1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* Copyright 2020 NXP */ 3 4 #include <linux/module.h> 5 #include <linux/types.h> 6 #include <linux/kernel.h> 7 #include <linux/string.h> 8 #include <linux/errno.h> 9 #include <linux/skbuff.h> 10 #include <linux/rtnetlink.h> 11 #include <linux/init.h> 12 #include <linux/slab.h> 13 #include <net/act_api.h> 14 #include <net/netlink.h> 15 #include <net/pkt_cls.h> 16 #include <net/tc_act/tc_gate.h> 17 #include <net/tc_wrapper.h> 18 19 static struct tc_action_ops act_gate_ops; 20 21 static ktime_t gate_get_time(struct tcf_gate *gact) 22 { 23 ktime_t mono = ktime_get(); 24 25 switch (gact->tk_offset) { 26 case TK_OFFS_MAX: 27 return mono; 28 default: 29 return ktime_mono_to_any(mono, gact->tk_offset); 30 } 31 32 return KTIME_MAX; 33 } 34 35 static void gate_get_start_time(struct tcf_gate *gact, ktime_t *start) 36 { 37 struct tcf_gate_params *param = &gact->param; 38 ktime_t now, base, cycle; 39 u64 n; 40 41 base = ns_to_ktime(param->tcfg_basetime); 42 now = gate_get_time(gact); 43 44 if (ktime_after(base, now)) { 45 *start = base; 46 return; 47 } 48 49 cycle = param->tcfg_cycletime; 50 51 n = div64_u64(ktime_sub_ns(now, base), cycle); 52 *start = ktime_add_ns(base, (n + 1) * cycle); 53 } 54 55 static void gate_start_timer(struct tcf_gate *gact, ktime_t start) 56 { 57 ktime_t expires; 58 59 expires = hrtimer_get_expires(&gact->hitimer); 60 if (expires == 0) 61 expires = KTIME_MAX; 62 63 start = min_t(ktime_t, start, expires); 64 65 hrtimer_start(&gact->hitimer, start, HRTIMER_MODE_ABS_SOFT); 66 } 67 68 static enum hrtimer_restart gate_timer_func(struct hrtimer *timer) 69 { 70 struct tcf_gate *gact = container_of(timer, struct tcf_gate, 71 hitimer); 72 struct tcf_gate_params *p = &gact->param; 73 struct tcfg_gate_entry *next; 74 ktime_t close_time, now; 75 76 spin_lock(&gact->tcf_lock); 77 78 next = gact->next_entry; 79 80 /* cycle start, clear pending bit, clear total octets */ 81 gact->current_gate_status = next->gate_state ? GATE_ACT_GATE_OPEN : 0; 82 gact->current_entry_octets = 0; 83 gact->current_max_octets = next->maxoctets; 84 85 gact->current_close_time = ktime_add_ns(gact->current_close_time, 86 next->interval); 87 88 close_time = gact->current_close_time; 89 90 if (list_is_last(&next->list, &p->entries)) 91 next = list_first_entry(&p->entries, 92 struct tcfg_gate_entry, list); 93 else 94 next = list_next_entry(next, list); 95 96 now = gate_get_time(gact); 97 98 if (ktime_after(now, close_time)) { 99 ktime_t cycle, base; 100 u64 n; 101 102 cycle = p->tcfg_cycletime; 103 base = ns_to_ktime(p->tcfg_basetime); 104 n = div64_u64(ktime_sub_ns(now, base), cycle); 105 close_time = ktime_add_ns(base, (n + 1) * cycle); 106 } 107 108 gact->next_entry = next; 109 110 hrtimer_set_expires(&gact->hitimer, close_time); 111 112 spin_unlock(&gact->tcf_lock); 113 114 return HRTIMER_RESTART; 115 } 116 117 TC_INDIRECT_SCOPE int tcf_gate_act(struct sk_buff *skb, 118 const struct tc_action *a, 119 struct tcf_result *res) 120 { 121 struct tcf_gate *gact = to_gate(a); 122 int action = READ_ONCE(gact->tcf_action); 123 124 tcf_lastuse_update(&gact->tcf_tm); 125 tcf_action_update_bstats(&gact->common, skb); 126 127 spin_lock(&gact->tcf_lock); 128 if (unlikely(gact->current_gate_status & GATE_ACT_PENDING)) { 129 spin_unlock(&gact->tcf_lock); 130 return action; 131 } 132 133 if (!(gact->current_gate_status & GATE_ACT_GATE_OPEN)) { 134 spin_unlock(&gact->tcf_lock); 135 goto drop; 136 } 137 138 if (gact->current_max_octets >= 0) { 139 gact->current_entry_octets += qdisc_pkt_len(skb); 140 if (gact->current_entry_octets > gact->current_max_octets) { 141 spin_unlock(&gact->tcf_lock); 142 goto overlimit; 143 } 144 } 145 spin_unlock(&gact->tcf_lock); 146 147 return action; 148 149 overlimit: 150 tcf_action_inc_overlimit_qstats(&gact->common); 151 drop: 152 tcf_action_inc_drop_qstats(&gact->common); 153 return TC_ACT_SHOT; 154 } 155 156 static const struct nla_policy entry_policy[TCA_GATE_ENTRY_MAX + 1] = { 157 [TCA_GATE_ENTRY_INDEX] = { .type = NLA_U32 }, 158 [TCA_GATE_ENTRY_GATE] = { .type = NLA_FLAG }, 159 [TCA_GATE_ENTRY_INTERVAL] = { .type = NLA_U32 }, 160 [TCA_GATE_ENTRY_IPV] = { .type = NLA_S32 }, 161 [TCA_GATE_ENTRY_MAX_OCTETS] = { .type = NLA_S32 }, 162 }; 163 164 static const struct nla_policy gate_policy[TCA_GATE_MAX + 1] = { 165 [TCA_GATE_PARMS] = 166 NLA_POLICY_EXACT_LEN(sizeof(struct tc_gate)), 167 [TCA_GATE_PRIORITY] = { .type = NLA_S32 }, 168 [TCA_GATE_ENTRY_LIST] = { .type = NLA_NESTED }, 169 [TCA_GATE_BASE_TIME] = { .type = NLA_U64 }, 170 [TCA_GATE_CYCLE_TIME] = { .type = NLA_U64 }, 171 [TCA_GATE_CYCLE_TIME_EXT] = { .type = NLA_U64 }, 172 [TCA_GATE_FLAGS] = { .type = NLA_U32 }, 173 [TCA_GATE_CLOCKID] = { .type = NLA_S32 }, 174 }; 175 176 static int fill_gate_entry(struct nlattr **tb, struct tcfg_gate_entry *entry, 177 struct netlink_ext_ack *extack) 178 { 179 u32 interval = 0; 180 181 entry->gate_state = nla_get_flag(tb[TCA_GATE_ENTRY_GATE]); 182 183 if (tb[TCA_GATE_ENTRY_INTERVAL]) 184 interval = nla_get_u32(tb[TCA_GATE_ENTRY_INTERVAL]); 185 186 if (interval == 0) { 187 NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry"); 188 return -EINVAL; 189 } 190 191 entry->interval = interval; 192 193 if (tb[TCA_GATE_ENTRY_IPV]) 194 entry->ipv = nla_get_s32(tb[TCA_GATE_ENTRY_IPV]); 195 else 196 entry->ipv = -1; 197 198 if (tb[TCA_GATE_ENTRY_MAX_OCTETS]) 199 entry->maxoctets = nla_get_s32(tb[TCA_GATE_ENTRY_MAX_OCTETS]); 200 else 201 entry->maxoctets = -1; 202 203 return 0; 204 } 205 206 static int parse_gate_entry(struct nlattr *n, struct tcfg_gate_entry *entry, 207 int index, struct netlink_ext_ack *extack) 208 { 209 struct nlattr *tb[TCA_GATE_ENTRY_MAX + 1] = { }; 210 int err; 211 212 err = nla_parse_nested(tb, TCA_GATE_ENTRY_MAX, n, entry_policy, extack); 213 if (err < 0) { 214 NL_SET_ERR_MSG(extack, "Could not parse nested entry"); 215 return -EINVAL; 216 } 217 218 entry->index = index; 219 220 return fill_gate_entry(tb, entry, extack); 221 } 222 223 static void release_entry_list(struct list_head *entries) 224 { 225 struct tcfg_gate_entry *entry, *e; 226 227 list_for_each_entry_safe(entry, e, entries, list) { 228 list_del(&entry->list); 229 kfree(entry); 230 } 231 } 232 233 static int parse_gate_list(struct nlattr *list_attr, 234 struct tcf_gate_params *sched, 235 struct netlink_ext_ack *extack) 236 { 237 struct tcfg_gate_entry *entry; 238 struct nlattr *n; 239 int err, rem; 240 int i = 0; 241 242 if (!list_attr) 243 return -EINVAL; 244 245 nla_for_each_nested(n, list_attr, rem) { 246 if (nla_type(n) != TCA_GATE_ONE_ENTRY) { 247 NL_SET_ERR_MSG(extack, "Attribute isn't type 'entry'"); 248 continue; 249 } 250 251 entry = kzalloc(sizeof(*entry), GFP_ATOMIC); 252 if (!entry) { 253 NL_SET_ERR_MSG(extack, "Not enough memory for entry"); 254 err = -ENOMEM; 255 goto release_list; 256 } 257 258 err = parse_gate_entry(n, entry, i, extack); 259 if (err < 0) { 260 kfree(entry); 261 goto release_list; 262 } 263 264 list_add_tail(&entry->list, &sched->entries); 265 i++; 266 } 267 268 sched->num_entries = i; 269 270 return i; 271 272 release_list: 273 release_entry_list(&sched->entries); 274 275 return err; 276 } 277 278 static void gate_setup_timer(struct tcf_gate *gact, u64 basetime, 279 enum tk_offsets tko, s32 clockid, 280 bool do_init) 281 { 282 if (!do_init) { 283 if (basetime == gact->param.tcfg_basetime && 284 tko == gact->tk_offset && 285 clockid == gact->param.tcfg_clockid) 286 return; 287 288 spin_unlock_bh(&gact->tcf_lock); 289 hrtimer_cancel(&gact->hitimer); 290 spin_lock_bh(&gact->tcf_lock); 291 } 292 gact->param.tcfg_basetime = basetime; 293 gact->param.tcfg_clockid = clockid; 294 gact->tk_offset = tko; 295 hrtimer_init(&gact->hitimer, clockid, HRTIMER_MODE_ABS_SOFT); 296 gact->hitimer.function = gate_timer_func; 297 } 298 299 static int tcf_gate_init(struct net *net, struct nlattr *nla, 300 struct nlattr *est, struct tc_action **a, 301 struct tcf_proto *tp, u32 flags, 302 struct netlink_ext_ack *extack) 303 { 304 struct tc_action_net *tn = net_generic(net, act_gate_ops.net_id); 305 enum tk_offsets tk_offset = TK_OFFS_TAI; 306 bool bind = flags & TCA_ACT_FLAGS_BIND; 307 struct nlattr *tb[TCA_GATE_MAX + 1]; 308 struct tcf_chain *goto_ch = NULL; 309 u64 cycletime = 0, basetime = 0; 310 struct tcf_gate_params *p; 311 s32 clockid = CLOCK_TAI; 312 struct tcf_gate *gact; 313 struct tc_gate *parm; 314 int ret = 0, err; 315 u32 gflags = 0; 316 s32 prio = -1; 317 ktime_t start; 318 u32 index; 319 320 if (!nla) 321 return -EINVAL; 322 323 err = nla_parse_nested(tb, TCA_GATE_MAX, nla, gate_policy, extack); 324 if (err < 0) 325 return err; 326 327 if (!tb[TCA_GATE_PARMS]) 328 return -EINVAL; 329 330 if (tb[TCA_GATE_CLOCKID]) { 331 clockid = nla_get_s32(tb[TCA_GATE_CLOCKID]); 332 switch (clockid) { 333 case CLOCK_REALTIME: 334 tk_offset = TK_OFFS_REAL; 335 break; 336 case CLOCK_MONOTONIC: 337 tk_offset = TK_OFFS_MAX; 338 break; 339 case CLOCK_BOOTTIME: 340 tk_offset = TK_OFFS_BOOT; 341 break; 342 case CLOCK_TAI: 343 tk_offset = TK_OFFS_TAI; 344 break; 345 default: 346 NL_SET_ERR_MSG(extack, "Invalid 'clockid'"); 347 return -EINVAL; 348 } 349 } 350 351 parm = nla_data(tb[TCA_GATE_PARMS]); 352 index = parm->index; 353 354 err = tcf_idr_check_alloc(tn, &index, a, bind); 355 if (err < 0) 356 return err; 357 358 if (err && bind) 359 return 0; 360 361 if (!err) { 362 ret = tcf_idr_create_from_flags(tn, index, est, a, 363 &act_gate_ops, bind, flags); 364 if (ret) { 365 tcf_idr_cleanup(tn, index); 366 return ret; 367 } 368 369 ret = ACT_P_CREATED; 370 } else if (!(flags & TCA_ACT_FLAGS_REPLACE)) { 371 tcf_idr_release(*a, bind); 372 return -EEXIST; 373 } 374 375 if (tb[TCA_GATE_PRIORITY]) 376 prio = nla_get_s32(tb[TCA_GATE_PRIORITY]); 377 378 if (tb[TCA_GATE_BASE_TIME]) 379 basetime = nla_get_u64(tb[TCA_GATE_BASE_TIME]); 380 381 if (tb[TCA_GATE_FLAGS]) 382 gflags = nla_get_u32(tb[TCA_GATE_FLAGS]); 383 384 gact = to_gate(*a); 385 if (ret == ACT_P_CREATED) 386 INIT_LIST_HEAD(&gact->param.entries); 387 388 err = tcf_action_check_ctrlact(parm->action, tp, &goto_ch, extack); 389 if (err < 0) 390 goto release_idr; 391 392 spin_lock_bh(&gact->tcf_lock); 393 p = &gact->param; 394 395 if (tb[TCA_GATE_CYCLE_TIME]) 396 cycletime = nla_get_u64(tb[TCA_GATE_CYCLE_TIME]); 397 398 if (tb[TCA_GATE_ENTRY_LIST]) { 399 err = parse_gate_list(tb[TCA_GATE_ENTRY_LIST], p, extack); 400 if (err < 0) 401 goto chain_put; 402 } 403 404 if (!cycletime) { 405 struct tcfg_gate_entry *entry; 406 ktime_t cycle = 0; 407 408 list_for_each_entry(entry, &p->entries, list) 409 cycle = ktime_add_ns(cycle, entry->interval); 410 cycletime = cycle; 411 if (!cycletime) { 412 err = -EINVAL; 413 goto chain_put; 414 } 415 } 416 p->tcfg_cycletime = cycletime; 417 418 if (tb[TCA_GATE_CYCLE_TIME_EXT]) 419 p->tcfg_cycletime_ext = 420 nla_get_u64(tb[TCA_GATE_CYCLE_TIME_EXT]); 421 422 gate_setup_timer(gact, basetime, tk_offset, clockid, 423 ret == ACT_P_CREATED); 424 p->tcfg_priority = prio; 425 p->tcfg_flags = gflags; 426 gate_get_start_time(gact, &start); 427 428 gact->current_close_time = start; 429 gact->current_gate_status = GATE_ACT_GATE_OPEN | GATE_ACT_PENDING; 430 431 gact->next_entry = list_first_entry(&p->entries, 432 struct tcfg_gate_entry, list); 433 434 goto_ch = tcf_action_set_ctrlact(*a, parm->action, goto_ch); 435 436 gate_start_timer(gact, start); 437 438 spin_unlock_bh(&gact->tcf_lock); 439 440 if (goto_ch) 441 tcf_chain_put_by_act(goto_ch); 442 443 return ret; 444 445 chain_put: 446 spin_unlock_bh(&gact->tcf_lock); 447 448 if (goto_ch) 449 tcf_chain_put_by_act(goto_ch); 450 release_idr: 451 /* action is not inserted in any list: it's safe to init hitimer 452 * without taking tcf_lock. 453 */ 454 if (ret == ACT_P_CREATED) 455 gate_setup_timer(gact, gact->param.tcfg_basetime, 456 gact->tk_offset, gact->param.tcfg_clockid, 457 true); 458 tcf_idr_release(*a, bind); 459 return err; 460 } 461 462 static void tcf_gate_cleanup(struct tc_action *a) 463 { 464 struct tcf_gate *gact = to_gate(a); 465 struct tcf_gate_params *p; 466 467 p = &gact->param; 468 hrtimer_cancel(&gact->hitimer); 469 release_entry_list(&p->entries); 470 } 471 472 static int dumping_entry(struct sk_buff *skb, 473 struct tcfg_gate_entry *entry) 474 { 475 struct nlattr *item; 476 477 item = nla_nest_start_noflag(skb, TCA_GATE_ONE_ENTRY); 478 if (!item) 479 return -ENOSPC; 480 481 if (nla_put_u32(skb, TCA_GATE_ENTRY_INDEX, entry->index)) 482 goto nla_put_failure; 483 484 if (entry->gate_state && nla_put_flag(skb, TCA_GATE_ENTRY_GATE)) 485 goto nla_put_failure; 486 487 if (nla_put_u32(skb, TCA_GATE_ENTRY_INTERVAL, entry->interval)) 488 goto nla_put_failure; 489 490 if (nla_put_s32(skb, TCA_GATE_ENTRY_MAX_OCTETS, entry->maxoctets)) 491 goto nla_put_failure; 492 493 if (nla_put_s32(skb, TCA_GATE_ENTRY_IPV, entry->ipv)) 494 goto nla_put_failure; 495 496 return nla_nest_end(skb, item); 497 498 nla_put_failure: 499 nla_nest_cancel(skb, item); 500 return -1; 501 } 502 503 static int tcf_gate_dump(struct sk_buff *skb, struct tc_action *a, 504 int bind, int ref) 505 { 506 unsigned char *b = skb_tail_pointer(skb); 507 struct tcf_gate *gact = to_gate(a); 508 struct tc_gate opt = { 509 .index = gact->tcf_index, 510 .refcnt = refcount_read(&gact->tcf_refcnt) - ref, 511 .bindcnt = atomic_read(&gact->tcf_bindcnt) - bind, 512 }; 513 struct tcfg_gate_entry *entry; 514 struct tcf_gate_params *p; 515 struct nlattr *entry_list; 516 struct tcf_t t; 517 518 spin_lock_bh(&gact->tcf_lock); 519 opt.action = gact->tcf_action; 520 521 p = &gact->param; 522 523 if (nla_put(skb, TCA_GATE_PARMS, sizeof(opt), &opt)) 524 goto nla_put_failure; 525 526 if (nla_put_u64_64bit(skb, TCA_GATE_BASE_TIME, 527 p->tcfg_basetime, TCA_GATE_PAD)) 528 goto nla_put_failure; 529 530 if (nla_put_u64_64bit(skb, TCA_GATE_CYCLE_TIME, 531 p->tcfg_cycletime, TCA_GATE_PAD)) 532 goto nla_put_failure; 533 534 if (nla_put_u64_64bit(skb, TCA_GATE_CYCLE_TIME_EXT, 535 p->tcfg_cycletime_ext, TCA_GATE_PAD)) 536 goto nla_put_failure; 537 538 if (nla_put_s32(skb, TCA_GATE_CLOCKID, p->tcfg_clockid)) 539 goto nla_put_failure; 540 541 if (nla_put_u32(skb, TCA_GATE_FLAGS, p->tcfg_flags)) 542 goto nla_put_failure; 543 544 if (nla_put_s32(skb, TCA_GATE_PRIORITY, p->tcfg_priority)) 545 goto nla_put_failure; 546 547 entry_list = nla_nest_start_noflag(skb, TCA_GATE_ENTRY_LIST); 548 if (!entry_list) 549 goto nla_put_failure; 550 551 list_for_each_entry(entry, &p->entries, list) { 552 if (dumping_entry(skb, entry) < 0) 553 goto nla_put_failure; 554 } 555 556 nla_nest_end(skb, entry_list); 557 558 tcf_tm_dump(&t, &gact->tcf_tm); 559 if (nla_put_64bit(skb, TCA_GATE_TM, sizeof(t), &t, TCA_GATE_PAD)) 560 goto nla_put_failure; 561 spin_unlock_bh(&gact->tcf_lock); 562 563 return skb->len; 564 565 nla_put_failure: 566 spin_unlock_bh(&gact->tcf_lock); 567 nlmsg_trim(skb, b); 568 return -1; 569 } 570 571 static void tcf_gate_stats_update(struct tc_action *a, u64 bytes, u64 packets, 572 u64 drops, u64 lastuse, bool hw) 573 { 574 struct tcf_gate *gact = to_gate(a); 575 struct tcf_t *tm = &gact->tcf_tm; 576 577 tcf_action_update_stats(a, bytes, packets, drops, hw); 578 tm->lastuse = max_t(u64, tm->lastuse, lastuse); 579 } 580 581 static size_t tcf_gate_get_fill_size(const struct tc_action *act) 582 { 583 return nla_total_size(sizeof(struct tc_gate)); 584 } 585 586 static void tcf_gate_entry_destructor(void *priv) 587 { 588 struct action_gate_entry *oe = priv; 589 590 kfree(oe); 591 } 592 593 static int tcf_gate_get_entries(struct flow_action_entry *entry, 594 const struct tc_action *act) 595 { 596 entry->gate.entries = tcf_gate_get_list(act); 597 598 if (!entry->gate.entries) 599 return -EINVAL; 600 601 entry->destructor = tcf_gate_entry_destructor; 602 entry->destructor_priv = entry->gate.entries; 603 604 return 0; 605 } 606 607 static int tcf_gate_offload_act_setup(struct tc_action *act, void *entry_data, 608 u32 *index_inc, bool bind, 609 struct netlink_ext_ack *extack) 610 { 611 int err; 612 613 if (bind) { 614 struct flow_action_entry *entry = entry_data; 615 616 entry->id = FLOW_ACTION_GATE; 617 entry->gate.prio = tcf_gate_prio(act); 618 entry->gate.basetime = tcf_gate_basetime(act); 619 entry->gate.cycletime = tcf_gate_cycletime(act); 620 entry->gate.cycletimeext = tcf_gate_cycletimeext(act); 621 entry->gate.num_entries = tcf_gate_num_entries(act); 622 err = tcf_gate_get_entries(entry, act); 623 if (err) 624 return err; 625 *index_inc = 1; 626 } else { 627 struct flow_offload_action *fl_action = entry_data; 628 629 fl_action->id = FLOW_ACTION_GATE; 630 } 631 632 return 0; 633 } 634 635 static struct tc_action_ops act_gate_ops = { 636 .kind = "gate", 637 .id = TCA_ID_GATE, 638 .owner = THIS_MODULE, 639 .act = tcf_gate_act, 640 .dump = tcf_gate_dump, 641 .init = tcf_gate_init, 642 .cleanup = tcf_gate_cleanup, 643 .stats_update = tcf_gate_stats_update, 644 .get_fill_size = tcf_gate_get_fill_size, 645 .offload_act_setup = tcf_gate_offload_act_setup, 646 .size = sizeof(struct tcf_gate), 647 }; 648 649 static __net_init int gate_init_net(struct net *net) 650 { 651 struct tc_action_net *tn = net_generic(net, act_gate_ops.net_id); 652 653 return tc_action_net_init(net, tn, &act_gate_ops); 654 } 655 656 static void __net_exit gate_exit_net(struct list_head *net_list) 657 { 658 tc_action_net_exit(net_list, act_gate_ops.net_id); 659 } 660 661 static struct pernet_operations gate_net_ops = { 662 .init = gate_init_net, 663 .exit_batch = gate_exit_net, 664 .id = &act_gate_ops.net_id, 665 .size = sizeof(struct tc_action_net), 666 }; 667 668 static int __init gate_init_module(void) 669 { 670 return tcf_register_action(&act_gate_ops, &gate_net_ops); 671 } 672 673 static void __exit gate_cleanup_module(void) 674 { 675 tcf_unregister_action(&act_gate_ops, &gate_net_ops); 676 } 677 678 module_init(gate_init_module); 679 module_exit(gate_cleanup_module); 680 MODULE_LICENSE("GPL v2"); 681