xref: /openbmc/linux/net/sched/cls_flow.c (revision 52c291a3)
1 /*
2  * net/sched/cls_flow.c		Generic flow classifier
3  *
4  * Copyright (c) 2007, 2008 Patrick McHardy <kaber@trash.net>
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/kernel.h>
13 #include <linux/init.h>
14 #include <linux/list.h>
15 #include <linux/jhash.h>
16 #include <linux/random.h>
17 #include <linux/pkt_cls.h>
18 #include <linux/skbuff.h>
19 #include <linux/in.h>
20 #include <linux/ip.h>
21 #include <linux/ipv6.h>
22 #include <linux/if_vlan.h>
23 #include <linux/slab.h>
24 #include <linux/module.h>
25 #include <net/inet_sock.h>
26 
27 #include <net/pkt_cls.h>
28 #include <net/ip.h>
29 #include <net/route.h>
30 #include <net/flow_dissector.h>
31 
32 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
33 #include <net/netfilter/nf_conntrack.h>
34 #endif
35 
36 struct flow_head {
37 	struct list_head	filters;
38 	struct rcu_head		rcu;
39 };
40 
41 struct flow_filter {
42 	struct list_head	list;
43 	struct tcf_exts		exts;
44 	struct tcf_ematch_tree	ematches;
45 	struct tcf_proto	*tp;
46 	struct timer_list	perturb_timer;
47 	u32			perturb_period;
48 	u32			handle;
49 
50 	u32			nkeys;
51 	u32			keymask;
52 	u32			mode;
53 	u32			mask;
54 	u32			xor;
55 	u32			rshift;
56 	u32			addend;
57 	u32			divisor;
58 	u32			baseclass;
59 	u32			hashrnd;
60 	struct rcu_head		rcu;
61 };
62 
63 static inline u32 addr_fold(void *addr)
64 {
65 	unsigned long a = (unsigned long)addr;
66 
67 	return (a & 0xFFFFFFFF) ^ (BITS_PER_LONG > 32 ? a >> 32 : 0);
68 }
69 
70 static u32 flow_get_src(const struct sk_buff *skb, const struct flow_keys *flow)
71 {
72 	__be32 src = flow_get_u32_src(flow);
73 
74 	if (src)
75 		return ntohl(src);
76 
77 	return addr_fold(skb->sk);
78 }
79 
80 static u32 flow_get_dst(const struct sk_buff *skb, const struct flow_keys *flow)
81 {
82 	__be32 dst = flow_get_u32_dst(flow);
83 
84 	if (dst)
85 		return ntohl(dst);
86 
87 	return addr_fold(skb_dst(skb)) ^ (__force u16) tc_skb_protocol(skb);
88 }
89 
90 static u32 flow_get_proto(const struct sk_buff *skb,
91 			  const struct flow_keys *flow)
92 {
93 	return flow->basic.ip_proto;
94 }
95 
96 static u32 flow_get_proto_src(const struct sk_buff *skb,
97 			      const struct flow_keys *flow)
98 {
99 	if (flow->ports.ports)
100 		return ntohs(flow->ports.src);
101 
102 	return addr_fold(skb->sk);
103 }
104 
105 static u32 flow_get_proto_dst(const struct sk_buff *skb,
106 			      const struct flow_keys *flow)
107 {
108 	if (flow->ports.ports)
109 		return ntohs(flow->ports.dst);
110 
111 	return addr_fold(skb_dst(skb)) ^ (__force u16) tc_skb_protocol(skb);
112 }
113 
114 static u32 flow_get_iif(const struct sk_buff *skb)
115 {
116 	return skb->skb_iif;
117 }
118 
119 static u32 flow_get_priority(const struct sk_buff *skb)
120 {
121 	return skb->priority;
122 }
123 
124 static u32 flow_get_mark(const struct sk_buff *skb)
125 {
126 	return skb->mark;
127 }
128 
129 static u32 flow_get_nfct(const struct sk_buff *skb)
130 {
131 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
132 	return addr_fold(skb_nfct(skb));
133 #else
134 	return 0;
135 #endif
136 }
137 
138 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
139 #define CTTUPLE(skb, member)						\
140 ({									\
141 	enum ip_conntrack_info ctinfo;					\
142 	const struct nf_conn *ct = nf_ct_get(skb, &ctinfo);		\
143 	if (ct == NULL)							\
144 		goto fallback;						\
145 	ct->tuplehash[CTINFO2DIR(ctinfo)].tuple.member;			\
146 })
147 #else
148 #define CTTUPLE(skb, member)						\
149 ({									\
150 	goto fallback;							\
151 	0;								\
152 })
153 #endif
154 
155 static u32 flow_get_nfct_src(const struct sk_buff *skb,
156 			     const struct flow_keys *flow)
157 {
158 	switch (tc_skb_protocol(skb)) {
159 	case htons(ETH_P_IP):
160 		return ntohl(CTTUPLE(skb, src.u3.ip));
161 	case htons(ETH_P_IPV6):
162 		return ntohl(CTTUPLE(skb, src.u3.ip6[3]));
163 	}
164 fallback:
165 	return flow_get_src(skb, flow);
166 }
167 
168 static u32 flow_get_nfct_dst(const struct sk_buff *skb,
169 			     const struct flow_keys *flow)
170 {
171 	switch (tc_skb_protocol(skb)) {
172 	case htons(ETH_P_IP):
173 		return ntohl(CTTUPLE(skb, dst.u3.ip));
174 	case htons(ETH_P_IPV6):
175 		return ntohl(CTTUPLE(skb, dst.u3.ip6[3]));
176 	}
177 fallback:
178 	return flow_get_dst(skb, flow);
179 }
180 
181 static u32 flow_get_nfct_proto_src(const struct sk_buff *skb,
182 				   const struct flow_keys *flow)
183 {
184 	return ntohs(CTTUPLE(skb, src.u.all));
185 fallback:
186 	return flow_get_proto_src(skb, flow);
187 }
188 
189 static u32 flow_get_nfct_proto_dst(const struct sk_buff *skb,
190 				   const struct flow_keys *flow)
191 {
192 	return ntohs(CTTUPLE(skb, dst.u.all));
193 fallback:
194 	return flow_get_proto_dst(skb, flow);
195 }
196 
197 static u32 flow_get_rtclassid(const struct sk_buff *skb)
198 {
199 #ifdef CONFIG_IP_ROUTE_CLASSID
200 	if (skb_dst(skb))
201 		return skb_dst(skb)->tclassid;
202 #endif
203 	return 0;
204 }
205 
206 static u32 flow_get_skuid(const struct sk_buff *skb)
207 {
208 	struct sock *sk = skb_to_full_sk(skb);
209 
210 	if (sk && sk->sk_socket && sk->sk_socket->file) {
211 		kuid_t skuid = sk->sk_socket->file->f_cred->fsuid;
212 
213 		return from_kuid(&init_user_ns, skuid);
214 	}
215 	return 0;
216 }
217 
218 static u32 flow_get_skgid(const struct sk_buff *skb)
219 {
220 	struct sock *sk = skb_to_full_sk(skb);
221 
222 	if (sk && sk->sk_socket && sk->sk_socket->file) {
223 		kgid_t skgid = sk->sk_socket->file->f_cred->fsgid;
224 
225 		return from_kgid(&init_user_ns, skgid);
226 	}
227 	return 0;
228 }
229 
230 static u32 flow_get_vlan_tag(const struct sk_buff *skb)
231 {
232 	u16 uninitialized_var(tag);
233 
234 	if (vlan_get_tag(skb, &tag) < 0)
235 		return 0;
236 	return tag & VLAN_VID_MASK;
237 }
238 
239 static u32 flow_get_rxhash(struct sk_buff *skb)
240 {
241 	return skb_get_hash(skb);
242 }
243 
244 static u32 flow_key_get(struct sk_buff *skb, int key, struct flow_keys *flow)
245 {
246 	switch (key) {
247 	case FLOW_KEY_SRC:
248 		return flow_get_src(skb, flow);
249 	case FLOW_KEY_DST:
250 		return flow_get_dst(skb, flow);
251 	case FLOW_KEY_PROTO:
252 		return flow_get_proto(skb, flow);
253 	case FLOW_KEY_PROTO_SRC:
254 		return flow_get_proto_src(skb, flow);
255 	case FLOW_KEY_PROTO_DST:
256 		return flow_get_proto_dst(skb, flow);
257 	case FLOW_KEY_IIF:
258 		return flow_get_iif(skb);
259 	case FLOW_KEY_PRIORITY:
260 		return flow_get_priority(skb);
261 	case FLOW_KEY_MARK:
262 		return flow_get_mark(skb);
263 	case FLOW_KEY_NFCT:
264 		return flow_get_nfct(skb);
265 	case FLOW_KEY_NFCT_SRC:
266 		return flow_get_nfct_src(skb, flow);
267 	case FLOW_KEY_NFCT_DST:
268 		return flow_get_nfct_dst(skb, flow);
269 	case FLOW_KEY_NFCT_PROTO_SRC:
270 		return flow_get_nfct_proto_src(skb, flow);
271 	case FLOW_KEY_NFCT_PROTO_DST:
272 		return flow_get_nfct_proto_dst(skb, flow);
273 	case FLOW_KEY_RTCLASSID:
274 		return flow_get_rtclassid(skb);
275 	case FLOW_KEY_SKUID:
276 		return flow_get_skuid(skb);
277 	case FLOW_KEY_SKGID:
278 		return flow_get_skgid(skb);
279 	case FLOW_KEY_VLAN_TAG:
280 		return flow_get_vlan_tag(skb);
281 	case FLOW_KEY_RXHASH:
282 		return flow_get_rxhash(skb);
283 	default:
284 		WARN_ON(1);
285 		return 0;
286 	}
287 }
288 
289 #define FLOW_KEYS_NEEDED ((1 << FLOW_KEY_SRC) | 		\
290 			  (1 << FLOW_KEY_DST) |			\
291 			  (1 << FLOW_KEY_PROTO) |		\
292 			  (1 << FLOW_KEY_PROTO_SRC) |		\
293 			  (1 << FLOW_KEY_PROTO_DST) | 		\
294 			  (1 << FLOW_KEY_NFCT_SRC) |		\
295 			  (1 << FLOW_KEY_NFCT_DST) |		\
296 			  (1 << FLOW_KEY_NFCT_PROTO_SRC) |	\
297 			  (1 << FLOW_KEY_NFCT_PROTO_DST))
298 
299 static int flow_classify(struct sk_buff *skb, const struct tcf_proto *tp,
300 			 struct tcf_result *res)
301 {
302 	struct flow_head *head = rcu_dereference_bh(tp->root);
303 	struct flow_filter *f;
304 	u32 keymask;
305 	u32 classid;
306 	unsigned int n, key;
307 	int r;
308 
309 	list_for_each_entry_rcu(f, &head->filters, list) {
310 		u32 keys[FLOW_KEY_MAX + 1];
311 		struct flow_keys flow_keys;
312 
313 		if (!tcf_em_tree_match(skb, &f->ematches, NULL))
314 			continue;
315 
316 		keymask = f->keymask;
317 		if (keymask & FLOW_KEYS_NEEDED)
318 			skb_flow_dissect_flow_keys(skb, &flow_keys, 0);
319 
320 		for (n = 0; n < f->nkeys; n++) {
321 			key = ffs(keymask) - 1;
322 			keymask &= ~(1 << key);
323 			keys[n] = flow_key_get(skb, key, &flow_keys);
324 		}
325 
326 		if (f->mode == FLOW_MODE_HASH)
327 			classid = jhash2(keys, f->nkeys, f->hashrnd);
328 		else {
329 			classid = keys[0];
330 			classid = (classid & f->mask) ^ f->xor;
331 			classid = (classid >> f->rshift) + f->addend;
332 		}
333 
334 		if (f->divisor)
335 			classid %= f->divisor;
336 
337 		res->class   = 0;
338 		res->classid = TC_H_MAKE(f->baseclass, f->baseclass + classid);
339 
340 		r = tcf_exts_exec(skb, &f->exts, res);
341 		if (r < 0)
342 			continue;
343 		return r;
344 	}
345 	return -1;
346 }
347 
348 static void flow_perturbation(unsigned long arg)
349 {
350 	struct flow_filter *f = (struct flow_filter *)arg;
351 
352 	get_random_bytes(&f->hashrnd, 4);
353 	if (f->perturb_period)
354 		mod_timer(&f->perturb_timer, jiffies + f->perturb_period);
355 }
356 
357 static const struct nla_policy flow_policy[TCA_FLOW_MAX + 1] = {
358 	[TCA_FLOW_KEYS]		= { .type = NLA_U32 },
359 	[TCA_FLOW_MODE]		= { .type = NLA_U32 },
360 	[TCA_FLOW_BASECLASS]	= { .type = NLA_U32 },
361 	[TCA_FLOW_RSHIFT]	= { .type = NLA_U32 },
362 	[TCA_FLOW_ADDEND]	= { .type = NLA_U32 },
363 	[TCA_FLOW_MASK]		= { .type = NLA_U32 },
364 	[TCA_FLOW_XOR]		= { .type = NLA_U32 },
365 	[TCA_FLOW_DIVISOR]	= { .type = NLA_U32 },
366 	[TCA_FLOW_ACT]		= { .type = NLA_NESTED },
367 	[TCA_FLOW_POLICE]	= { .type = NLA_NESTED },
368 	[TCA_FLOW_EMATCHES]	= { .type = NLA_NESTED },
369 	[TCA_FLOW_PERTURB]	= { .type = NLA_U32 },
370 };
371 
372 static void flow_destroy_filter(struct rcu_head *head)
373 {
374 	struct flow_filter *f = container_of(head, struct flow_filter, rcu);
375 
376 	del_timer_sync(&f->perturb_timer);
377 	tcf_exts_destroy(&f->exts);
378 	tcf_em_tree_destroy(&f->ematches);
379 	kfree(f);
380 }
381 
382 static int flow_change(struct net *net, struct sk_buff *in_skb,
383 		       struct tcf_proto *tp, unsigned long base,
384 		       u32 handle, struct nlattr **tca,
385 		       void **arg, bool ovr)
386 {
387 	struct flow_head *head = rtnl_dereference(tp->root);
388 	struct flow_filter *fold, *fnew;
389 	struct nlattr *opt = tca[TCA_OPTIONS];
390 	struct nlattr *tb[TCA_FLOW_MAX + 1];
391 	unsigned int nkeys = 0;
392 	unsigned int perturb_period = 0;
393 	u32 baseclass = 0;
394 	u32 keymask = 0;
395 	u32 mode;
396 	int err;
397 
398 	if (opt == NULL)
399 		return -EINVAL;
400 
401 	err = nla_parse_nested(tb, TCA_FLOW_MAX, opt, flow_policy, NULL);
402 	if (err < 0)
403 		return err;
404 
405 	if (tb[TCA_FLOW_BASECLASS]) {
406 		baseclass = nla_get_u32(tb[TCA_FLOW_BASECLASS]);
407 		if (TC_H_MIN(baseclass) == 0)
408 			return -EINVAL;
409 	}
410 
411 	if (tb[TCA_FLOW_KEYS]) {
412 		keymask = nla_get_u32(tb[TCA_FLOW_KEYS]);
413 
414 		nkeys = hweight32(keymask);
415 		if (nkeys == 0)
416 			return -EINVAL;
417 
418 		if (fls(keymask) - 1 > FLOW_KEY_MAX)
419 			return -EOPNOTSUPP;
420 
421 		if ((keymask & (FLOW_KEY_SKUID|FLOW_KEY_SKGID)) &&
422 		    sk_user_ns(NETLINK_CB(in_skb).sk) != &init_user_ns)
423 			return -EOPNOTSUPP;
424 	}
425 
426 	fnew = kzalloc(sizeof(*fnew), GFP_KERNEL);
427 	if (!fnew)
428 		return -ENOBUFS;
429 
430 	err = tcf_em_tree_validate(tp, tb[TCA_FLOW_EMATCHES], &fnew->ematches);
431 	if (err < 0)
432 		goto err1;
433 
434 	err = tcf_exts_init(&fnew->exts, TCA_FLOW_ACT, TCA_FLOW_POLICE);
435 	if (err < 0)
436 		goto err2;
437 
438 	err = tcf_exts_validate(net, tp, tb, tca[TCA_RATE], &fnew->exts, ovr);
439 	if (err < 0)
440 		goto err2;
441 
442 	fold = *arg;
443 	if (fold) {
444 		err = -EINVAL;
445 		if (fold->handle != handle && handle)
446 			goto err2;
447 
448 		/* Copy fold into fnew */
449 		fnew->tp = fold->tp;
450 		fnew->handle = fold->handle;
451 		fnew->nkeys = fold->nkeys;
452 		fnew->keymask = fold->keymask;
453 		fnew->mode = fold->mode;
454 		fnew->mask = fold->mask;
455 		fnew->xor = fold->xor;
456 		fnew->rshift = fold->rshift;
457 		fnew->addend = fold->addend;
458 		fnew->divisor = fold->divisor;
459 		fnew->baseclass = fold->baseclass;
460 		fnew->hashrnd = fold->hashrnd;
461 
462 		mode = fold->mode;
463 		if (tb[TCA_FLOW_MODE])
464 			mode = nla_get_u32(tb[TCA_FLOW_MODE]);
465 		if (mode != FLOW_MODE_HASH && nkeys > 1)
466 			goto err2;
467 
468 		if (mode == FLOW_MODE_HASH)
469 			perturb_period = fold->perturb_period;
470 		if (tb[TCA_FLOW_PERTURB]) {
471 			if (mode != FLOW_MODE_HASH)
472 				goto err2;
473 			perturb_period = nla_get_u32(tb[TCA_FLOW_PERTURB]) * HZ;
474 		}
475 	} else {
476 		err = -EINVAL;
477 		if (!handle)
478 			goto err2;
479 		if (!tb[TCA_FLOW_KEYS])
480 			goto err2;
481 
482 		mode = FLOW_MODE_MAP;
483 		if (tb[TCA_FLOW_MODE])
484 			mode = nla_get_u32(tb[TCA_FLOW_MODE]);
485 		if (mode != FLOW_MODE_HASH && nkeys > 1)
486 			goto err2;
487 
488 		if (tb[TCA_FLOW_PERTURB]) {
489 			if (mode != FLOW_MODE_HASH)
490 				goto err2;
491 			perturb_period = nla_get_u32(tb[TCA_FLOW_PERTURB]) * HZ;
492 		}
493 
494 		if (TC_H_MAJ(baseclass) == 0)
495 			baseclass = TC_H_MAKE(tp->q->handle, baseclass);
496 		if (TC_H_MIN(baseclass) == 0)
497 			baseclass = TC_H_MAKE(baseclass, 1);
498 
499 		fnew->handle = handle;
500 		fnew->mask  = ~0U;
501 		fnew->tp = tp;
502 		get_random_bytes(&fnew->hashrnd, 4);
503 	}
504 
505 	setup_deferrable_timer(&fnew->perturb_timer, flow_perturbation,
506 			       (unsigned long)fnew);
507 
508 	netif_keep_dst(qdisc_dev(tp->q));
509 
510 	if (tb[TCA_FLOW_KEYS]) {
511 		fnew->keymask = keymask;
512 		fnew->nkeys   = nkeys;
513 	}
514 
515 	fnew->mode = mode;
516 
517 	if (tb[TCA_FLOW_MASK])
518 		fnew->mask = nla_get_u32(tb[TCA_FLOW_MASK]);
519 	if (tb[TCA_FLOW_XOR])
520 		fnew->xor = nla_get_u32(tb[TCA_FLOW_XOR]);
521 	if (tb[TCA_FLOW_RSHIFT])
522 		fnew->rshift = nla_get_u32(tb[TCA_FLOW_RSHIFT]);
523 	if (tb[TCA_FLOW_ADDEND])
524 		fnew->addend = nla_get_u32(tb[TCA_FLOW_ADDEND]);
525 
526 	if (tb[TCA_FLOW_DIVISOR])
527 		fnew->divisor = nla_get_u32(tb[TCA_FLOW_DIVISOR]);
528 	if (baseclass)
529 		fnew->baseclass = baseclass;
530 
531 	fnew->perturb_period = perturb_period;
532 	if (perturb_period)
533 		mod_timer(&fnew->perturb_timer, jiffies + perturb_period);
534 
535 	if (!*arg)
536 		list_add_tail_rcu(&fnew->list, &head->filters);
537 	else
538 		list_replace_rcu(&fold->list, &fnew->list);
539 
540 	*arg = fnew;
541 
542 	if (fold)
543 		call_rcu(&fold->rcu, flow_destroy_filter);
544 	return 0;
545 
546 err2:
547 	tcf_exts_destroy(&fnew->exts);
548 	tcf_em_tree_destroy(&fnew->ematches);
549 err1:
550 	kfree(fnew);
551 	return err;
552 }
553 
554 static int flow_delete(struct tcf_proto *tp, void *arg, bool *last)
555 {
556 	struct flow_head *head = rtnl_dereference(tp->root);
557 	struct flow_filter *f = arg;
558 
559 	list_del_rcu(&f->list);
560 	call_rcu(&f->rcu, flow_destroy_filter);
561 	*last = list_empty(&head->filters);
562 	return 0;
563 }
564 
565 static int flow_init(struct tcf_proto *tp)
566 {
567 	struct flow_head *head;
568 
569 	head = kzalloc(sizeof(*head), GFP_KERNEL);
570 	if (head == NULL)
571 		return -ENOBUFS;
572 	INIT_LIST_HEAD(&head->filters);
573 	rcu_assign_pointer(tp->root, head);
574 	return 0;
575 }
576 
577 static void flow_destroy(struct tcf_proto *tp)
578 {
579 	struct flow_head *head = rtnl_dereference(tp->root);
580 	struct flow_filter *f, *next;
581 
582 	list_for_each_entry_safe(f, next, &head->filters, list) {
583 		list_del_rcu(&f->list);
584 		call_rcu(&f->rcu, flow_destroy_filter);
585 	}
586 	kfree_rcu(head, rcu);
587 }
588 
589 static void *flow_get(struct tcf_proto *tp, u32 handle)
590 {
591 	struct flow_head *head = rtnl_dereference(tp->root);
592 	struct flow_filter *f;
593 
594 	list_for_each_entry(f, &head->filters, list)
595 		if (f->handle == handle)
596 			return f;
597 	return NULL;
598 }
599 
600 static int flow_dump(struct net *net, struct tcf_proto *tp, void *fh,
601 		     struct sk_buff *skb, struct tcmsg *t)
602 {
603 	struct flow_filter *f = fh;
604 	struct nlattr *nest;
605 
606 	if (f == NULL)
607 		return skb->len;
608 
609 	t->tcm_handle = f->handle;
610 
611 	nest = nla_nest_start(skb, TCA_OPTIONS);
612 	if (nest == NULL)
613 		goto nla_put_failure;
614 
615 	if (nla_put_u32(skb, TCA_FLOW_KEYS, f->keymask) ||
616 	    nla_put_u32(skb, TCA_FLOW_MODE, f->mode))
617 		goto nla_put_failure;
618 
619 	if (f->mask != ~0 || f->xor != 0) {
620 		if (nla_put_u32(skb, TCA_FLOW_MASK, f->mask) ||
621 		    nla_put_u32(skb, TCA_FLOW_XOR, f->xor))
622 			goto nla_put_failure;
623 	}
624 	if (f->rshift &&
625 	    nla_put_u32(skb, TCA_FLOW_RSHIFT, f->rshift))
626 		goto nla_put_failure;
627 	if (f->addend &&
628 	    nla_put_u32(skb, TCA_FLOW_ADDEND, f->addend))
629 		goto nla_put_failure;
630 
631 	if (f->divisor &&
632 	    nla_put_u32(skb, TCA_FLOW_DIVISOR, f->divisor))
633 		goto nla_put_failure;
634 	if (f->baseclass &&
635 	    nla_put_u32(skb, TCA_FLOW_BASECLASS, f->baseclass))
636 		goto nla_put_failure;
637 
638 	if (f->perturb_period &&
639 	    nla_put_u32(skb, TCA_FLOW_PERTURB, f->perturb_period / HZ))
640 		goto nla_put_failure;
641 
642 	if (tcf_exts_dump(skb, &f->exts) < 0)
643 		goto nla_put_failure;
644 #ifdef CONFIG_NET_EMATCH
645 	if (f->ematches.hdr.nmatches &&
646 	    tcf_em_tree_dump(skb, &f->ematches, TCA_FLOW_EMATCHES) < 0)
647 		goto nla_put_failure;
648 #endif
649 	nla_nest_end(skb, nest);
650 
651 	if (tcf_exts_dump_stats(skb, &f->exts) < 0)
652 		goto nla_put_failure;
653 
654 	return skb->len;
655 
656 nla_put_failure:
657 	nla_nest_cancel(skb, nest);
658 	return -1;
659 }
660 
661 static void flow_walk(struct tcf_proto *tp, struct tcf_walker *arg)
662 {
663 	struct flow_head *head = rtnl_dereference(tp->root);
664 	struct flow_filter *f;
665 
666 	list_for_each_entry(f, &head->filters, list) {
667 		if (arg->count < arg->skip)
668 			goto skip;
669 		if (arg->fn(tp, f, arg) < 0) {
670 			arg->stop = 1;
671 			break;
672 		}
673 skip:
674 		arg->count++;
675 	}
676 }
677 
678 static struct tcf_proto_ops cls_flow_ops __read_mostly = {
679 	.kind		= "flow",
680 	.classify	= flow_classify,
681 	.init		= flow_init,
682 	.destroy	= flow_destroy,
683 	.change		= flow_change,
684 	.delete		= flow_delete,
685 	.get		= flow_get,
686 	.dump		= flow_dump,
687 	.walk		= flow_walk,
688 	.owner		= THIS_MODULE,
689 };
690 
691 static int __init cls_flow_init(void)
692 {
693 	return register_tcf_proto_ops(&cls_flow_ops);
694 }
695 
696 static void __exit cls_flow_exit(void)
697 {
698 	unregister_tcf_proto_ops(&cls_flow_ops);
699 }
700 
701 module_init(cls_flow_init);
702 module_exit(cls_flow_exit);
703 
704 MODULE_LICENSE("GPL");
705 MODULE_AUTHOR("Patrick McHardy <kaber@trash.net>");
706 MODULE_DESCRIPTION("TC flow classifier");
707