_u32(tb[TCA_FLOW_ADDEND]);
524 
525 	if (tb[TCA_FLOW_DIVISOR])
526 		fnew->divisor = nla_get_u32(tb[TCA_FLOW_DIVISOR]);
527 	if (baseclass)
528 		fnew->baseclass = baseclass;
529 
530 	fnew->perturb_period = perturb_period;
531 	if (perturb_period)
532 		mod_timer(&fnew->perturb_timer, jiffies + perturb_period);
533 
534 	if (*arg == 0)
535 		list_add_tail_rcu(&fnew->list, &head->filters);
536 	else
537 		list_replace_rcu(&fold->list, &fnew->list);
538 
539 	*arg = (unsigned long)fnew;
540 
541 	if (fold)
542 		call_rcu(&fold->rcu, flow_destroy_filter);
543 	return 0;
544 
545 err2:
546 	tcf_em_tree_destroy(&t);
547 	kfree(fnew);
548 err1:
549 	tcf_exts_destroy(&e);
550 	return err;
551 }
552 
553 static int flow_delete(struct tcf_proto *tp, unsigned long arg)
554 {
555 	struct flow_filter *f = (struct flow_filter *)arg;
556 
557 	list_del_rcu(&f->list);
558 	call_rcu(&f->rcu, flow_destroy_filter);
559 	return 0;
560 }
561 
562 static int flow_init(struct tcf_proto *tp)
563 {
564 	struct flow_head *head;
565 
566 	head = kzalloc(sizeof(*head), GFP_KERNEL);
567 	if (head == NULL)
568 		return -ENOBUFS;
569 	INIT_LIST_HEAD(&head->filters);
570 	rcu_assign_pointer(tp->root, head);
571 	return 0;
572 }
573 
574 static bool flow_destroy(struct tcf_proto *tp, bool force)
575 {
576 	struct flow_head *head = rtnl_dereference(tp->root);
577 	struct flow_filter *f, *next;
578 
579 	if (!force && !list_empty(&head->filters))
580 		return false;
581 
582 	list_for_each_entry_safe(f, next, &head->filters, list) {
583 		list_del_rcu(&f->list);
584 		call_rcu(&f->rcu, flow_destroy_filter);
585 	}
586 	RCU_INIT_POINTER(tp->root, NULL);
587 	kfree_rcu(head, rcu);
588 	return true;
589 }
590 
591 static unsigned long flow_get(struct tcf_proto *tp, u32 handle)
592 {
593 	struct flow_head *head = rtnl_dereference(tp->root);
594 	struct flow_filter *f;
595 
596 	list_for_each_entry(f, &head->filters, list)
597 		if (f->handle == handle)
598 			return (unsigned long)f;
599 	return 0;
600 }
601 
602 static int flow_dump(struct net *net, struct tcf_proto *tp, unsigned long fh,
603 		     struct sk_buff *skb, struct tcmsg *t)
604 {
605 	struct flow_filter *f = (struct flow_filter *)fh;
606 	struct nlattr *nest;
607 
608 	if (f == NULL)
609 		return skb->len;
610 
611 	t->tcm_handle = f->handle;
612 
613 	nest = nla_nest_start(skb, TCA_OPTIONS);
614 	if (nest == NULL)
615 		goto nla_put_failure;
616 
617 	if (nla_put_u32(skb, TCA_FLOW_KEYS, f->keymask) ||
618 	    nla_put_u32(skb, TCA_FLOW_MODE, f->mode))
619 		goto nla_put_failure;
620 
621 	if (f->mask != ~0 || f->xor != 0) {
622 		if (nla_put_u32(skb, TCA_FLOW_MASK, f->mask) ||
623 		    nla_put_u32(skb, TCA_FLOW_XOR, f->xor))
624 			goto nla_put_failure;
625 	}
626 	if (f->rshift &&
627 	    nla_put_u32(skb, TCA_FLOW_RSHIFT, f->rshift))
628 		goto nla_put_failure;
629 	if (f->addend &&
630 	    nla_put_u32(skb, TCA_FLOW_ADDEND, f->addend))
631 		goto nla_put_failure;
632 
633 	if (f->divisor &&
634 	    nla_put_u32(skb, TCA_FLOW_DIVISOR, f->divisor))
635 		goto nla_put_failure;
636 	if (f->baseclass &&
637 	    nla_put_u32(skb, TCA_FLOW_BASECLASS, f->baseclass))
638 		goto nla_put_failure;
639 
640 	if (f->perturb_period &&
641 	    nla_put_u32(skb, TCA_FLOW_PERTURB, f->perturb_period / HZ))
642 		goto nla_put_failure;
643 
644 	if (tcf_exts_dump(skb, &f->exts) < 0)
645 		goto nla_put_failure;
646 #ifdef CONFIG_NET_EMATCH
647 	if (f->ematches.hdr.nmatches &&
648 	    tcf_em_tree_dump(skb, &f->ematches, TCA_FLOW_EMATCHES) < 0)
649 		goto nla_put_failure;
650 #endif
651 	nla_nest_end(skb, nest);
652 
653 	if (tcf_exts_dump_stats(skb, &f->exts) < 0)
654 		goto nla_put_failure;
655 
656 	return skb->len;
657 
658 nla_put_failure:
659 	nla_nest_cancel(skb, nest);
660 	return -1;
661 }
662 
663 static void flow_walk(struct tcf_proto *tp, struct tcf_walker *arg)
664 {
665 	struct flow_head *head = rtnl_dereference(tp->root);
666 	struct flow_filter *f;
667 
668 	list_for_each_entry(f, &head->filters, list) {
669 		if (arg->count < arg->skip)
670 			goto skip;
671 		if (arg->fn(tp, (unsigned long)f, arg) < 0) {
672 			arg->stop = 1;
673 			break;
674 		}
675 skip:
676 		arg->count++;
677 	}
678 }
679 
680 static struct tcf_proto_ops cls_flow_ops __read_mostly = {
681 	.kind		= "flow",
682 	.classify	= flow_classify,
683 	.init		= flow_init,
684 	.destroy	= flow_destroy,
685 	.change		= flow_change,
686 	.delete		= flow_delete,
687 	.get		= flow_get,
688 	.dump		= flow_dump,
689 	.walk		= flow_walk,
690 	.owner		= THIS_MODULE,
691 };
692 
693 static int __init cls_flow_init(void)
694 {
695 	return register_tcf_proto_ops(&cls_flow_ops);
696 }
697 
698 static void __exit cls_flow_exit(void)
699 {
700 	unregister_tcf_proto_ops(&cls_flow_ops);
701 }
702 
703 module_init(cls_flow_init);
704 module_exit(cls_flow_exit);
705 
706 MODULE_LICENSE("GPL");
707 MODULE_AUTHOR("Patrick McHardy <kaber@trash.net>");
708 MODULE_DESCRIPTION("TC flow classifier");
709