1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB 2 /* - 3 * net/sched/act_ct.c Connection Tracking action 4 * 5 * Authors: Paul Blakey <paulb@mellanox.com> 6 * Yossi Kuperman <yossiku@mellanox.com> 7 * Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> 8 */ 9 10 #include <linux/module.h> 11 #include <linux/init.h> 12 #include <linux/kernel.h> 13 #include <linux/skbuff.h> 14 #include <linux/rtnetlink.h> 15 #include <linux/pkt_cls.h> 16 #include <linux/ip.h> 17 #include <linux/ipv6.h> 18 #include <linux/rhashtable.h> 19 #include <net/netlink.h> 20 #include <net/pkt_sched.h> 21 #include <net/pkt_cls.h> 22 #include <net/act_api.h> 23 #include <net/ip.h> 24 #include <net/ipv6_frag.h> 25 #include <uapi/linux/tc_act/tc_ct.h> 26 #include <net/tc_act/tc_ct.h> 27 28 #include <net/netfilter/nf_flow_table.h> 29 #include <net/netfilter/nf_conntrack.h> 30 #include <net/netfilter/nf_conntrack_core.h> 31 #include <net/netfilter/nf_conntrack_zones.h> 32 #include <net/netfilter/nf_conntrack_helper.h> 33 #include <net/netfilter/nf_conntrack_acct.h> 34 #include <net/netfilter/ipv6/nf_defrag_ipv6.h> 35 #include <uapi/linux/netfilter/nf_nat.h> 36 37 static struct workqueue_struct *act_ct_wq; 38 static struct rhashtable zones_ht; 39 static DEFINE_MUTEX(zones_mutex); 40 41 struct tcf_ct_flow_table { 42 struct rhash_head node; /* In zones tables */ 43 44 struct rcu_work rwork; 45 struct nf_flowtable nf_ft; 46 refcount_t ref; 47 u16 zone; 48 49 bool dying; 50 }; 51 52 static const struct rhashtable_params zones_params = { 53 .head_offset = offsetof(struct tcf_ct_flow_table, node), 54 .key_offset = offsetof(struct tcf_ct_flow_table, zone), 55 .key_len = sizeof_field(struct tcf_ct_flow_table, zone), 56 .automatic_shrinking = true, 57 }; 58 59 static struct flow_action_entry * 60 tcf_ct_flow_table_flow_action_get_next(struct flow_action *flow_action) 61 { 62 int i = flow_action->num_entries++; 63 64 return &flow_action->entries[i]; 65 } 66 67 static void tcf_ct_add_mangle_action(struct flow_action *action, 68 enum flow_action_mangle_base htype, 69 u32 offset, 70 u32 mask, 71 u32 val) 72 { 73 struct flow_action_entry *entry; 74 75 entry = tcf_ct_flow_table_flow_action_get_next(action); 76 entry->id = FLOW_ACTION_MANGLE; 77 entry->mangle.htype = htype; 78 entry->mangle.mask = ~mask; 79 entry->mangle.offset = offset; 80 entry->mangle.val = val; 81 } 82 83 /* The following nat helper functions check if the inverted reverse tuple 84 * (target) is different then the current dir tuple - meaning nat for ports 85 * and/or ip is needed, and add the relevant mangle actions. 86 */ 87 static void 88 tcf_ct_flow_table_add_action_nat_ipv4(const struct nf_conntrack_tuple *tuple, 89 struct nf_conntrack_tuple target, 90 struct flow_action *action) 91 { 92 if (memcmp(&target.src.u3, &tuple->src.u3, sizeof(target.src.u3))) 93 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP4, 94 offsetof(struct iphdr, saddr), 95 0xFFFFFFFF, 96 be32_to_cpu(target.src.u3.ip)); 97 if (memcmp(&target.dst.u3, &tuple->dst.u3, sizeof(target.dst.u3))) 98 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP4, 99 offsetof(struct iphdr, daddr), 100 0xFFFFFFFF, 101 be32_to_cpu(target.dst.u3.ip)); 102 } 103 104 static void 105 tcf_ct_add_ipv6_addr_mangle_action(struct flow_action *action, 106 union nf_inet_addr *addr, 107 u32 offset) 108 { 109 int i; 110 111 for (i = 0; i < sizeof(struct in6_addr) / sizeof(u32); i++) 112 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP6, 113 i * sizeof(u32) + offset, 114 0xFFFFFFFF, be32_to_cpu(addr->ip6[i])); 115 } 116 117 static void 118 tcf_ct_flow_table_add_action_nat_ipv6(const struct nf_conntrack_tuple *tuple, 119 struct nf_conntrack_tuple target, 120 struct flow_action *action) 121 { 122 if (memcmp(&target.src.u3, &tuple->src.u3, sizeof(target.src.u3))) 123 tcf_ct_add_ipv6_addr_mangle_action(action, &target.src.u3, 124 offsetof(struct ipv6hdr, 125 saddr)); 126 if (memcmp(&target.dst.u3, &tuple->dst.u3, sizeof(target.dst.u3))) 127 tcf_ct_add_ipv6_addr_mangle_action(action, &target.dst.u3, 128 offsetof(struct ipv6hdr, 129 daddr)); 130 } 131 132 static void 133 tcf_ct_flow_table_add_action_nat_tcp(const struct nf_conntrack_tuple *tuple, 134 struct nf_conntrack_tuple target, 135 struct flow_action *action) 136 { 137 __be16 target_src = target.src.u.tcp.port; 138 __be16 target_dst = target.dst.u.tcp.port; 139 140 if (target_src != tuple->src.u.tcp.port) 141 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_TCP, 142 offsetof(struct tcphdr, source), 143 0xFFFF, be16_to_cpu(target_src)); 144 if (target_dst != tuple->dst.u.tcp.port) 145 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_TCP, 146 offsetof(struct tcphdr, dest), 147 0xFFFF, be16_to_cpu(target_dst)); 148 } 149 150 static void 151 tcf_ct_flow_table_add_action_nat_udp(const struct nf_conntrack_tuple *tuple, 152 struct nf_conntrack_tuple target, 153 struct flow_action *action) 154 { 155 __be16 target_src = target.src.u.udp.port; 156 __be16 target_dst = target.dst.u.udp.port; 157 158 if (target_src != tuple->src.u.udp.port) 159 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_UDP, 160 offsetof(struct udphdr, source), 161 0xFFFF, be16_to_cpu(target_src)); 162 if (target_dst != tuple->dst.u.udp.port) 163 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_UDP, 164 offsetof(struct udphdr, dest), 165 0xFFFF, be16_to_cpu(target_dst)); 166 } 167 168 static void tcf_ct_flow_table_add_action_meta(struct nf_conn *ct, 169 enum ip_conntrack_dir dir, 170 struct flow_action *action) 171 { 172 struct nf_conn_labels *ct_labels; 173 struct flow_action_entry *entry; 174 enum ip_conntrack_info ctinfo; 175 u32 *act_ct_labels; 176 177 entry = tcf_ct_flow_table_flow_action_get_next(action); 178 entry->id = FLOW_ACTION_CT_METADATA; 179 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 180 entry->ct_metadata.mark = ct->mark; 181 #endif 182 ctinfo = dir == IP_CT_DIR_ORIGINAL ? IP_CT_ESTABLISHED : 183 IP_CT_ESTABLISHED_REPLY; 184 /* aligns with the CT reference on the SKB nf_ct_set */ 185 entry->ct_metadata.cookie = (unsigned long)ct | ctinfo; 186 entry->ct_metadata.orig_dir = dir == IP_CT_DIR_ORIGINAL; 187 188 act_ct_labels = entry->ct_metadata.labels; 189 ct_labels = nf_ct_labels_find(ct); 190 if (ct_labels) 191 memcpy(act_ct_labels, ct_labels->bits, NF_CT_LABELS_MAX_SIZE); 192 else 193 memset(act_ct_labels, 0, NF_CT_LABELS_MAX_SIZE); 194 } 195 196 static int tcf_ct_flow_table_add_action_nat(struct net *net, 197 struct nf_conn *ct, 198 enum ip_conntrack_dir dir, 199 struct flow_action *action) 200 { 201 const struct nf_conntrack_tuple *tuple = &ct->tuplehash[dir].tuple; 202 struct nf_conntrack_tuple target; 203 204 if (!(ct->status & IPS_NAT_MASK)) 205 return 0; 206 207 nf_ct_invert_tuple(&target, &ct->tuplehash[!dir].tuple); 208 209 switch (tuple->src.l3num) { 210 case NFPROTO_IPV4: 211 tcf_ct_flow_table_add_action_nat_ipv4(tuple, target, 212 action); 213 break; 214 case NFPROTO_IPV6: 215 tcf_ct_flow_table_add_action_nat_ipv6(tuple, target, 216 action); 217 break; 218 default: 219 return -EOPNOTSUPP; 220 } 221 222 switch (nf_ct_protonum(ct)) { 223 case IPPROTO_TCP: 224 tcf_ct_flow_table_add_action_nat_tcp(tuple, target, action); 225 break; 226 case IPPROTO_UDP: 227 tcf_ct_flow_table_add_action_nat_udp(tuple, target, action); 228 break; 229 default: 230 return -EOPNOTSUPP; 231 } 232 233 return 0; 234 } 235 236 static int tcf_ct_flow_table_fill_actions(struct net *net, 237 const struct flow_offload *flow, 238 enum flow_offload_tuple_dir tdir, 239 struct nf_flow_rule *flow_rule) 240 { 241 struct flow_action *action = &flow_rule->rule->action; 242 int num_entries = action->num_entries; 243 struct nf_conn *ct = flow->ct; 244 enum ip_conntrack_dir dir; 245 int i, err; 246 247 switch (tdir) { 248 case FLOW_OFFLOAD_DIR_ORIGINAL: 249 dir = IP_CT_DIR_ORIGINAL; 250 break; 251 case FLOW_OFFLOAD_DIR_REPLY: 252 dir = IP_CT_DIR_REPLY; 253 break; 254 default: 255 return -EOPNOTSUPP; 256 } 257 258 err = tcf_ct_flow_table_add_action_nat(net, ct, dir, action); 259 if (err) 260 goto err_nat; 261 262 tcf_ct_flow_table_add_action_meta(ct, dir, action); 263 return 0; 264 265 err_nat: 266 /* Clear filled actions */ 267 for (i = num_entries; i < action->num_entries; i++) 268 memset(&action->entries[i], 0, sizeof(action->entries[i])); 269 action->num_entries = num_entries; 270 271 return err; 272 } 273 274 static struct nf_flowtable_type flowtable_ct = { 275 .action = tcf_ct_flow_table_fill_actions, 276 .owner = THIS_MODULE, 277 }; 278 279 static int tcf_ct_flow_table_get(struct tcf_ct_params *params) 280 { 281 struct tcf_ct_flow_table *ct_ft; 282 int err = -ENOMEM; 283 284 mutex_lock(&zones_mutex); 285 ct_ft = rhashtable_lookup_fast(&zones_ht, ¶ms->zone, zones_params); 286 if (ct_ft && refcount_inc_not_zero(&ct_ft->ref)) 287 goto out_unlock; 288 289 ct_ft = kzalloc(sizeof(*ct_ft), GFP_KERNEL); 290 if (!ct_ft) 291 goto err_alloc; 292 refcount_set(&ct_ft->ref, 1); 293 294 ct_ft->zone = params->zone; 295 err = rhashtable_insert_fast(&zones_ht, &ct_ft->node, zones_params); 296 if (err) 297 goto err_insert; 298 299 ct_ft->nf_ft.type = &flowtable_ct; 300 ct_ft->nf_ft.flags |= NF_FLOWTABLE_HW_OFFLOAD | 301 NF_FLOWTABLE_COUNTER; 302 err = nf_flow_table_init(&ct_ft->nf_ft); 303 if (err) 304 goto err_init; 305 306 __module_get(THIS_MODULE); 307 out_unlock: 308 params->ct_ft = ct_ft; 309 params->nf_ft = &ct_ft->nf_ft; 310 mutex_unlock(&zones_mutex); 311 312 return 0; 313 314 err_init: 315 rhashtable_remove_fast(&zones_ht, &ct_ft->node, zones_params); 316 err_insert: 317 kfree(ct_ft); 318 err_alloc: 319 mutex_unlock(&zones_mutex); 320 return err; 321 } 322 323 static void tcf_ct_flow_table_cleanup_work(struct work_struct *work) 324 { 325 struct tcf_ct_flow_table *ct_ft; 326 327 ct_ft = container_of(to_rcu_work(work), struct tcf_ct_flow_table, 328 rwork); 329 nf_flow_table_free(&ct_ft->nf_ft); 330 kfree(ct_ft); 331 332 module_put(THIS_MODULE); 333 } 334 335 static void tcf_ct_flow_table_put(struct tcf_ct_params *params) 336 { 337 struct tcf_ct_flow_table *ct_ft = params->ct_ft; 338 339 if (refcount_dec_and_test(¶ms->ct_ft->ref)) { 340 rhashtable_remove_fast(&zones_ht, &ct_ft->node, zones_params); 341 INIT_RCU_WORK(&ct_ft->rwork, tcf_ct_flow_table_cleanup_work); 342 queue_rcu_work(act_ct_wq, &ct_ft->rwork); 343 } 344 } 345 346 static void tcf_ct_flow_table_add(struct tcf_ct_flow_table *ct_ft, 347 struct nf_conn *ct, 348 bool tcp) 349 { 350 struct flow_offload *entry; 351 int err; 352 353 if (test_and_set_bit(IPS_OFFLOAD_BIT, &ct->status)) 354 return; 355 356 entry = flow_offload_alloc(ct); 357 if (!entry) { 358 WARN_ON_ONCE(1); 359 goto err_alloc; 360 } 361 362 if (tcp) { 363 ct->proto.tcp.seen[0].flags |= IP_CT_TCP_FLAG_BE_LIBERAL; 364 ct->proto.tcp.seen[1].flags |= IP_CT_TCP_FLAG_BE_LIBERAL; 365 } 366 367 err = flow_offload_add(&ct_ft->nf_ft, entry); 368 if (err) 369 goto err_add; 370 371 return; 372 373 err_add: 374 flow_offload_free(entry); 375 err_alloc: 376 clear_bit(IPS_OFFLOAD_BIT, &ct->status); 377 } 378 379 static void tcf_ct_flow_table_process_conn(struct tcf_ct_flow_table *ct_ft, 380 struct nf_conn *ct, 381 enum ip_conntrack_info ctinfo) 382 { 383 bool tcp = false; 384 385 if (ctinfo != IP_CT_ESTABLISHED && ctinfo != IP_CT_ESTABLISHED_REPLY) 386 return; 387 388 switch (nf_ct_protonum(ct)) { 389 case IPPROTO_TCP: 390 tcp = true; 391 if (ct->proto.tcp.state != TCP_CONNTRACK_ESTABLISHED) 392 return; 393 break; 394 case IPPROTO_UDP: 395 break; 396 default: 397 return; 398 } 399 400 if (nf_ct_ext_exist(ct, NF_CT_EXT_HELPER) || 401 ct->status & IPS_SEQ_ADJUST) 402 return; 403 404 tcf_ct_flow_table_add(ct_ft, ct, tcp); 405 } 406 407 static bool 408 tcf_ct_flow_table_fill_tuple_ipv4(struct sk_buff *skb, 409 struct flow_offload_tuple *tuple, 410 struct tcphdr **tcph) 411 { 412 struct flow_ports *ports; 413 unsigned int thoff; 414 struct iphdr *iph; 415 416 if (!pskb_network_may_pull(skb, sizeof(*iph))) 417 return false; 418 419 iph = ip_hdr(skb); 420 thoff = iph->ihl * 4; 421 422 if (ip_is_fragment(iph) || 423 unlikely(thoff != sizeof(struct iphdr))) 424 return false; 425 426 if (iph->protocol != IPPROTO_TCP && 427 iph->protocol != IPPROTO_UDP) 428 return false; 429 430 if (iph->ttl <= 1) 431 return false; 432 433 if (!pskb_network_may_pull(skb, iph->protocol == IPPROTO_TCP ? 434 thoff + sizeof(struct tcphdr) : 435 thoff + sizeof(*ports))) 436 return false; 437 438 iph = ip_hdr(skb); 439 if (iph->protocol == IPPROTO_TCP) 440 *tcph = (void *)(skb_network_header(skb) + thoff); 441 442 ports = (struct flow_ports *)(skb_network_header(skb) + thoff); 443 tuple->src_v4.s_addr = iph->saddr; 444 tuple->dst_v4.s_addr = iph->daddr; 445 tuple->src_port = ports->source; 446 tuple->dst_port = ports->dest; 447 tuple->l3proto = AF_INET; 448 tuple->l4proto = iph->protocol; 449 450 return true; 451 } 452 453 static bool 454 tcf_ct_flow_table_fill_tuple_ipv6(struct sk_buff *skb, 455 struct flow_offload_tuple *tuple, 456 struct tcphdr **tcph) 457 { 458 struct flow_ports *ports; 459 struct ipv6hdr *ip6h; 460 unsigned int thoff; 461 462 if (!pskb_network_may_pull(skb, sizeof(*ip6h))) 463 return false; 464 465 ip6h = ipv6_hdr(skb); 466 467 if (ip6h->nexthdr != IPPROTO_TCP && 468 ip6h->nexthdr != IPPROTO_UDP) 469 return false; 470 471 if (ip6h->hop_limit <= 1) 472 return false; 473 474 thoff = sizeof(*ip6h); 475 if (!pskb_network_may_pull(skb, ip6h->nexthdr == IPPROTO_TCP ? 476 thoff + sizeof(struct tcphdr) : 477 thoff + sizeof(*ports))) 478 return false; 479 480 ip6h = ipv6_hdr(skb); 481 if (ip6h->nexthdr == IPPROTO_TCP) 482 *tcph = (void *)(skb_network_header(skb) + thoff); 483 484 ports = (struct flow_ports *)(skb_network_header(skb) + thoff); 485 tuple->src_v6 = ip6h->saddr; 486 tuple->dst_v6 = ip6h->daddr; 487 tuple->src_port = ports->source; 488 tuple->dst_port = ports->dest; 489 tuple->l3proto = AF_INET6; 490 tuple->l4proto = ip6h->nexthdr; 491 492 return true; 493 } 494 495 static bool tcf_ct_flow_table_lookup(struct tcf_ct_params *p, 496 struct sk_buff *skb, 497 u8 family) 498 { 499 struct nf_flowtable *nf_ft = &p->ct_ft->nf_ft; 500 struct flow_offload_tuple_rhash *tuplehash; 501 struct flow_offload_tuple tuple = {}; 502 enum ip_conntrack_info ctinfo; 503 struct tcphdr *tcph = NULL; 504 struct flow_offload *flow; 505 struct nf_conn *ct; 506 u8 dir; 507 508 /* Previously seen or loopback */ 509 ct = nf_ct_get(skb, &ctinfo); 510 if ((ct && !nf_ct_is_template(ct)) || ctinfo == IP_CT_UNTRACKED) 511 return false; 512 513 switch (family) { 514 case NFPROTO_IPV4: 515 if (!tcf_ct_flow_table_fill_tuple_ipv4(skb, &tuple, &tcph)) 516 return false; 517 break; 518 case NFPROTO_IPV6: 519 if (!tcf_ct_flow_table_fill_tuple_ipv6(skb, &tuple, &tcph)) 520 return false; 521 break; 522 default: 523 return false; 524 } 525 526 tuplehash = flow_offload_lookup(nf_ft, &tuple); 527 if (!tuplehash) 528 return false; 529 530 dir = tuplehash->tuple.dir; 531 flow = container_of(tuplehash, struct flow_offload, tuplehash[dir]); 532 ct = flow->ct; 533 534 if (tcph && (unlikely(tcph->fin || tcph->rst))) { 535 flow_offload_teardown(flow); 536 return false; 537 } 538 539 ctinfo = dir == FLOW_OFFLOAD_DIR_ORIGINAL ? IP_CT_ESTABLISHED : 540 IP_CT_ESTABLISHED_REPLY; 541 542 flow_offload_refresh(nf_ft, flow); 543 nf_conntrack_get(&ct->ct_general); 544 nf_ct_set(skb, ct, ctinfo); 545 if (nf_ft->flags & NF_FLOWTABLE_COUNTER) 546 nf_ct_acct_update(ct, dir, skb->len); 547 548 return true; 549 } 550 551 static int tcf_ct_flow_tables_init(void) 552 { 553 return rhashtable_init(&zones_ht, &zones_params); 554 } 555 556 static void tcf_ct_flow_tables_uninit(void) 557 { 558 rhashtable_destroy(&zones_ht); 559 } 560 561 static struct tc_action_ops act_ct_ops; 562 static unsigned int ct_net_id; 563 564 struct tc_ct_action_net { 565 struct tc_action_net tn; /* Must be first */ 566 bool labels; 567 }; 568 569 /* Determine whether skb->_nfct is equal to the result of conntrack lookup. */ 570 static bool tcf_ct_skb_nfct_cached(struct net *net, struct sk_buff *skb, 571 u16 zone_id, bool force) 572 { 573 enum ip_conntrack_info ctinfo; 574 struct nf_conn *ct; 575 576 ct = nf_ct_get(skb, &ctinfo); 577 if (!ct) 578 return false; 579 if (!net_eq(net, read_pnet(&ct->ct_net))) 580 return false; 581 if (nf_ct_zone(ct)->id != zone_id) 582 return false; 583 584 /* Force conntrack entry direction. */ 585 if (force && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) { 586 if (nf_ct_is_confirmed(ct)) 587 nf_ct_kill(ct); 588 589 nf_conntrack_put(&ct->ct_general); 590 nf_ct_set(skb, NULL, IP_CT_UNTRACKED); 591 592 return false; 593 } 594 595 return true; 596 } 597 598 /* Trim the skb to the length specified by the IP/IPv6 header, 599 * removing any trailing lower-layer padding. This prepares the skb 600 * for higher-layer processing that assumes skb->len excludes padding 601 * (such as nf_ip_checksum). The caller needs to pull the skb to the 602 * network header, and ensure ip_hdr/ipv6_hdr points to valid data. 603 */ 604 static int tcf_ct_skb_network_trim(struct sk_buff *skb, int family) 605 { 606 unsigned int len; 607 int err; 608 609 switch (family) { 610 case NFPROTO_IPV4: 611 len = ntohs(ip_hdr(skb)->tot_len); 612 break; 613 case NFPROTO_IPV6: 614 len = sizeof(struct ipv6hdr) 615 + ntohs(ipv6_hdr(skb)->payload_len); 616 break; 617 default: 618 len = skb->len; 619 } 620 621 err = pskb_trim_rcsum(skb, len); 622 623 return err; 624 } 625 626 static u8 tcf_ct_skb_nf_family(struct sk_buff *skb) 627 { 628 u8 family = NFPROTO_UNSPEC; 629 630 switch (skb_protocol(skb, true)) { 631 case htons(ETH_P_IP): 632 family = NFPROTO_IPV4; 633 break; 634 case htons(ETH_P_IPV6): 635 family = NFPROTO_IPV6; 636 break; 637 default: 638 break; 639 } 640 641 return family; 642 } 643 644 static int tcf_ct_ipv4_is_fragment(struct sk_buff *skb, bool *frag) 645 { 646 unsigned int len; 647 648 len = skb_network_offset(skb) + sizeof(struct iphdr); 649 if (unlikely(skb->len < len)) 650 return -EINVAL; 651 if (unlikely(!pskb_may_pull(skb, len))) 652 return -ENOMEM; 653 654 *frag = ip_is_fragment(ip_hdr(skb)); 655 return 0; 656 } 657 658 static int tcf_ct_ipv6_is_fragment(struct sk_buff *skb, bool *frag) 659 { 660 unsigned int flags = 0, len, payload_ofs = 0; 661 unsigned short frag_off; 662 int nexthdr; 663 664 len = skb_network_offset(skb) + sizeof(struct ipv6hdr); 665 if (unlikely(skb->len < len)) 666 return -EINVAL; 667 if (unlikely(!pskb_may_pull(skb, len))) 668 return -ENOMEM; 669 670 nexthdr = ipv6_find_hdr(skb, &payload_ofs, -1, &frag_off, &flags); 671 if (unlikely(nexthdr < 0)) 672 return -EPROTO; 673 674 *frag = flags & IP6_FH_F_FRAG; 675 return 0; 676 } 677 678 static int tcf_ct_handle_fragments(struct net *net, struct sk_buff *skb, 679 u8 family, u16 zone, bool *defrag) 680 { 681 enum ip_conntrack_info ctinfo; 682 struct qdisc_skb_cb cb; 683 struct nf_conn *ct; 684 int err = 0; 685 bool frag; 686 687 /* Previously seen (loopback)? Ignore. */ 688 ct = nf_ct_get(skb, &ctinfo); 689 if ((ct && !nf_ct_is_template(ct)) || ctinfo == IP_CT_UNTRACKED) 690 return 0; 691 692 if (family == NFPROTO_IPV4) 693 err = tcf_ct_ipv4_is_fragment(skb, &frag); 694 else 695 err = tcf_ct_ipv6_is_fragment(skb, &frag); 696 if (err || !frag) 697 return err; 698 699 skb_get(skb); 700 cb = *qdisc_skb_cb(skb); 701 702 if (family == NFPROTO_IPV4) { 703 enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone; 704 705 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm)); 706 local_bh_disable(); 707 err = ip_defrag(net, skb, user); 708 local_bh_enable(); 709 if (err && err != -EINPROGRESS) 710 return err; 711 712 if (!err) { 713 *defrag = true; 714 cb.mru = IPCB(skb)->frag_max_size; 715 } 716 } else { /* NFPROTO_IPV6 */ 717 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6) 718 enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone; 719 720 memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm)); 721 err = nf_ct_frag6_gather(net, skb, user); 722 if (err && err != -EINPROGRESS) 723 goto out_free; 724 725 if (!err) { 726 *defrag = true; 727 cb.mru = IP6CB(skb)->frag_max_size; 728 } 729 #else 730 err = -EOPNOTSUPP; 731 goto out_free; 732 #endif 733 } 734 735 *qdisc_skb_cb(skb) = cb; 736 skb_clear_hash(skb); 737 skb->ignore_df = 1; 738 return err; 739 740 out_free: 741 kfree_skb(skb); 742 return err; 743 } 744 745 static void tcf_ct_params_free(struct rcu_head *head) 746 { 747 struct tcf_ct_params *params = container_of(head, 748 struct tcf_ct_params, rcu); 749 750 tcf_ct_flow_table_put(params); 751 752 if (params->tmpl) 753 nf_conntrack_put(¶ms->tmpl->ct_general); 754 kfree(params); 755 } 756 757 #if IS_ENABLED(CONFIG_NF_NAT) 758 /* Modelled after nf_nat_ipv[46]_fn(). 759 * range is only used for new, uninitialized NAT state. 760 * Returns either NF_ACCEPT or NF_DROP. 761 */ 762 static int ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct, 763 enum ip_conntrack_info ctinfo, 764 const struct nf_nat_range2 *range, 765 enum nf_nat_manip_type maniptype) 766 { 767 __be16 proto = skb_protocol(skb, true); 768 int hooknum, err = NF_ACCEPT; 769 770 /* See HOOK2MANIP(). */ 771 if (maniptype == NF_NAT_MANIP_SRC) 772 hooknum = NF_INET_LOCAL_IN; /* Source NAT */ 773 else 774 hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */ 775 776 switch (ctinfo) { 777 case IP_CT_RELATED: 778 case IP_CT_RELATED_REPLY: 779 if (proto == htons(ETH_P_IP) && 780 ip_hdr(skb)->protocol == IPPROTO_ICMP) { 781 if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo, 782 hooknum)) 783 err = NF_DROP; 784 goto out; 785 } else if (IS_ENABLED(CONFIG_IPV6) && proto == htons(ETH_P_IPV6)) { 786 __be16 frag_off; 787 u8 nexthdr = ipv6_hdr(skb)->nexthdr; 788 int hdrlen = ipv6_skip_exthdr(skb, 789 sizeof(struct ipv6hdr), 790 &nexthdr, &frag_off); 791 792 if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) { 793 if (!nf_nat_icmpv6_reply_translation(skb, ct, 794 ctinfo, 795 hooknum, 796 hdrlen)) 797 err = NF_DROP; 798 goto out; 799 } 800 } 801 /* Non-ICMP, fall thru to initialize if needed. */ 802 fallthrough; 803 case IP_CT_NEW: 804 /* Seen it before? This can happen for loopback, retrans, 805 * or local packets. 806 */ 807 if (!nf_nat_initialized(ct, maniptype)) { 808 /* Initialize according to the NAT action. */ 809 err = (range && range->flags & NF_NAT_RANGE_MAP_IPS) 810 /* Action is set up to establish a new 811 * mapping. 812 */ 813 ? nf_nat_setup_info(ct, range, maniptype) 814 : nf_nat_alloc_null_binding(ct, hooknum); 815 if (err != NF_ACCEPT) 816 goto out; 817 } 818 break; 819 820 case IP_CT_ESTABLISHED: 821 case IP_CT_ESTABLISHED_REPLY: 822 break; 823 824 default: 825 err = NF_DROP; 826 goto out; 827 } 828 829 err = nf_nat_packet(ct, ctinfo, hooknum, skb); 830 out: 831 return err; 832 } 833 #endif /* CONFIG_NF_NAT */ 834 835 static void tcf_ct_act_set_mark(struct nf_conn *ct, u32 mark, u32 mask) 836 { 837 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 838 u32 new_mark; 839 840 if (!mask) 841 return; 842 843 new_mark = mark | (ct->mark & ~(mask)); 844 if (ct->mark != new_mark) { 845 ct->mark = new_mark; 846 if (nf_ct_is_confirmed(ct)) 847 nf_conntrack_event_cache(IPCT_MARK, ct); 848 } 849 #endif 850 } 851 852 static void tcf_ct_act_set_labels(struct nf_conn *ct, 853 u32 *labels, 854 u32 *labels_m) 855 { 856 #if IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) 857 size_t labels_sz = sizeof_field(struct tcf_ct_params, labels); 858 859 if (!memchr_inv(labels_m, 0, labels_sz)) 860 return; 861 862 nf_connlabels_replace(ct, labels, labels_m, 4); 863 #endif 864 } 865 866 static int tcf_ct_act_nat(struct sk_buff *skb, 867 struct nf_conn *ct, 868 enum ip_conntrack_info ctinfo, 869 int ct_action, 870 struct nf_nat_range2 *range, 871 bool commit) 872 { 873 #if IS_ENABLED(CONFIG_NF_NAT) 874 int err; 875 enum nf_nat_manip_type maniptype; 876 877 if (!(ct_action & TCA_CT_ACT_NAT)) 878 return NF_ACCEPT; 879 880 /* Add NAT extension if not confirmed yet. */ 881 if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct)) 882 return NF_DROP; /* Can't NAT. */ 883 884 if (ctinfo != IP_CT_NEW && (ct->status & IPS_NAT_MASK) && 885 (ctinfo != IP_CT_RELATED || commit)) { 886 /* NAT an established or related connection like before. */ 887 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY) 888 /* This is the REPLY direction for a connection 889 * for which NAT was applied in the forward 890 * direction. Do the reverse NAT. 891 */ 892 maniptype = ct->status & IPS_SRC_NAT 893 ? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC; 894 else 895 maniptype = ct->status & IPS_SRC_NAT 896 ? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST; 897 } else if (ct_action & TCA_CT_ACT_NAT_SRC) { 898 maniptype = NF_NAT_MANIP_SRC; 899 } else if (ct_action & TCA_CT_ACT_NAT_DST) { 900 maniptype = NF_NAT_MANIP_DST; 901 } else { 902 return NF_ACCEPT; 903 } 904 905 err = ct_nat_execute(skb, ct, ctinfo, range, maniptype); 906 if (err == NF_ACCEPT && 907 ct->status & IPS_SRC_NAT && ct->status & IPS_DST_NAT) { 908 if (maniptype == NF_NAT_MANIP_SRC) 909 maniptype = NF_NAT_MANIP_DST; 910 else 911 maniptype = NF_NAT_MANIP_SRC; 912 913 err = ct_nat_execute(skb, ct, ctinfo, range, maniptype); 914 } 915 return err; 916 #else 917 return NF_ACCEPT; 918 #endif 919 } 920 921 static int tcf_ct_act(struct sk_buff *skb, const struct tc_action *a, 922 struct tcf_result *res) 923 { 924 struct net *net = dev_net(skb->dev); 925 bool cached, commit, clear, force; 926 enum ip_conntrack_info ctinfo; 927 struct tcf_ct *c = to_ct(a); 928 struct nf_conn *tmpl = NULL; 929 struct nf_hook_state state; 930 int nh_ofs, err, retval; 931 struct tcf_ct_params *p; 932 bool skip_add = false; 933 bool defrag = false; 934 struct nf_conn *ct; 935 u8 family; 936 937 p = rcu_dereference_bh(c->params); 938 939 retval = READ_ONCE(c->tcf_action); 940 commit = p->ct_action & TCA_CT_ACT_COMMIT; 941 clear = p->ct_action & TCA_CT_ACT_CLEAR; 942 force = p->ct_action & TCA_CT_ACT_FORCE; 943 tmpl = p->tmpl; 944 945 tcf_lastuse_update(&c->tcf_tm); 946 947 if (clear) { 948 qdisc_skb_cb(skb)->post_ct = false; 949 ct = nf_ct_get(skb, &ctinfo); 950 if (ct) { 951 nf_conntrack_put(&ct->ct_general); 952 nf_ct_set(skb, NULL, IP_CT_UNTRACKED); 953 } 954 955 goto out_clear; 956 } 957 958 family = tcf_ct_skb_nf_family(skb); 959 if (family == NFPROTO_UNSPEC) 960 goto drop; 961 962 /* The conntrack module expects to be working at L3. 963 * We also try to pull the IPv4/6 header to linear area 964 */ 965 nh_ofs = skb_network_offset(skb); 966 skb_pull_rcsum(skb, nh_ofs); 967 err = tcf_ct_handle_fragments(net, skb, family, p->zone, &defrag); 968 if (err == -EINPROGRESS) { 969 retval = TC_ACT_STOLEN; 970 goto out; 971 } 972 if (err) 973 goto drop; 974 975 err = tcf_ct_skb_network_trim(skb, family); 976 if (err) 977 goto drop; 978 979 /* If we are recirculating packets to match on ct fields and 980 * committing with a separate ct action, then we don't need to 981 * actually run the packet through conntrack twice unless it's for a 982 * different zone. 983 */ 984 cached = tcf_ct_skb_nfct_cached(net, skb, p->zone, force); 985 if (!cached) { 986 if (!commit && tcf_ct_flow_table_lookup(p, skb, family)) { 987 skip_add = true; 988 goto do_nat; 989 } 990 991 /* Associate skb with specified zone. */ 992 if (tmpl) { 993 ct = nf_ct_get(skb, &ctinfo); 994 if (skb_nfct(skb)) 995 nf_conntrack_put(skb_nfct(skb)); 996 nf_conntrack_get(&tmpl->ct_general); 997 nf_ct_set(skb, tmpl, IP_CT_NEW); 998 } 999 1000 state.hook = NF_INET_PRE_ROUTING; 1001 state.net = net; 1002 state.pf = family; 1003 err = nf_conntrack_in(skb, &state); 1004 if (err != NF_ACCEPT) 1005 goto out_push; 1006 } 1007 1008 do_nat: 1009 ct = nf_ct_get(skb, &ctinfo); 1010 if (!ct) 1011 goto out_push; 1012 nf_ct_deliver_cached_events(ct); 1013 1014 err = tcf_ct_act_nat(skb, ct, ctinfo, p->ct_action, &p->range, commit); 1015 if (err != NF_ACCEPT) 1016 goto drop; 1017 1018 if (commit) { 1019 tcf_ct_act_set_mark(ct, p->mark, p->mark_mask); 1020 tcf_ct_act_set_labels(ct, p->labels, p->labels_mask); 1021 1022 /* This will take care of sending queued events 1023 * even if the connection is already confirmed. 1024 */ 1025 nf_conntrack_confirm(skb); 1026 } else if (!skip_add) { 1027 tcf_ct_flow_table_process_conn(p->ct_ft, ct, ctinfo); 1028 } 1029 1030 out_push: 1031 skb_push_rcsum(skb, nh_ofs); 1032 1033 out: 1034 qdisc_skb_cb(skb)->post_ct = true; 1035 out_clear: 1036 tcf_action_update_bstats(&c->common, skb); 1037 if (defrag) 1038 qdisc_skb_cb(skb)->pkt_len = skb->len; 1039 return retval; 1040 1041 drop: 1042 tcf_action_inc_drop_qstats(&c->common); 1043 return TC_ACT_SHOT; 1044 } 1045 1046 static const struct nla_policy ct_policy[TCA_CT_MAX + 1] = { 1047 [TCA_CT_ACTION] = { .type = NLA_U16 }, 1048 [TCA_CT_PARMS] = NLA_POLICY_EXACT_LEN(sizeof(struct tc_ct)), 1049 [TCA_CT_ZONE] = { .type = NLA_U16 }, 1050 [TCA_CT_MARK] = { .type = NLA_U32 }, 1051 [TCA_CT_MARK_MASK] = { .type = NLA_U32 }, 1052 [TCA_CT_LABELS] = { .type = NLA_BINARY, 1053 .len = 128 / BITS_PER_BYTE }, 1054 [TCA_CT_LABELS_MASK] = { .type = NLA_BINARY, 1055 .len = 128 / BITS_PER_BYTE }, 1056 [TCA_CT_NAT_IPV4_MIN] = { .type = NLA_U32 }, 1057 [TCA_CT_NAT_IPV4_MAX] = { .type = NLA_U32 }, 1058 [TCA_CT_NAT_IPV6_MIN] = NLA_POLICY_EXACT_LEN(sizeof(struct in6_addr)), 1059 [TCA_CT_NAT_IPV6_MAX] = NLA_POLICY_EXACT_LEN(sizeof(struct in6_addr)), 1060 [TCA_CT_NAT_PORT_MIN] = { .type = NLA_U16 }, 1061 [TCA_CT_NAT_PORT_MAX] = { .type = NLA_U16 }, 1062 }; 1063 1064 static int tcf_ct_fill_params_nat(struct tcf_ct_params *p, 1065 struct tc_ct *parm, 1066 struct nlattr **tb, 1067 struct netlink_ext_ack *extack) 1068 { 1069 struct nf_nat_range2 *range; 1070 1071 if (!(p->ct_action & TCA_CT_ACT_NAT)) 1072 return 0; 1073 1074 if (!IS_ENABLED(CONFIG_NF_NAT)) { 1075 NL_SET_ERR_MSG_MOD(extack, "Netfilter nat isn't enabled in kernel"); 1076 return -EOPNOTSUPP; 1077 } 1078 1079 if (!(p->ct_action & (TCA_CT_ACT_NAT_SRC | TCA_CT_ACT_NAT_DST))) 1080 return 0; 1081 1082 if ((p->ct_action & TCA_CT_ACT_NAT_SRC) && 1083 (p->ct_action & TCA_CT_ACT_NAT_DST)) { 1084 NL_SET_ERR_MSG_MOD(extack, "dnat and snat can't be enabled at the same time"); 1085 return -EOPNOTSUPP; 1086 } 1087 1088 range = &p->range; 1089 if (tb[TCA_CT_NAT_IPV4_MIN]) { 1090 struct nlattr *max_attr = tb[TCA_CT_NAT_IPV4_MAX]; 1091 1092 p->ipv4_range = true; 1093 range->flags |= NF_NAT_RANGE_MAP_IPS; 1094 range->min_addr.ip = 1095 nla_get_in_addr(tb[TCA_CT_NAT_IPV4_MIN]); 1096 1097 range->max_addr.ip = max_attr ? 1098 nla_get_in_addr(max_attr) : 1099 range->min_addr.ip; 1100 } else if (tb[TCA_CT_NAT_IPV6_MIN]) { 1101 struct nlattr *max_attr = tb[TCA_CT_NAT_IPV6_MAX]; 1102 1103 p->ipv4_range = false; 1104 range->flags |= NF_NAT_RANGE_MAP_IPS; 1105 range->min_addr.in6 = 1106 nla_get_in6_addr(tb[TCA_CT_NAT_IPV6_MIN]); 1107 1108 range->max_addr.in6 = max_attr ? 1109 nla_get_in6_addr(max_attr) : 1110 range->min_addr.in6; 1111 } 1112 1113 if (tb[TCA_CT_NAT_PORT_MIN]) { 1114 range->flags |= NF_NAT_RANGE_PROTO_SPECIFIED; 1115 range->min_proto.all = nla_get_be16(tb[TCA_CT_NAT_PORT_MIN]); 1116 1117 range->max_proto.all = tb[TCA_CT_NAT_PORT_MAX] ? 1118 nla_get_be16(tb[TCA_CT_NAT_PORT_MAX]) : 1119 range->min_proto.all; 1120 } 1121 1122 return 0; 1123 } 1124 1125 static void tcf_ct_set_key_val(struct nlattr **tb, 1126 void *val, int val_type, 1127 void *mask, int mask_type, 1128 int len) 1129 { 1130 if (!tb[val_type]) 1131 return; 1132 nla_memcpy(val, tb[val_type], len); 1133 1134 if (!mask) 1135 return; 1136 1137 if (mask_type == TCA_CT_UNSPEC || !tb[mask_type]) 1138 memset(mask, 0xff, len); 1139 else 1140 nla_memcpy(mask, tb[mask_type], len); 1141 } 1142 1143 static int tcf_ct_fill_params(struct net *net, 1144 struct tcf_ct_params *p, 1145 struct tc_ct *parm, 1146 struct nlattr **tb, 1147 struct netlink_ext_ack *extack) 1148 { 1149 struct tc_ct_action_net *tn = net_generic(net, ct_net_id); 1150 struct nf_conntrack_zone zone; 1151 struct nf_conn *tmpl; 1152 int err; 1153 1154 p->zone = NF_CT_DEFAULT_ZONE_ID; 1155 1156 tcf_ct_set_key_val(tb, 1157 &p->ct_action, TCA_CT_ACTION, 1158 NULL, TCA_CT_UNSPEC, 1159 sizeof(p->ct_action)); 1160 1161 if (p->ct_action & TCA_CT_ACT_CLEAR) 1162 return 0; 1163 1164 err = tcf_ct_fill_params_nat(p, parm, tb, extack); 1165 if (err) 1166 return err; 1167 1168 if (tb[TCA_CT_MARK]) { 1169 if (!IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)) { 1170 NL_SET_ERR_MSG_MOD(extack, "Conntrack mark isn't enabled."); 1171 return -EOPNOTSUPP; 1172 } 1173 tcf_ct_set_key_val(tb, 1174 &p->mark, TCA_CT_MARK, 1175 &p->mark_mask, TCA_CT_MARK_MASK, 1176 sizeof(p->mark)); 1177 } 1178 1179 if (tb[TCA_CT_LABELS]) { 1180 if (!IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS)) { 1181 NL_SET_ERR_MSG_MOD(extack, "Conntrack labels isn't enabled."); 1182 return -EOPNOTSUPP; 1183 } 1184 1185 if (!tn->labels) { 1186 NL_SET_ERR_MSG_MOD(extack, "Failed to set connlabel length"); 1187 return -EOPNOTSUPP; 1188 } 1189 tcf_ct_set_key_val(tb, 1190 p->labels, TCA_CT_LABELS, 1191 p->labels_mask, TCA_CT_LABELS_MASK, 1192 sizeof(p->labels)); 1193 } 1194 1195 if (tb[TCA_CT_ZONE]) { 1196 if (!IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES)) { 1197 NL_SET_ERR_MSG_MOD(extack, "Conntrack zones isn't enabled."); 1198 return -EOPNOTSUPP; 1199 } 1200 1201 tcf_ct_set_key_val(tb, 1202 &p->zone, TCA_CT_ZONE, 1203 NULL, TCA_CT_UNSPEC, 1204 sizeof(p->zone)); 1205 } 1206 1207 if (p->zone == NF_CT_DEFAULT_ZONE_ID) 1208 return 0; 1209 1210 nf_ct_zone_init(&zone, p->zone, NF_CT_DEFAULT_ZONE_DIR, 0); 1211 tmpl = nf_ct_tmpl_alloc(net, &zone, GFP_KERNEL); 1212 if (!tmpl) { 1213 NL_SET_ERR_MSG_MOD(extack, "Failed to allocate conntrack template"); 1214 return -ENOMEM; 1215 } 1216 __set_bit(IPS_CONFIRMED_BIT, &tmpl->status); 1217 nf_conntrack_get(&tmpl->ct_general); 1218 p->tmpl = tmpl; 1219 1220 return 0; 1221 } 1222 1223 static int tcf_ct_init(struct net *net, struct nlattr *nla, 1224 struct nlattr *est, struct tc_action **a, 1225 int replace, int bind, bool rtnl_held, 1226 struct tcf_proto *tp, u32 flags, 1227 struct netlink_ext_ack *extack) 1228 { 1229 struct tc_action_net *tn = net_generic(net, ct_net_id); 1230 struct tcf_ct_params *params = NULL; 1231 struct nlattr *tb[TCA_CT_MAX + 1]; 1232 struct tcf_chain *goto_ch = NULL; 1233 struct tc_ct *parm; 1234 struct tcf_ct *c; 1235 int err, res = 0; 1236 u32 index; 1237 1238 if (!nla) { 1239 NL_SET_ERR_MSG_MOD(extack, "Ct requires attributes to be passed"); 1240 return -EINVAL; 1241 } 1242 1243 err = nla_parse_nested(tb, TCA_CT_MAX, nla, ct_policy, extack); 1244 if (err < 0) 1245 return err; 1246 1247 if (!tb[TCA_CT_PARMS]) { 1248 NL_SET_ERR_MSG_MOD(extack, "Missing required ct parameters"); 1249 return -EINVAL; 1250 } 1251 parm = nla_data(tb[TCA_CT_PARMS]); 1252 index = parm->index; 1253 err = tcf_idr_check_alloc(tn, &index, a, bind); 1254 if (err < 0) 1255 return err; 1256 1257 if (!err) { 1258 err = tcf_idr_create_from_flags(tn, index, est, a, 1259 &act_ct_ops, bind, flags); 1260 if (err) { 1261 tcf_idr_cleanup(tn, index); 1262 return err; 1263 } 1264 res = ACT_P_CREATED; 1265 } else { 1266 if (bind) 1267 return 0; 1268 1269 if (!replace) { 1270 tcf_idr_release(*a, bind); 1271 return -EEXIST; 1272 } 1273 } 1274 err = tcf_action_check_ctrlact(parm->action, tp, &goto_ch, extack); 1275 if (err < 0) 1276 goto cleanup; 1277 1278 c = to_ct(*a); 1279 1280 params = kzalloc(sizeof(*params), GFP_KERNEL); 1281 if (unlikely(!params)) { 1282 err = -ENOMEM; 1283 goto cleanup; 1284 } 1285 1286 err = tcf_ct_fill_params(net, params, parm, tb, extack); 1287 if (err) 1288 goto cleanup; 1289 1290 err = tcf_ct_flow_table_get(params); 1291 if (err) 1292 goto cleanup; 1293 1294 spin_lock_bh(&c->tcf_lock); 1295 goto_ch = tcf_action_set_ctrlact(*a, parm->action, goto_ch); 1296 params = rcu_replace_pointer(c->params, params, 1297 lockdep_is_held(&c->tcf_lock)); 1298 spin_unlock_bh(&c->tcf_lock); 1299 1300 if (goto_ch) 1301 tcf_chain_put_by_act(goto_ch); 1302 if (params) 1303 call_rcu(¶ms->rcu, tcf_ct_params_free); 1304 1305 return res; 1306 1307 cleanup: 1308 if (goto_ch) 1309 tcf_chain_put_by_act(goto_ch); 1310 kfree(params); 1311 tcf_idr_release(*a, bind); 1312 return err; 1313 } 1314 1315 static void tcf_ct_cleanup(struct tc_action *a) 1316 { 1317 struct tcf_ct_params *params; 1318 struct tcf_ct *c = to_ct(a); 1319 1320 params = rcu_dereference_protected(c->params, 1); 1321 if (params) 1322 call_rcu(¶ms->rcu, tcf_ct_params_free); 1323 } 1324 1325 static int tcf_ct_dump_key_val(struct sk_buff *skb, 1326 void *val, int val_type, 1327 void *mask, int mask_type, 1328 int len) 1329 { 1330 int err; 1331 1332 if (mask && !memchr_inv(mask, 0, len)) 1333 return 0; 1334 1335 err = nla_put(skb, val_type, len, val); 1336 if (err) 1337 return err; 1338 1339 if (mask_type != TCA_CT_UNSPEC) { 1340 err = nla_put(skb, mask_type, len, mask); 1341 if (err) 1342 return err; 1343 } 1344 1345 return 0; 1346 } 1347 1348 static int tcf_ct_dump_nat(struct sk_buff *skb, struct tcf_ct_params *p) 1349 { 1350 struct nf_nat_range2 *range = &p->range; 1351 1352 if (!(p->ct_action & TCA_CT_ACT_NAT)) 1353 return 0; 1354 1355 if (!(p->ct_action & (TCA_CT_ACT_NAT_SRC | TCA_CT_ACT_NAT_DST))) 1356 return 0; 1357 1358 if (range->flags & NF_NAT_RANGE_MAP_IPS) { 1359 if (p->ipv4_range) { 1360 if (nla_put_in_addr(skb, TCA_CT_NAT_IPV4_MIN, 1361 range->min_addr.ip)) 1362 return -1; 1363 if (nla_put_in_addr(skb, TCA_CT_NAT_IPV4_MAX, 1364 range->max_addr.ip)) 1365 return -1; 1366 } else { 1367 if (nla_put_in6_addr(skb, TCA_CT_NAT_IPV6_MIN, 1368 &range->min_addr.in6)) 1369 return -1; 1370 if (nla_put_in6_addr(skb, TCA_CT_NAT_IPV6_MAX, 1371 &range->max_addr.in6)) 1372 return -1; 1373 } 1374 } 1375 1376 if (range->flags & NF_NAT_RANGE_PROTO_SPECIFIED) { 1377 if (nla_put_be16(skb, TCA_CT_NAT_PORT_MIN, 1378 range->min_proto.all)) 1379 return -1; 1380 if (nla_put_be16(skb, TCA_CT_NAT_PORT_MAX, 1381 range->max_proto.all)) 1382 return -1; 1383 } 1384 1385 return 0; 1386 } 1387 1388 static inline int tcf_ct_dump(struct sk_buff *skb, struct tc_action *a, 1389 int bind, int ref) 1390 { 1391 unsigned char *b = skb_tail_pointer(skb); 1392 struct tcf_ct *c = to_ct(a); 1393 struct tcf_ct_params *p; 1394 1395 struct tc_ct opt = { 1396 .index = c->tcf_index, 1397 .refcnt = refcount_read(&c->tcf_refcnt) - ref, 1398 .bindcnt = atomic_read(&c->tcf_bindcnt) - bind, 1399 }; 1400 struct tcf_t t; 1401 1402 spin_lock_bh(&c->tcf_lock); 1403 p = rcu_dereference_protected(c->params, 1404 lockdep_is_held(&c->tcf_lock)); 1405 opt.action = c->tcf_action; 1406 1407 if (tcf_ct_dump_key_val(skb, 1408 &p->ct_action, TCA_CT_ACTION, 1409 NULL, TCA_CT_UNSPEC, 1410 sizeof(p->ct_action))) 1411 goto nla_put_failure; 1412 1413 if (p->ct_action & TCA_CT_ACT_CLEAR) 1414 goto skip_dump; 1415 1416 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && 1417 tcf_ct_dump_key_val(skb, 1418 &p->mark, TCA_CT_MARK, 1419 &p->mark_mask, TCA_CT_MARK_MASK, 1420 sizeof(p->mark))) 1421 goto nla_put_failure; 1422 1423 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 1424 tcf_ct_dump_key_val(skb, 1425 p->labels, TCA_CT_LABELS, 1426 p->labels_mask, TCA_CT_LABELS_MASK, 1427 sizeof(p->labels))) 1428 goto nla_put_failure; 1429 1430 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 1431 tcf_ct_dump_key_val(skb, 1432 &p->zone, TCA_CT_ZONE, 1433 NULL, TCA_CT_UNSPEC, 1434 sizeof(p->zone))) 1435 goto nla_put_failure; 1436 1437 if (tcf_ct_dump_nat(skb, p)) 1438 goto nla_put_failure; 1439 1440 skip_dump: 1441 if (nla_put(skb, TCA_CT_PARMS, sizeof(opt), &opt)) 1442 goto nla_put_failure; 1443 1444 tcf_tm_dump(&t, &c->tcf_tm); 1445 if (nla_put_64bit(skb, TCA_CT_TM, sizeof(t), &t, TCA_CT_PAD)) 1446 goto nla_put_failure; 1447 spin_unlock_bh(&c->tcf_lock); 1448 1449 return skb->len; 1450 nla_put_failure: 1451 spin_unlock_bh(&c->tcf_lock); 1452 nlmsg_trim(skb, b); 1453 return -1; 1454 } 1455 1456 static int tcf_ct_walker(struct net *net, struct sk_buff *skb, 1457 struct netlink_callback *cb, int type, 1458 const struct tc_action_ops *ops, 1459 struct netlink_ext_ack *extack) 1460 { 1461 struct tc_action_net *tn = net_generic(net, ct_net_id); 1462 1463 return tcf_generic_walker(tn, skb, cb, type, ops, extack); 1464 } 1465 1466 static int tcf_ct_search(struct net *net, struct tc_action **a, u32 index) 1467 { 1468 struct tc_action_net *tn = net_generic(net, ct_net_id); 1469 1470 return tcf_idr_search(tn, a, index); 1471 } 1472 1473 static void tcf_stats_update(struct tc_action *a, u64 bytes, u64 packets, 1474 u64 drops, u64 lastuse, bool hw) 1475 { 1476 struct tcf_ct *c = to_ct(a); 1477 1478 tcf_action_update_stats(a, bytes, packets, drops, hw); 1479 c->tcf_tm.lastuse = max_t(u64, c->tcf_tm.lastuse, lastuse); 1480 } 1481 1482 static struct tc_action_ops act_ct_ops = { 1483 .kind = "ct", 1484 .id = TCA_ID_CT, 1485 .owner = THIS_MODULE, 1486 .act = tcf_ct_act, 1487 .dump = tcf_ct_dump, 1488 .init = tcf_ct_init, 1489 .cleanup = tcf_ct_cleanup, 1490 .walk = tcf_ct_walker, 1491 .lookup = tcf_ct_search, 1492 .stats_update = tcf_stats_update, 1493 .size = sizeof(struct tcf_ct), 1494 }; 1495 1496 static __net_init int ct_init_net(struct net *net) 1497 { 1498 unsigned int n_bits = sizeof_field(struct tcf_ct_params, labels) * 8; 1499 struct tc_ct_action_net *tn = net_generic(net, ct_net_id); 1500 1501 if (nf_connlabels_get(net, n_bits - 1)) { 1502 tn->labels = false; 1503 pr_err("act_ct: Failed to set connlabels length"); 1504 } else { 1505 tn->labels = true; 1506 } 1507 1508 return tc_action_net_init(net, &tn->tn, &act_ct_ops); 1509 } 1510 1511 static void __net_exit ct_exit_net(struct list_head *net_list) 1512 { 1513 struct net *net; 1514 1515 rtnl_lock(); 1516 list_for_each_entry(net, net_list, exit_list) { 1517 struct tc_ct_action_net *tn = net_generic(net, ct_net_id); 1518 1519 if (tn->labels) 1520 nf_connlabels_put(net); 1521 } 1522 rtnl_unlock(); 1523 1524 tc_action_net_exit(net_list, ct_net_id); 1525 } 1526 1527 static struct pernet_operations ct_net_ops = { 1528 .init = ct_init_net, 1529 .exit_batch = ct_exit_net, 1530 .id = &ct_net_id, 1531 .size = sizeof(struct tc_ct_action_net), 1532 }; 1533 1534 static int __init ct_init_module(void) 1535 { 1536 int err; 1537 1538 act_ct_wq = alloc_ordered_workqueue("act_ct_workqueue", 0); 1539 if (!act_ct_wq) 1540 return -ENOMEM; 1541 1542 err = tcf_ct_flow_tables_init(); 1543 if (err) 1544 goto err_tbl_init; 1545 1546 err = tcf_register_action(&act_ct_ops, &ct_net_ops); 1547 if (err) 1548 goto err_register; 1549 1550 static_branch_inc(&tcf_frag_xmit_count); 1551 1552 return 0; 1553 1554 err_register: 1555 tcf_ct_flow_tables_uninit(); 1556 err_tbl_init: 1557 destroy_workqueue(act_ct_wq); 1558 return err; 1559 } 1560 1561 static void __exit ct_cleanup_module(void) 1562 { 1563 static_branch_dec(&tcf_frag_xmit_count); 1564 tcf_unregister_action(&act_ct_ops, &ct_net_ops); 1565 tcf_ct_flow_tables_uninit(); 1566 destroy_workqueue(act_ct_wq); 1567 } 1568 1569 module_init(ct_init_module); 1570 module_exit(ct_cleanup_module); 1571 MODULE_AUTHOR("Paul Blakey <paulb@mellanox.com>"); 1572 MODULE_AUTHOR("Yossi Kuperman <yossiku@mellanox.com>"); 1573 MODULE_AUTHOR("Marcelo Ricardo Leitner <marcelo.leitner@gmail.com>"); 1574 MODULE_DESCRIPTION("Connection tracking action"); 1575 MODULE_LICENSE("GPL v2"); 1576