1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB 2 /* - 3 * net/sched/act_ct.c Connection Tracking action 4 * 5 * Authors: Paul Blakey <paulb@mellanox.com> 6 * Yossi Kuperman <yossiku@mellanox.com> 7 * Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> 8 */ 9 10 #include <linux/module.h> 11 #include <linux/init.h> 12 #include <linux/kernel.h> 13 #include <linux/skbuff.h> 14 #include <linux/rtnetlink.h> 15 #include <linux/pkt_cls.h> 16 #include <linux/ip.h> 17 #include <linux/ipv6.h> 18 #include <linux/rhashtable.h> 19 #include <net/netlink.h> 20 #include <net/pkt_sched.h> 21 #include <net/pkt_cls.h> 22 #include <net/act_api.h> 23 #include <net/ip.h> 24 #include <net/ipv6_frag.h> 25 #include <uapi/linux/tc_act/tc_ct.h> 26 #include <net/tc_act/tc_ct.h> 27 28 #include <net/netfilter/nf_flow_table.h> 29 #include <net/netfilter/nf_conntrack.h> 30 #include <net/netfilter/nf_conntrack_core.h> 31 #include <net/netfilter/nf_conntrack_zones.h> 32 #include <net/netfilter/nf_conntrack_helper.h> 33 #include <net/netfilter/nf_conntrack_acct.h> 34 #include <net/netfilter/ipv6/nf_defrag_ipv6.h> 35 #include <net/netfilter/nf_conntrack_act_ct.h> 36 #include <uapi/linux/netfilter/nf_nat.h> 37 38 static struct workqueue_struct *act_ct_wq; 39 static struct rhashtable zones_ht; 40 static DEFINE_MUTEX(zones_mutex); 41 42 struct tcf_ct_flow_table { 43 struct rhash_head node; /* In zones tables */ 44 45 struct rcu_work rwork; 46 struct nf_flowtable nf_ft; 47 refcount_t ref; 48 u16 zone; 49 50 bool dying; 51 }; 52 53 static const struct rhashtable_params zones_params = { 54 .head_offset = offsetof(struct tcf_ct_flow_table, node), 55 .key_offset = offsetof(struct tcf_ct_flow_table, zone), 56 .key_len = sizeof_field(struct tcf_ct_flow_table, zone), 57 .automatic_shrinking = true, 58 }; 59 60 static struct flow_action_entry * 61 tcf_ct_flow_table_flow_action_get_next(struct flow_action *flow_action) 62 { 63 int i = flow_action->num_entries++; 64 65 return &flow_action->entries[i]; 66 } 67 68 static void tcf_ct_add_mangle_action(struct flow_action *action, 69 enum flow_action_mangle_base htype, 70 u32 offset, 71 u32 mask, 72 u32 val) 73 { 74 struct flow_action_entry *entry; 75 76 entry = tcf_ct_flow_table_flow_action_get_next(action); 77 entry->id = FLOW_ACTION_MANGLE; 78 entry->mangle.htype = htype; 79 entry->mangle.mask = ~mask; 80 entry->mangle.offset = offset; 81 entry->mangle.val = val; 82 } 83 84 /* The following nat helper functions check if the inverted reverse tuple 85 * (target) is different then the current dir tuple - meaning nat for ports 86 * and/or ip is needed, and add the relevant mangle actions. 87 */ 88 static void 89 tcf_ct_flow_table_add_action_nat_ipv4(const struct nf_conntrack_tuple *tuple, 90 struct nf_conntrack_tuple target, 91 struct flow_action *action) 92 { 93 if (memcmp(&target.src.u3, &tuple->src.u3, sizeof(target.src.u3))) 94 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP4, 95 offsetof(struct iphdr, saddr), 96 0xFFFFFFFF, 97 be32_to_cpu(target.src.u3.ip)); 98 if (memcmp(&target.dst.u3, &tuple->dst.u3, sizeof(target.dst.u3))) 99 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP4, 100 offsetof(struct iphdr, daddr), 101 0xFFFFFFFF, 102 be32_to_cpu(target.dst.u3.ip)); 103 } 104 105 static void 106 tcf_ct_add_ipv6_addr_mangle_action(struct flow_action *action, 107 union nf_inet_addr *addr, 108 u32 offset) 109 { 110 int i; 111 112 for (i = 0; i < sizeof(struct in6_addr) / sizeof(u32); i++) 113 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP6, 114 i * sizeof(u32) + offset, 115 0xFFFFFFFF, be32_to_cpu(addr->ip6[i])); 116 } 117 118 static void 119 tcf_ct_flow_table_add_action_nat_ipv6(const struct nf_conntrack_tuple *tuple, 120 struct nf_conntrack_tuple target, 121 struct flow_action *action) 122 { 123 if (memcmp(&target.src.u3, &tuple->src.u3, sizeof(target.src.u3))) 124 tcf_ct_add_ipv6_addr_mangle_action(action, &target.src.u3, 125 offsetof(struct ipv6hdr, 126 saddr)); 127 if (memcmp(&target.dst.u3, &tuple->dst.u3, sizeof(target.dst.u3))) 128 tcf_ct_add_ipv6_addr_mangle_action(action, &target.dst.u3, 129 offsetof(struct ipv6hdr, 130 daddr)); 131 } 132 133 static void 134 tcf_ct_flow_table_add_action_nat_tcp(const struct nf_conntrack_tuple *tuple, 135 struct nf_conntrack_tuple target, 136 struct flow_action *action) 137 { 138 __be16 target_src = target.src.u.tcp.port; 139 __be16 target_dst = target.dst.u.tcp.port; 140 141 if (target_src != tuple->src.u.tcp.port) 142 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_TCP, 143 offsetof(struct tcphdr, source), 144 0xFFFF, be16_to_cpu(target_src)); 145 if (target_dst != tuple->dst.u.tcp.port) 146 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_TCP, 147 offsetof(struct tcphdr, dest), 148 0xFFFF, be16_to_cpu(target_dst)); 149 } 150 151 static void 152 tcf_ct_flow_table_add_action_nat_udp(const struct nf_conntrack_tuple *tuple, 153 struct nf_conntrack_tuple target, 154 struct flow_action *action) 155 { 156 __be16 target_src = target.src.u.udp.port; 157 __be16 target_dst = target.dst.u.udp.port; 158 159 if (target_src != tuple->src.u.udp.port) 160 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_UDP, 161 offsetof(struct udphdr, source), 162 0xFFFF, be16_to_cpu(target_src)); 163 if (target_dst != tuple->dst.u.udp.port) 164 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_UDP, 165 offsetof(struct udphdr, dest), 166 0xFFFF, be16_to_cpu(target_dst)); 167 } 168 169 static void tcf_ct_flow_table_add_action_meta(struct nf_conn *ct, 170 enum ip_conntrack_dir dir, 171 struct flow_action *action) 172 { 173 struct nf_conn_labels *ct_labels; 174 struct flow_action_entry *entry; 175 enum ip_conntrack_info ctinfo; 176 u32 *act_ct_labels; 177 178 entry = tcf_ct_flow_table_flow_action_get_next(action); 179 entry->id = FLOW_ACTION_CT_METADATA; 180 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 181 entry->ct_metadata.mark = ct->mark; 182 #endif 183 ctinfo = dir == IP_CT_DIR_ORIGINAL ? IP_CT_ESTABLISHED : 184 IP_CT_ESTABLISHED_REPLY; 185 /* aligns with the CT reference on the SKB nf_ct_set */ 186 entry->ct_metadata.cookie = (unsigned long)ct | ctinfo; 187 entry->ct_metadata.orig_dir = dir == IP_CT_DIR_ORIGINAL; 188 189 act_ct_labels = entry->ct_metadata.labels; 190 ct_labels = nf_ct_labels_find(ct); 191 if (ct_labels) 192 memcpy(act_ct_labels, ct_labels->bits, NF_CT_LABELS_MAX_SIZE); 193 else 194 memset(act_ct_labels, 0, NF_CT_LABELS_MAX_SIZE); 195 } 196 197 static int tcf_ct_flow_table_add_action_nat(struct net *net, 198 struct nf_conn *ct, 199 enum ip_conntrack_dir dir, 200 struct flow_action *action) 201 { 202 const struct nf_conntrack_tuple *tuple = &ct->tuplehash[dir].tuple; 203 struct nf_conntrack_tuple target; 204 205 if (!(ct->status & IPS_NAT_MASK)) 206 return 0; 207 208 nf_ct_invert_tuple(&target, &ct->tuplehash[!dir].tuple); 209 210 switch (tuple->src.l3num) { 211 case NFPROTO_IPV4: 212 tcf_ct_flow_table_add_action_nat_ipv4(tuple, target, 213 action); 214 break; 215 case NFPROTO_IPV6: 216 tcf_ct_flow_table_add_action_nat_ipv6(tuple, target, 217 action); 218 break; 219 default: 220 return -EOPNOTSUPP; 221 } 222 223 switch (nf_ct_protonum(ct)) { 224 case IPPROTO_TCP: 225 tcf_ct_flow_table_add_action_nat_tcp(tuple, target, action); 226 break; 227 case IPPROTO_UDP: 228 tcf_ct_flow_table_add_action_nat_udp(tuple, target, action); 229 break; 230 default: 231 return -EOPNOTSUPP; 232 } 233 234 return 0; 235 } 236 237 static int tcf_ct_flow_table_fill_actions(struct net *net, 238 const struct flow_offload *flow, 239 enum flow_offload_tuple_dir tdir, 240 struct nf_flow_rule *flow_rule) 241 { 242 struct flow_action *action = &flow_rule->rule->action; 243 int num_entries = action->num_entries; 244 struct nf_conn *ct = flow->ct; 245 enum ip_conntrack_dir dir; 246 int i, err; 247 248 switch (tdir) { 249 case FLOW_OFFLOAD_DIR_ORIGINAL: 250 dir = IP_CT_DIR_ORIGINAL; 251 break; 252 case FLOW_OFFLOAD_DIR_REPLY: 253 dir = IP_CT_DIR_REPLY; 254 break; 255 default: 256 return -EOPNOTSUPP; 257 } 258 259 err = tcf_ct_flow_table_add_action_nat(net, ct, dir, action); 260 if (err) 261 goto err_nat; 262 263 tcf_ct_flow_table_add_action_meta(ct, dir, action); 264 return 0; 265 266 err_nat: 267 /* Clear filled actions */ 268 for (i = num_entries; i < action->num_entries; i++) 269 memset(&action->entries[i], 0, sizeof(action->entries[i])); 270 action->num_entries = num_entries; 271 272 return err; 273 } 274 275 static struct nf_flowtable_type flowtable_ct = { 276 .action = tcf_ct_flow_table_fill_actions, 277 .owner = THIS_MODULE, 278 }; 279 280 static int tcf_ct_flow_table_get(struct tcf_ct_params *params) 281 { 282 struct tcf_ct_flow_table *ct_ft; 283 int err = -ENOMEM; 284 285 mutex_lock(&zones_mutex); 286 ct_ft = rhashtable_lookup_fast(&zones_ht, ¶ms->zone, zones_params); 287 if (ct_ft && refcount_inc_not_zero(&ct_ft->ref)) 288 goto out_unlock; 289 290 ct_ft = kzalloc(sizeof(*ct_ft), GFP_KERNEL); 291 if (!ct_ft) 292 goto err_alloc; 293 refcount_set(&ct_ft->ref, 1); 294 295 ct_ft->zone = params->zone; 296 err = rhashtable_insert_fast(&zones_ht, &ct_ft->node, zones_params); 297 if (err) 298 goto err_insert; 299 300 ct_ft->nf_ft.type = &flowtable_ct; 301 ct_ft->nf_ft.flags |= NF_FLOWTABLE_HW_OFFLOAD | 302 NF_FLOWTABLE_COUNTER; 303 err = nf_flow_table_init(&ct_ft->nf_ft); 304 if (err) 305 goto err_init; 306 307 __module_get(THIS_MODULE); 308 out_unlock: 309 params->ct_ft = ct_ft; 310 params->nf_ft = &ct_ft->nf_ft; 311 mutex_unlock(&zones_mutex); 312 313 return 0; 314 315 err_init: 316 rhashtable_remove_fast(&zones_ht, &ct_ft->node, zones_params); 317 err_insert: 318 kfree(ct_ft); 319 err_alloc: 320 mutex_unlock(&zones_mutex); 321 return err; 322 } 323 324 static void tcf_ct_flow_table_cleanup_work(struct work_struct *work) 325 { 326 struct flow_block_cb *block_cb, *tmp_cb; 327 struct tcf_ct_flow_table *ct_ft; 328 struct flow_block *block; 329 330 ct_ft = container_of(to_rcu_work(work), struct tcf_ct_flow_table, 331 rwork); 332 nf_flow_table_free(&ct_ft->nf_ft); 333 334 /* Remove any remaining callbacks before cleanup */ 335 block = &ct_ft->nf_ft.flow_block; 336 down_write(&ct_ft->nf_ft.flow_block_lock); 337 list_for_each_entry_safe(block_cb, tmp_cb, &block->cb_list, list) { 338 list_del(&block_cb->list); 339 flow_block_cb_free(block_cb); 340 } 341 up_write(&ct_ft->nf_ft.flow_block_lock); 342 kfree(ct_ft); 343 344 module_put(THIS_MODULE); 345 } 346 347 static void tcf_ct_flow_table_put(struct tcf_ct_params *params) 348 { 349 struct tcf_ct_flow_table *ct_ft = params->ct_ft; 350 351 if (refcount_dec_and_test(¶ms->ct_ft->ref)) { 352 rhashtable_remove_fast(&zones_ht, &ct_ft->node, zones_params); 353 INIT_RCU_WORK(&ct_ft->rwork, tcf_ct_flow_table_cleanup_work); 354 queue_rcu_work(act_ct_wq, &ct_ft->rwork); 355 } 356 } 357 358 static void tcf_ct_flow_tc_ifidx(struct flow_offload *entry, 359 struct nf_conn_act_ct_ext *act_ct_ext, u8 dir) 360 { 361 entry->tuplehash[dir].tuple.xmit_type = FLOW_OFFLOAD_XMIT_TC; 362 entry->tuplehash[dir].tuple.tc.iifidx = act_ct_ext->ifindex[dir]; 363 } 364 365 static void tcf_ct_flow_table_add(struct tcf_ct_flow_table *ct_ft, 366 struct nf_conn *ct, 367 bool tcp) 368 { 369 struct nf_conn_act_ct_ext *act_ct_ext; 370 struct flow_offload *entry; 371 int err; 372 373 if (test_and_set_bit(IPS_OFFLOAD_BIT, &ct->status)) 374 return; 375 376 entry = flow_offload_alloc(ct); 377 if (!entry) { 378 WARN_ON_ONCE(1); 379 goto err_alloc; 380 } 381 382 if (tcp) { 383 ct->proto.tcp.seen[0].flags |= IP_CT_TCP_FLAG_BE_LIBERAL; 384 ct->proto.tcp.seen[1].flags |= IP_CT_TCP_FLAG_BE_LIBERAL; 385 } 386 387 act_ct_ext = nf_conn_act_ct_ext_find(ct); 388 if (act_ct_ext) { 389 tcf_ct_flow_tc_ifidx(entry, act_ct_ext, FLOW_OFFLOAD_DIR_ORIGINAL); 390 tcf_ct_flow_tc_ifidx(entry, act_ct_ext, FLOW_OFFLOAD_DIR_REPLY); 391 } 392 393 err = flow_offload_add(&ct_ft->nf_ft, entry); 394 if (err) 395 goto err_add; 396 397 return; 398 399 err_add: 400 flow_offload_free(entry); 401 err_alloc: 402 clear_bit(IPS_OFFLOAD_BIT, &ct->status); 403 } 404 405 static void tcf_ct_flow_table_process_conn(struct tcf_ct_flow_table *ct_ft, 406 struct nf_conn *ct, 407 enum ip_conntrack_info ctinfo) 408 { 409 bool tcp = false; 410 411 if ((ctinfo != IP_CT_ESTABLISHED && ctinfo != IP_CT_ESTABLISHED_REPLY) || 412 !test_bit(IPS_ASSURED_BIT, &ct->status)) 413 return; 414 415 switch (nf_ct_protonum(ct)) { 416 case IPPROTO_TCP: 417 tcp = true; 418 if (ct->proto.tcp.state != TCP_CONNTRACK_ESTABLISHED) 419 return; 420 break; 421 case IPPROTO_UDP: 422 break; 423 #ifdef CONFIG_NF_CT_PROTO_GRE 424 case IPPROTO_GRE: { 425 struct nf_conntrack_tuple *tuple; 426 427 if (ct->status & IPS_NAT_MASK) 428 return; 429 tuple = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple; 430 /* No support for GRE v1 */ 431 if (tuple->src.u.gre.key || tuple->dst.u.gre.key) 432 return; 433 break; 434 } 435 #endif 436 default: 437 return; 438 } 439 440 if (nf_ct_ext_exist(ct, NF_CT_EXT_HELPER) || 441 ct->status & IPS_SEQ_ADJUST) 442 return; 443 444 tcf_ct_flow_table_add(ct_ft, ct, tcp); 445 } 446 447 static bool 448 tcf_ct_flow_table_fill_tuple_ipv4(struct sk_buff *skb, 449 struct flow_offload_tuple *tuple, 450 struct tcphdr **tcph) 451 { 452 struct flow_ports *ports; 453 unsigned int thoff; 454 struct iphdr *iph; 455 size_t hdrsize; 456 u8 ipproto; 457 458 if (!pskb_network_may_pull(skb, sizeof(*iph))) 459 return false; 460 461 iph = ip_hdr(skb); 462 thoff = iph->ihl * 4; 463 464 if (ip_is_fragment(iph) || 465 unlikely(thoff != sizeof(struct iphdr))) 466 return false; 467 468 ipproto = iph->protocol; 469 switch (ipproto) { 470 case IPPROTO_TCP: 471 hdrsize = sizeof(struct tcphdr); 472 break; 473 case IPPROTO_UDP: 474 hdrsize = sizeof(*ports); 475 break; 476 #ifdef CONFIG_NF_CT_PROTO_GRE 477 case IPPROTO_GRE: 478 hdrsize = sizeof(struct gre_base_hdr); 479 break; 480 #endif 481 default: 482 return false; 483 } 484 485 if (iph->ttl <= 1) 486 return false; 487 488 if (!pskb_network_may_pull(skb, thoff + hdrsize)) 489 return false; 490 491 switch (ipproto) { 492 case IPPROTO_TCP: 493 *tcph = (void *)(skb_network_header(skb) + thoff); 494 fallthrough; 495 case IPPROTO_UDP: 496 ports = (struct flow_ports *)(skb_network_header(skb) + thoff); 497 tuple->src_port = ports->source; 498 tuple->dst_port = ports->dest; 499 break; 500 case IPPROTO_GRE: { 501 struct gre_base_hdr *greh; 502 503 greh = (struct gre_base_hdr *)(skb_network_header(skb) + thoff); 504 if ((greh->flags & GRE_VERSION) != GRE_VERSION_0) 505 return false; 506 break; 507 } 508 } 509 510 iph = ip_hdr(skb); 511 512 tuple->src_v4.s_addr = iph->saddr; 513 tuple->dst_v4.s_addr = iph->daddr; 514 tuple->l3proto = AF_INET; 515 tuple->l4proto = ipproto; 516 517 return true; 518 } 519 520 static bool 521 tcf_ct_flow_table_fill_tuple_ipv6(struct sk_buff *skb, 522 struct flow_offload_tuple *tuple, 523 struct tcphdr **tcph) 524 { 525 struct flow_ports *ports; 526 struct ipv6hdr *ip6h; 527 unsigned int thoff; 528 size_t hdrsize; 529 u8 nexthdr; 530 531 if (!pskb_network_may_pull(skb, sizeof(*ip6h))) 532 return false; 533 534 ip6h = ipv6_hdr(skb); 535 thoff = sizeof(*ip6h); 536 537 nexthdr = ip6h->nexthdr; 538 switch (nexthdr) { 539 case IPPROTO_TCP: 540 hdrsize = sizeof(struct tcphdr); 541 break; 542 case IPPROTO_UDP: 543 hdrsize = sizeof(*ports); 544 break; 545 #ifdef CONFIG_NF_CT_PROTO_GRE 546 case IPPROTO_GRE: 547 hdrsize = sizeof(struct gre_base_hdr); 548 break; 549 #endif 550 default: 551 return false; 552 } 553 554 if (ip6h->hop_limit <= 1) 555 return false; 556 557 if (!pskb_network_may_pull(skb, thoff + hdrsize)) 558 return false; 559 560 switch (nexthdr) { 561 case IPPROTO_TCP: 562 *tcph = (void *)(skb_network_header(skb) + thoff); 563 fallthrough; 564 case IPPROTO_UDP: 565 ports = (struct flow_ports *)(skb_network_header(skb) + thoff); 566 tuple->src_port = ports->source; 567 tuple->dst_port = ports->dest; 568 break; 569 case IPPROTO_GRE: { 570 struct gre_base_hdr *greh; 571 572 greh = (struct gre_base_hdr *)(skb_network_header(skb) + thoff); 573 if ((greh->flags & GRE_VERSION) != GRE_VERSION_0) 574 return false; 575 break; 576 } 577 } 578 579 ip6h = ipv6_hdr(skb); 580 581 tuple->src_v6 = ip6h->saddr; 582 tuple->dst_v6 = ip6h->daddr; 583 tuple->l3proto = AF_INET6; 584 tuple->l4proto = nexthdr; 585 586 return true; 587 } 588 589 static bool tcf_ct_flow_table_lookup(struct tcf_ct_params *p, 590 struct sk_buff *skb, 591 u8 family) 592 { 593 struct nf_flowtable *nf_ft = &p->ct_ft->nf_ft; 594 struct flow_offload_tuple_rhash *tuplehash; 595 struct flow_offload_tuple tuple = {}; 596 enum ip_conntrack_info ctinfo; 597 struct tcphdr *tcph = NULL; 598 struct flow_offload *flow; 599 struct nf_conn *ct; 600 u8 dir; 601 602 switch (family) { 603 case NFPROTO_IPV4: 604 if (!tcf_ct_flow_table_fill_tuple_ipv4(skb, &tuple, &tcph)) 605 return false; 606 break; 607 case NFPROTO_IPV6: 608 if (!tcf_ct_flow_table_fill_tuple_ipv6(skb, &tuple, &tcph)) 609 return false; 610 break; 611 default: 612 return false; 613 } 614 615 tuplehash = flow_offload_lookup(nf_ft, &tuple); 616 if (!tuplehash) 617 return false; 618 619 dir = tuplehash->tuple.dir; 620 flow = container_of(tuplehash, struct flow_offload, tuplehash[dir]); 621 ct = flow->ct; 622 623 if (tcph && (unlikely(tcph->fin || tcph->rst))) { 624 flow_offload_teardown(flow); 625 return false; 626 } 627 628 ctinfo = dir == FLOW_OFFLOAD_DIR_ORIGINAL ? IP_CT_ESTABLISHED : 629 IP_CT_ESTABLISHED_REPLY; 630 631 flow_offload_refresh(nf_ft, flow); 632 nf_conntrack_get(&ct->ct_general); 633 nf_ct_set(skb, ct, ctinfo); 634 if (nf_ft->flags & NF_FLOWTABLE_COUNTER) 635 nf_ct_acct_update(ct, dir, skb->len); 636 637 return true; 638 } 639 640 static int tcf_ct_flow_tables_init(void) 641 { 642 return rhashtable_init(&zones_ht, &zones_params); 643 } 644 645 static void tcf_ct_flow_tables_uninit(void) 646 { 647 rhashtable_destroy(&zones_ht); 648 } 649 650 static struct tc_action_ops act_ct_ops; 651 static unsigned int ct_net_id; 652 653 struct tc_ct_action_net { 654 struct tc_action_net tn; /* Must be first */ 655 bool labels; 656 }; 657 658 /* Determine whether skb->_nfct is equal to the result of conntrack lookup. */ 659 static bool tcf_ct_skb_nfct_cached(struct net *net, struct sk_buff *skb, 660 u16 zone_id, bool force) 661 { 662 enum ip_conntrack_info ctinfo; 663 struct nf_conn *ct; 664 665 ct = nf_ct_get(skb, &ctinfo); 666 if (!ct) 667 return false; 668 if (!net_eq(net, read_pnet(&ct->ct_net))) 669 goto drop_ct; 670 if (nf_ct_zone(ct)->id != zone_id) 671 goto drop_ct; 672 673 /* Force conntrack entry direction. */ 674 if (force && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) { 675 if (nf_ct_is_confirmed(ct)) 676 nf_ct_kill(ct); 677 678 goto drop_ct; 679 } 680 681 return true; 682 683 drop_ct: 684 nf_ct_put(ct); 685 nf_ct_set(skb, NULL, IP_CT_UNTRACKED); 686 687 return false; 688 } 689 690 /* Trim the skb to the length specified by the IP/IPv6 header, 691 * removing any trailing lower-layer padding. This prepares the skb 692 * for higher-layer processing that assumes skb->len excludes padding 693 * (such as nf_ip_checksum). The caller needs to pull the skb to the 694 * network header, and ensure ip_hdr/ipv6_hdr points to valid data. 695 */ 696 static int tcf_ct_skb_network_trim(struct sk_buff *skb, int family) 697 { 698 unsigned int len; 699 int err; 700 701 switch (family) { 702 case NFPROTO_IPV4: 703 len = ntohs(ip_hdr(skb)->tot_len); 704 break; 705 case NFPROTO_IPV6: 706 len = sizeof(struct ipv6hdr) 707 + ntohs(ipv6_hdr(skb)->payload_len); 708 break; 709 default: 710 len = skb->len; 711 } 712 713 err = pskb_trim_rcsum(skb, len); 714 715 return err; 716 } 717 718 static u8 tcf_ct_skb_nf_family(struct sk_buff *skb) 719 { 720 u8 family = NFPROTO_UNSPEC; 721 722 switch (skb_protocol(skb, true)) { 723 case htons(ETH_P_IP): 724 family = NFPROTO_IPV4; 725 break; 726 case htons(ETH_P_IPV6): 727 family = NFPROTO_IPV6; 728 break; 729 default: 730 break; 731 } 732 733 return family; 734 } 735 736 static int tcf_ct_ipv4_is_fragment(struct sk_buff *skb, bool *frag) 737 { 738 unsigned int len; 739 740 len = skb_network_offset(skb) + sizeof(struct iphdr); 741 if (unlikely(skb->len < len)) 742 return -EINVAL; 743 if (unlikely(!pskb_may_pull(skb, len))) 744 return -ENOMEM; 745 746 *frag = ip_is_fragment(ip_hdr(skb)); 747 return 0; 748 } 749 750 static int tcf_ct_ipv6_is_fragment(struct sk_buff *skb, bool *frag) 751 { 752 unsigned int flags = 0, len, payload_ofs = 0; 753 unsigned short frag_off; 754 int nexthdr; 755 756 len = skb_network_offset(skb) + sizeof(struct ipv6hdr); 757 if (unlikely(skb->len < len)) 758 return -EINVAL; 759 if (unlikely(!pskb_may_pull(skb, len))) 760 return -ENOMEM; 761 762 nexthdr = ipv6_find_hdr(skb, &payload_ofs, -1, &frag_off, &flags); 763 if (unlikely(nexthdr < 0)) 764 return -EPROTO; 765 766 *frag = flags & IP6_FH_F_FRAG; 767 return 0; 768 } 769 770 static int tcf_ct_handle_fragments(struct net *net, struct sk_buff *skb, 771 u8 family, u16 zone, bool *defrag) 772 { 773 enum ip_conntrack_info ctinfo; 774 struct nf_conn *ct; 775 int err = 0; 776 bool frag; 777 u16 mru; 778 779 /* Previously seen (loopback)? Ignore. */ 780 ct = nf_ct_get(skb, &ctinfo); 781 if ((ct && !nf_ct_is_template(ct)) || ctinfo == IP_CT_UNTRACKED) 782 return 0; 783 784 if (family == NFPROTO_IPV4) 785 err = tcf_ct_ipv4_is_fragment(skb, &frag); 786 else 787 err = tcf_ct_ipv6_is_fragment(skb, &frag); 788 if (err || !frag) 789 return err; 790 791 skb_get(skb); 792 mru = tc_skb_cb(skb)->mru; 793 794 if (family == NFPROTO_IPV4) { 795 enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone; 796 797 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm)); 798 local_bh_disable(); 799 err = ip_defrag(net, skb, user); 800 local_bh_enable(); 801 if (err && err != -EINPROGRESS) 802 return err; 803 804 if (!err) { 805 *defrag = true; 806 mru = IPCB(skb)->frag_max_size; 807 } 808 } else { /* NFPROTO_IPV6 */ 809 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6) 810 enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone; 811 812 memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm)); 813 err = nf_ct_frag6_gather(net, skb, user); 814 if (err && err != -EINPROGRESS) 815 goto out_free; 816 817 if (!err) { 818 *defrag = true; 819 mru = IP6CB(skb)->frag_max_size; 820 } 821 #else 822 err = -EOPNOTSUPP; 823 goto out_free; 824 #endif 825 } 826 827 if (err != -EINPROGRESS) 828 tc_skb_cb(skb)->mru = mru; 829 skb_clear_hash(skb); 830 skb->ignore_df = 1; 831 return err; 832 833 out_free: 834 kfree_skb(skb); 835 return err; 836 } 837 838 static void tcf_ct_params_free(struct rcu_head *head) 839 { 840 struct tcf_ct_params *params = container_of(head, 841 struct tcf_ct_params, rcu); 842 843 tcf_ct_flow_table_put(params); 844 845 if (params->tmpl) 846 nf_ct_put(params->tmpl); 847 kfree(params); 848 } 849 850 #if IS_ENABLED(CONFIG_NF_NAT) 851 /* Modelled after nf_nat_ipv[46]_fn(). 852 * range is only used for new, uninitialized NAT state. 853 * Returns either NF_ACCEPT or NF_DROP. 854 */ 855 static int ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct, 856 enum ip_conntrack_info ctinfo, 857 const struct nf_nat_range2 *range, 858 enum nf_nat_manip_type maniptype) 859 { 860 __be16 proto = skb_protocol(skb, true); 861 int hooknum, err = NF_ACCEPT; 862 863 /* See HOOK2MANIP(). */ 864 if (maniptype == NF_NAT_MANIP_SRC) 865 hooknum = NF_INET_LOCAL_IN; /* Source NAT */ 866 else 867 hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */ 868 869 switch (ctinfo) { 870 case IP_CT_RELATED: 871 case IP_CT_RELATED_REPLY: 872 if (proto == htons(ETH_P_IP) && 873 ip_hdr(skb)->protocol == IPPROTO_ICMP) { 874 if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo, 875 hooknum)) 876 err = NF_DROP; 877 goto out; 878 } else if (IS_ENABLED(CONFIG_IPV6) && proto == htons(ETH_P_IPV6)) { 879 __be16 frag_off; 880 u8 nexthdr = ipv6_hdr(skb)->nexthdr; 881 int hdrlen = ipv6_skip_exthdr(skb, 882 sizeof(struct ipv6hdr), 883 &nexthdr, &frag_off); 884 885 if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) { 886 if (!nf_nat_icmpv6_reply_translation(skb, ct, 887 ctinfo, 888 hooknum, 889 hdrlen)) 890 err = NF_DROP; 891 goto out; 892 } 893 } 894 /* Non-ICMP, fall thru to initialize if needed. */ 895 fallthrough; 896 case IP_CT_NEW: 897 /* Seen it before? This can happen for loopback, retrans, 898 * or local packets. 899 */ 900 if (!nf_nat_initialized(ct, maniptype)) { 901 /* Initialize according to the NAT action. */ 902 err = (range && range->flags & NF_NAT_RANGE_MAP_IPS) 903 /* Action is set up to establish a new 904 * mapping. 905 */ 906 ? nf_nat_setup_info(ct, range, maniptype) 907 : nf_nat_alloc_null_binding(ct, hooknum); 908 if (err != NF_ACCEPT) 909 goto out; 910 } 911 break; 912 913 case IP_CT_ESTABLISHED: 914 case IP_CT_ESTABLISHED_REPLY: 915 break; 916 917 default: 918 err = NF_DROP; 919 goto out; 920 } 921 922 err = nf_nat_packet(ct, ctinfo, hooknum, skb); 923 if (err == NF_ACCEPT) { 924 if (maniptype == NF_NAT_MANIP_SRC) 925 tc_skb_cb(skb)->post_ct_snat = 1; 926 if (maniptype == NF_NAT_MANIP_DST) 927 tc_skb_cb(skb)->post_ct_dnat = 1; 928 } 929 out: 930 return err; 931 } 932 #endif /* CONFIG_NF_NAT */ 933 934 static void tcf_ct_act_set_mark(struct nf_conn *ct, u32 mark, u32 mask) 935 { 936 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 937 u32 new_mark; 938 939 if (!mask) 940 return; 941 942 new_mark = mark | (ct->mark & ~(mask)); 943 if (ct->mark != new_mark) { 944 ct->mark = new_mark; 945 if (nf_ct_is_confirmed(ct)) 946 nf_conntrack_event_cache(IPCT_MARK, ct); 947 } 948 #endif 949 } 950 951 static void tcf_ct_act_set_labels(struct nf_conn *ct, 952 u32 *labels, 953 u32 *labels_m) 954 { 955 #if IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) 956 size_t labels_sz = sizeof_field(struct tcf_ct_params, labels); 957 958 if (!memchr_inv(labels_m, 0, labels_sz)) 959 return; 960 961 nf_connlabels_replace(ct, labels, labels_m, 4); 962 #endif 963 } 964 965 static int tcf_ct_act_nat(struct sk_buff *skb, 966 struct nf_conn *ct, 967 enum ip_conntrack_info ctinfo, 968 int ct_action, 969 struct nf_nat_range2 *range, 970 bool commit) 971 { 972 #if IS_ENABLED(CONFIG_NF_NAT) 973 int err; 974 enum nf_nat_manip_type maniptype; 975 976 if (!(ct_action & TCA_CT_ACT_NAT)) 977 return NF_ACCEPT; 978 979 /* Add NAT extension if not confirmed yet. */ 980 if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct)) 981 return NF_DROP; /* Can't NAT. */ 982 983 if (ctinfo != IP_CT_NEW && (ct->status & IPS_NAT_MASK) && 984 (ctinfo != IP_CT_RELATED || commit)) { 985 /* NAT an established or related connection like before. */ 986 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY) 987 /* This is the REPLY direction for a connection 988 * for which NAT was applied in the forward 989 * direction. Do the reverse NAT. 990 */ 991 maniptype = ct->status & IPS_SRC_NAT 992 ? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC; 993 else 994 maniptype = ct->status & IPS_SRC_NAT 995 ? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST; 996 } else if (ct_action & TCA_CT_ACT_NAT_SRC) { 997 maniptype = NF_NAT_MANIP_SRC; 998 } else if (ct_action & TCA_CT_ACT_NAT_DST) { 999 maniptype = NF_NAT_MANIP_DST; 1000 } else { 1001 return NF_ACCEPT; 1002 } 1003 1004 err = ct_nat_execute(skb, ct, ctinfo, range, maniptype); 1005 if (err == NF_ACCEPT && ct->status & IPS_DST_NAT) { 1006 if (ct->status & IPS_SRC_NAT) { 1007 if (maniptype == NF_NAT_MANIP_SRC) 1008 maniptype = NF_NAT_MANIP_DST; 1009 else 1010 maniptype = NF_NAT_MANIP_SRC; 1011 1012 err = ct_nat_execute(skb, ct, ctinfo, range, 1013 maniptype); 1014 } else if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL) { 1015 err = ct_nat_execute(skb, ct, ctinfo, NULL, 1016 NF_NAT_MANIP_SRC); 1017 } 1018 } 1019 return err; 1020 #else 1021 return NF_ACCEPT; 1022 #endif 1023 } 1024 1025 static int tcf_ct_act(struct sk_buff *skb, const struct tc_action *a, 1026 struct tcf_result *res) 1027 { 1028 struct net *net = dev_net(skb->dev); 1029 bool cached, commit, clear, force; 1030 enum ip_conntrack_info ctinfo; 1031 struct tcf_ct *c = to_ct(a); 1032 struct nf_conn *tmpl = NULL; 1033 struct nf_hook_state state; 1034 int nh_ofs, err, retval; 1035 struct tcf_ct_params *p; 1036 bool skip_add = false; 1037 bool defrag = false; 1038 struct nf_conn *ct; 1039 u8 family; 1040 1041 p = rcu_dereference_bh(c->params); 1042 1043 retval = READ_ONCE(c->tcf_action); 1044 commit = p->ct_action & TCA_CT_ACT_COMMIT; 1045 clear = p->ct_action & TCA_CT_ACT_CLEAR; 1046 force = p->ct_action & TCA_CT_ACT_FORCE; 1047 tmpl = p->tmpl; 1048 1049 tcf_lastuse_update(&c->tcf_tm); 1050 tcf_action_update_bstats(&c->common, skb); 1051 1052 if (clear) { 1053 tc_skb_cb(skb)->post_ct = false; 1054 ct = nf_ct_get(skb, &ctinfo); 1055 if (ct) { 1056 nf_ct_put(ct); 1057 nf_ct_set(skb, NULL, IP_CT_UNTRACKED); 1058 } 1059 1060 goto out_clear; 1061 } 1062 1063 family = tcf_ct_skb_nf_family(skb); 1064 if (family == NFPROTO_UNSPEC) 1065 goto drop; 1066 1067 /* The conntrack module expects to be working at L3. 1068 * We also try to pull the IPv4/6 header to linear area 1069 */ 1070 nh_ofs = skb_network_offset(skb); 1071 skb_pull_rcsum(skb, nh_ofs); 1072 err = tcf_ct_handle_fragments(net, skb, family, p->zone, &defrag); 1073 if (err == -EINPROGRESS) { 1074 retval = TC_ACT_STOLEN; 1075 goto out_clear; 1076 } 1077 if (err) 1078 goto drop; 1079 1080 err = tcf_ct_skb_network_trim(skb, family); 1081 if (err) 1082 goto drop; 1083 1084 /* If we are recirculating packets to match on ct fields and 1085 * committing with a separate ct action, then we don't need to 1086 * actually run the packet through conntrack twice unless it's for a 1087 * different zone. 1088 */ 1089 cached = tcf_ct_skb_nfct_cached(net, skb, p->zone, force); 1090 if (!cached) { 1091 if (tcf_ct_flow_table_lookup(p, skb, family)) { 1092 skip_add = true; 1093 goto do_nat; 1094 } 1095 1096 /* Associate skb with specified zone. */ 1097 if (tmpl) { 1098 nf_conntrack_put(skb_nfct(skb)); 1099 nf_conntrack_get(&tmpl->ct_general); 1100 nf_ct_set(skb, tmpl, IP_CT_NEW); 1101 } 1102 1103 state.hook = NF_INET_PRE_ROUTING; 1104 state.net = net; 1105 state.pf = family; 1106 err = nf_conntrack_in(skb, &state); 1107 if (err != NF_ACCEPT) 1108 goto out_push; 1109 } 1110 1111 do_nat: 1112 ct = nf_ct_get(skb, &ctinfo); 1113 if (!ct) 1114 goto out_push; 1115 nf_ct_deliver_cached_events(ct); 1116 nf_conn_act_ct_ext_fill(skb, ct, ctinfo); 1117 1118 err = tcf_ct_act_nat(skb, ct, ctinfo, p->ct_action, &p->range, commit); 1119 if (err != NF_ACCEPT) 1120 goto drop; 1121 1122 if (commit) { 1123 tcf_ct_act_set_mark(ct, p->mark, p->mark_mask); 1124 tcf_ct_act_set_labels(ct, p->labels, p->labels_mask); 1125 1126 if (!nf_ct_is_confirmed(ct)) 1127 nf_conn_act_ct_ext_add(ct); 1128 1129 /* This will take care of sending queued events 1130 * even if the connection is already confirmed. 1131 */ 1132 if (nf_conntrack_confirm(skb) != NF_ACCEPT) 1133 goto drop; 1134 } 1135 1136 if (!skip_add) 1137 tcf_ct_flow_table_process_conn(p->ct_ft, ct, ctinfo); 1138 1139 out_push: 1140 skb_push_rcsum(skb, nh_ofs); 1141 1142 tc_skb_cb(skb)->post_ct = true; 1143 tc_skb_cb(skb)->zone = p->zone; 1144 out_clear: 1145 if (defrag) 1146 qdisc_skb_cb(skb)->pkt_len = skb->len; 1147 return retval; 1148 1149 drop: 1150 tcf_action_inc_drop_qstats(&c->common); 1151 return TC_ACT_SHOT; 1152 } 1153 1154 static const struct nla_policy ct_policy[TCA_CT_MAX + 1] = { 1155 [TCA_CT_ACTION] = { .type = NLA_U16 }, 1156 [TCA_CT_PARMS] = NLA_POLICY_EXACT_LEN(sizeof(struct tc_ct)), 1157 [TCA_CT_ZONE] = { .type = NLA_U16 }, 1158 [TCA_CT_MARK] = { .type = NLA_U32 }, 1159 [TCA_CT_MARK_MASK] = { .type = NLA_U32 }, 1160 [TCA_CT_LABELS] = { .type = NLA_BINARY, 1161 .len = 128 / BITS_PER_BYTE }, 1162 [TCA_CT_LABELS_MASK] = { .type = NLA_BINARY, 1163 .len = 128 / BITS_PER_BYTE }, 1164 [TCA_CT_NAT_IPV4_MIN] = { .type = NLA_U32 }, 1165 [TCA_CT_NAT_IPV4_MAX] = { .type = NLA_U32 }, 1166 [TCA_CT_NAT_IPV6_MIN] = NLA_POLICY_EXACT_LEN(sizeof(struct in6_addr)), 1167 [TCA_CT_NAT_IPV6_MAX] = NLA_POLICY_EXACT_LEN(sizeof(struct in6_addr)), 1168 [TCA_CT_NAT_PORT_MIN] = { .type = NLA_U16 }, 1169 [TCA_CT_NAT_PORT_MAX] = { .type = NLA_U16 }, 1170 }; 1171 1172 static int tcf_ct_fill_params_nat(struct tcf_ct_params *p, 1173 struct tc_ct *parm, 1174 struct nlattr **tb, 1175 struct netlink_ext_ack *extack) 1176 { 1177 struct nf_nat_range2 *range; 1178 1179 if (!(p->ct_action & TCA_CT_ACT_NAT)) 1180 return 0; 1181 1182 if (!IS_ENABLED(CONFIG_NF_NAT)) { 1183 NL_SET_ERR_MSG_MOD(extack, "Netfilter nat isn't enabled in kernel"); 1184 return -EOPNOTSUPP; 1185 } 1186 1187 if (!(p->ct_action & (TCA_CT_ACT_NAT_SRC | TCA_CT_ACT_NAT_DST))) 1188 return 0; 1189 1190 if ((p->ct_action & TCA_CT_ACT_NAT_SRC) && 1191 (p->ct_action & TCA_CT_ACT_NAT_DST)) { 1192 NL_SET_ERR_MSG_MOD(extack, "dnat and snat can't be enabled at the same time"); 1193 return -EOPNOTSUPP; 1194 } 1195 1196 range = &p->range; 1197 if (tb[TCA_CT_NAT_IPV4_MIN]) { 1198 struct nlattr *max_attr = tb[TCA_CT_NAT_IPV4_MAX]; 1199 1200 p->ipv4_range = true; 1201 range->flags |= NF_NAT_RANGE_MAP_IPS; 1202 range->min_addr.ip = 1203 nla_get_in_addr(tb[TCA_CT_NAT_IPV4_MIN]); 1204 1205 range->max_addr.ip = max_attr ? 1206 nla_get_in_addr(max_attr) : 1207 range->min_addr.ip; 1208 } else if (tb[TCA_CT_NAT_IPV6_MIN]) { 1209 struct nlattr *max_attr = tb[TCA_CT_NAT_IPV6_MAX]; 1210 1211 p->ipv4_range = false; 1212 range->flags |= NF_NAT_RANGE_MAP_IPS; 1213 range->min_addr.in6 = 1214 nla_get_in6_addr(tb[TCA_CT_NAT_IPV6_MIN]); 1215 1216 range->max_addr.in6 = max_attr ? 1217 nla_get_in6_addr(max_attr) : 1218 range->min_addr.in6; 1219 } 1220 1221 if (tb[TCA_CT_NAT_PORT_MIN]) { 1222 range->flags |= NF_NAT_RANGE_PROTO_SPECIFIED; 1223 range->min_proto.all = nla_get_be16(tb[TCA_CT_NAT_PORT_MIN]); 1224 1225 range->max_proto.all = tb[TCA_CT_NAT_PORT_MAX] ? 1226 nla_get_be16(tb[TCA_CT_NAT_PORT_MAX]) : 1227 range->min_proto.all; 1228 } 1229 1230 return 0; 1231 } 1232 1233 static void tcf_ct_set_key_val(struct nlattr **tb, 1234 void *val, int val_type, 1235 void *mask, int mask_type, 1236 int len) 1237 { 1238 if (!tb[val_type]) 1239 return; 1240 nla_memcpy(val, tb[val_type], len); 1241 1242 if (!mask) 1243 return; 1244 1245 if (mask_type == TCA_CT_UNSPEC || !tb[mask_type]) 1246 memset(mask, 0xff, len); 1247 else 1248 nla_memcpy(mask, tb[mask_type], len); 1249 } 1250 1251 static int tcf_ct_fill_params(struct net *net, 1252 struct tcf_ct_params *p, 1253 struct tc_ct *parm, 1254 struct nlattr **tb, 1255 struct netlink_ext_ack *extack) 1256 { 1257 struct tc_ct_action_net *tn = net_generic(net, ct_net_id); 1258 struct nf_conntrack_zone zone; 1259 struct nf_conn *tmpl; 1260 int err; 1261 1262 p->zone = NF_CT_DEFAULT_ZONE_ID; 1263 1264 tcf_ct_set_key_val(tb, 1265 &p->ct_action, TCA_CT_ACTION, 1266 NULL, TCA_CT_UNSPEC, 1267 sizeof(p->ct_action)); 1268 1269 if (p->ct_action & TCA_CT_ACT_CLEAR) 1270 return 0; 1271 1272 err = tcf_ct_fill_params_nat(p, parm, tb, extack); 1273 if (err) 1274 return err; 1275 1276 if (tb[TCA_CT_MARK]) { 1277 if (!IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)) { 1278 NL_SET_ERR_MSG_MOD(extack, "Conntrack mark isn't enabled."); 1279 return -EOPNOTSUPP; 1280 } 1281 tcf_ct_set_key_val(tb, 1282 &p->mark, TCA_CT_MARK, 1283 &p->mark_mask, TCA_CT_MARK_MASK, 1284 sizeof(p->mark)); 1285 } 1286 1287 if (tb[TCA_CT_LABELS]) { 1288 if (!IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS)) { 1289 NL_SET_ERR_MSG_MOD(extack, "Conntrack labels isn't enabled."); 1290 return -EOPNOTSUPP; 1291 } 1292 1293 if (!tn->labels) { 1294 NL_SET_ERR_MSG_MOD(extack, "Failed to set connlabel length"); 1295 return -EOPNOTSUPP; 1296 } 1297 tcf_ct_set_key_val(tb, 1298 p->labels, TCA_CT_LABELS, 1299 p->labels_mask, TCA_CT_LABELS_MASK, 1300 sizeof(p->labels)); 1301 } 1302 1303 if (tb[TCA_CT_ZONE]) { 1304 if (!IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES)) { 1305 NL_SET_ERR_MSG_MOD(extack, "Conntrack zones isn't enabled."); 1306 return -EOPNOTSUPP; 1307 } 1308 1309 tcf_ct_set_key_val(tb, 1310 &p->zone, TCA_CT_ZONE, 1311 NULL, TCA_CT_UNSPEC, 1312 sizeof(p->zone)); 1313 } 1314 1315 nf_ct_zone_init(&zone, p->zone, NF_CT_DEFAULT_ZONE_DIR, 0); 1316 tmpl = nf_ct_tmpl_alloc(net, &zone, GFP_KERNEL); 1317 if (!tmpl) { 1318 NL_SET_ERR_MSG_MOD(extack, "Failed to allocate conntrack template"); 1319 return -ENOMEM; 1320 } 1321 __set_bit(IPS_CONFIRMED_BIT, &tmpl->status); 1322 p->tmpl = tmpl; 1323 1324 return 0; 1325 } 1326 1327 static int tcf_ct_init(struct net *net, struct nlattr *nla, 1328 struct nlattr *est, struct tc_action **a, 1329 struct tcf_proto *tp, u32 flags, 1330 struct netlink_ext_ack *extack) 1331 { 1332 struct tc_action_net *tn = net_generic(net, ct_net_id); 1333 bool bind = flags & TCA_ACT_FLAGS_BIND; 1334 struct tcf_ct_params *params = NULL; 1335 struct nlattr *tb[TCA_CT_MAX + 1]; 1336 struct tcf_chain *goto_ch = NULL; 1337 struct tc_ct *parm; 1338 struct tcf_ct *c; 1339 int err, res = 0; 1340 u32 index; 1341 1342 if (!nla) { 1343 NL_SET_ERR_MSG_MOD(extack, "Ct requires attributes to be passed"); 1344 return -EINVAL; 1345 } 1346 1347 err = nla_parse_nested(tb, TCA_CT_MAX, nla, ct_policy, extack); 1348 if (err < 0) 1349 return err; 1350 1351 if (!tb[TCA_CT_PARMS]) { 1352 NL_SET_ERR_MSG_MOD(extack, "Missing required ct parameters"); 1353 return -EINVAL; 1354 } 1355 parm = nla_data(tb[TCA_CT_PARMS]); 1356 index = parm->index; 1357 err = tcf_idr_check_alloc(tn, &index, a, bind); 1358 if (err < 0) 1359 return err; 1360 1361 if (!err) { 1362 err = tcf_idr_create_from_flags(tn, index, est, a, 1363 &act_ct_ops, bind, flags); 1364 if (err) { 1365 tcf_idr_cleanup(tn, index); 1366 return err; 1367 } 1368 res = ACT_P_CREATED; 1369 } else { 1370 if (bind) 1371 return 0; 1372 1373 if (!(flags & TCA_ACT_FLAGS_REPLACE)) { 1374 tcf_idr_release(*a, bind); 1375 return -EEXIST; 1376 } 1377 } 1378 err = tcf_action_check_ctrlact(parm->action, tp, &goto_ch, extack); 1379 if (err < 0) 1380 goto cleanup; 1381 1382 c = to_ct(*a); 1383 1384 params = kzalloc(sizeof(*params), GFP_KERNEL); 1385 if (unlikely(!params)) { 1386 err = -ENOMEM; 1387 goto cleanup; 1388 } 1389 1390 err = tcf_ct_fill_params(net, params, parm, tb, extack); 1391 if (err) 1392 goto cleanup; 1393 1394 err = tcf_ct_flow_table_get(params); 1395 if (err) 1396 goto cleanup; 1397 1398 spin_lock_bh(&c->tcf_lock); 1399 goto_ch = tcf_action_set_ctrlact(*a, parm->action, goto_ch); 1400 params = rcu_replace_pointer(c->params, params, 1401 lockdep_is_held(&c->tcf_lock)); 1402 spin_unlock_bh(&c->tcf_lock); 1403 1404 if (goto_ch) 1405 tcf_chain_put_by_act(goto_ch); 1406 if (params) 1407 call_rcu(¶ms->rcu, tcf_ct_params_free); 1408 1409 return res; 1410 1411 cleanup: 1412 if (goto_ch) 1413 tcf_chain_put_by_act(goto_ch); 1414 kfree(params); 1415 tcf_idr_release(*a, bind); 1416 return err; 1417 } 1418 1419 static void tcf_ct_cleanup(struct tc_action *a) 1420 { 1421 struct tcf_ct_params *params; 1422 struct tcf_ct *c = to_ct(a); 1423 1424 params = rcu_dereference_protected(c->params, 1); 1425 if (params) 1426 call_rcu(¶ms->rcu, tcf_ct_params_free); 1427 } 1428 1429 static int tcf_ct_dump_key_val(struct sk_buff *skb, 1430 void *val, int val_type, 1431 void *mask, int mask_type, 1432 int len) 1433 { 1434 int err; 1435 1436 if (mask && !memchr_inv(mask, 0, len)) 1437 return 0; 1438 1439 err = nla_put(skb, val_type, len, val); 1440 if (err) 1441 return err; 1442 1443 if (mask_type != TCA_CT_UNSPEC) { 1444 err = nla_put(skb, mask_type, len, mask); 1445 if (err) 1446 return err; 1447 } 1448 1449 return 0; 1450 } 1451 1452 static int tcf_ct_dump_nat(struct sk_buff *skb, struct tcf_ct_params *p) 1453 { 1454 struct nf_nat_range2 *range = &p->range; 1455 1456 if (!(p->ct_action & TCA_CT_ACT_NAT)) 1457 return 0; 1458 1459 if (!(p->ct_action & (TCA_CT_ACT_NAT_SRC | TCA_CT_ACT_NAT_DST))) 1460 return 0; 1461 1462 if (range->flags & NF_NAT_RANGE_MAP_IPS) { 1463 if (p->ipv4_range) { 1464 if (nla_put_in_addr(skb, TCA_CT_NAT_IPV4_MIN, 1465 range->min_addr.ip)) 1466 return -1; 1467 if (nla_put_in_addr(skb, TCA_CT_NAT_IPV4_MAX, 1468 range->max_addr.ip)) 1469 return -1; 1470 } else { 1471 if (nla_put_in6_addr(skb, TCA_CT_NAT_IPV6_MIN, 1472 &range->min_addr.in6)) 1473 return -1; 1474 if (nla_put_in6_addr(skb, TCA_CT_NAT_IPV6_MAX, 1475 &range->max_addr.in6)) 1476 return -1; 1477 } 1478 } 1479 1480 if (range->flags & NF_NAT_RANGE_PROTO_SPECIFIED) { 1481 if (nla_put_be16(skb, TCA_CT_NAT_PORT_MIN, 1482 range->min_proto.all)) 1483 return -1; 1484 if (nla_put_be16(skb, TCA_CT_NAT_PORT_MAX, 1485 range->max_proto.all)) 1486 return -1; 1487 } 1488 1489 return 0; 1490 } 1491 1492 static inline int tcf_ct_dump(struct sk_buff *skb, struct tc_action *a, 1493 int bind, int ref) 1494 { 1495 unsigned char *b = skb_tail_pointer(skb); 1496 struct tcf_ct *c = to_ct(a); 1497 struct tcf_ct_params *p; 1498 1499 struct tc_ct opt = { 1500 .index = c->tcf_index, 1501 .refcnt = refcount_read(&c->tcf_refcnt) - ref, 1502 .bindcnt = atomic_read(&c->tcf_bindcnt) - bind, 1503 }; 1504 struct tcf_t t; 1505 1506 spin_lock_bh(&c->tcf_lock); 1507 p = rcu_dereference_protected(c->params, 1508 lockdep_is_held(&c->tcf_lock)); 1509 opt.action = c->tcf_action; 1510 1511 if (tcf_ct_dump_key_val(skb, 1512 &p->ct_action, TCA_CT_ACTION, 1513 NULL, TCA_CT_UNSPEC, 1514 sizeof(p->ct_action))) 1515 goto nla_put_failure; 1516 1517 if (p->ct_action & TCA_CT_ACT_CLEAR) 1518 goto skip_dump; 1519 1520 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && 1521 tcf_ct_dump_key_val(skb, 1522 &p->mark, TCA_CT_MARK, 1523 &p->mark_mask, TCA_CT_MARK_MASK, 1524 sizeof(p->mark))) 1525 goto nla_put_failure; 1526 1527 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 1528 tcf_ct_dump_key_val(skb, 1529 p->labels, TCA_CT_LABELS, 1530 p->labels_mask, TCA_CT_LABELS_MASK, 1531 sizeof(p->labels))) 1532 goto nla_put_failure; 1533 1534 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 1535 tcf_ct_dump_key_val(skb, 1536 &p->zone, TCA_CT_ZONE, 1537 NULL, TCA_CT_UNSPEC, 1538 sizeof(p->zone))) 1539 goto nla_put_failure; 1540 1541 if (tcf_ct_dump_nat(skb, p)) 1542 goto nla_put_failure; 1543 1544 skip_dump: 1545 if (nla_put(skb, TCA_CT_PARMS, sizeof(opt), &opt)) 1546 goto nla_put_failure; 1547 1548 tcf_tm_dump(&t, &c->tcf_tm); 1549 if (nla_put_64bit(skb, TCA_CT_TM, sizeof(t), &t, TCA_CT_PAD)) 1550 goto nla_put_failure; 1551 spin_unlock_bh(&c->tcf_lock); 1552 1553 return skb->len; 1554 nla_put_failure: 1555 spin_unlock_bh(&c->tcf_lock); 1556 nlmsg_trim(skb, b); 1557 return -1; 1558 } 1559 1560 static int tcf_ct_walker(struct net *net, struct sk_buff *skb, 1561 struct netlink_callback *cb, int type, 1562 const struct tc_action_ops *ops, 1563 struct netlink_ext_ack *extack) 1564 { 1565 struct tc_action_net *tn = net_generic(net, ct_net_id); 1566 1567 return tcf_generic_walker(tn, skb, cb, type, ops, extack); 1568 } 1569 1570 static int tcf_ct_search(struct net *net, struct tc_action **a, u32 index) 1571 { 1572 struct tc_action_net *tn = net_generic(net, ct_net_id); 1573 1574 return tcf_idr_search(tn, a, index); 1575 } 1576 1577 static void tcf_stats_update(struct tc_action *a, u64 bytes, u64 packets, 1578 u64 drops, u64 lastuse, bool hw) 1579 { 1580 struct tcf_ct *c = to_ct(a); 1581 1582 tcf_action_update_stats(a, bytes, packets, drops, hw); 1583 c->tcf_tm.lastuse = max_t(u64, c->tcf_tm.lastuse, lastuse); 1584 } 1585 1586 static int tcf_ct_offload_act_setup(struct tc_action *act, void *entry_data, 1587 u32 *index_inc, bool bind, 1588 struct netlink_ext_ack *extack) 1589 { 1590 if (bind) { 1591 struct flow_action_entry *entry = entry_data; 1592 1593 entry->id = FLOW_ACTION_CT; 1594 entry->ct.action = tcf_ct_action(act); 1595 entry->ct.zone = tcf_ct_zone(act); 1596 entry->ct.flow_table = tcf_ct_ft(act); 1597 *index_inc = 1; 1598 } else { 1599 struct flow_offload_action *fl_action = entry_data; 1600 1601 fl_action->id = FLOW_ACTION_CT; 1602 } 1603 1604 return 0; 1605 } 1606 1607 static struct tc_action_ops act_ct_ops = { 1608 .kind = "ct", 1609 .id = TCA_ID_CT, 1610 .owner = THIS_MODULE, 1611 .act = tcf_ct_act, 1612 .dump = tcf_ct_dump, 1613 .init = tcf_ct_init, 1614 .cleanup = tcf_ct_cleanup, 1615 .walk = tcf_ct_walker, 1616 .lookup = tcf_ct_search, 1617 .stats_update = tcf_stats_update, 1618 .offload_act_setup = tcf_ct_offload_act_setup, 1619 .size = sizeof(struct tcf_ct), 1620 }; 1621 1622 static __net_init int ct_init_net(struct net *net) 1623 { 1624 unsigned int n_bits = sizeof_field(struct tcf_ct_params, labels) * 8; 1625 struct tc_ct_action_net *tn = net_generic(net, ct_net_id); 1626 1627 if (nf_connlabels_get(net, n_bits - 1)) { 1628 tn->labels = false; 1629 pr_err("act_ct: Failed to set connlabels length"); 1630 } else { 1631 tn->labels = true; 1632 } 1633 1634 return tc_action_net_init(net, &tn->tn, &act_ct_ops); 1635 } 1636 1637 static void __net_exit ct_exit_net(struct list_head *net_list) 1638 { 1639 struct net *net; 1640 1641 rtnl_lock(); 1642 list_for_each_entry(net, net_list, exit_list) { 1643 struct tc_ct_action_net *tn = net_generic(net, ct_net_id); 1644 1645 if (tn->labels) 1646 nf_connlabels_put(net); 1647 } 1648 rtnl_unlock(); 1649 1650 tc_action_net_exit(net_list, ct_net_id); 1651 } 1652 1653 static struct pernet_operations ct_net_ops = { 1654 .init = ct_init_net, 1655 .exit_batch = ct_exit_net, 1656 .id = &ct_net_id, 1657 .size = sizeof(struct tc_ct_action_net), 1658 }; 1659 1660 static int __init ct_init_module(void) 1661 { 1662 int err; 1663 1664 act_ct_wq = alloc_ordered_workqueue("act_ct_workqueue", 0); 1665 if (!act_ct_wq) 1666 return -ENOMEM; 1667 1668 err = tcf_ct_flow_tables_init(); 1669 if (err) 1670 goto err_tbl_init; 1671 1672 err = tcf_register_action(&act_ct_ops, &ct_net_ops); 1673 if (err) 1674 goto err_register; 1675 1676 static_branch_inc(&tcf_frag_xmit_count); 1677 1678 return 0; 1679 1680 err_register: 1681 tcf_ct_flow_tables_uninit(); 1682 err_tbl_init: 1683 destroy_workqueue(act_ct_wq); 1684 return err; 1685 } 1686 1687 static void __exit ct_cleanup_module(void) 1688 { 1689 static_branch_dec(&tcf_frag_xmit_count); 1690 tcf_unregister_action(&act_ct_ops, &ct_net_ops); 1691 tcf_ct_flow_tables_uninit(); 1692 destroy_workqueue(act_ct_wq); 1693 } 1694 1695 module_init(ct_init_module); 1696 module_exit(ct_cleanup_module); 1697 MODULE_AUTHOR("Paul Blakey <paulb@mellanox.com>"); 1698 MODULE_AUTHOR("Yossi Kuperman <yossiku@mellanox.com>"); 1699 MODULE_AUTHOR("Marcelo Ricardo Leitner <marcelo.leitner@gmail.com>"); 1700 MODULE_DESCRIPTION("Connection tracking action"); 1701 MODULE_LICENSE("GPL v2"); 1702