xref: /openbmc/linux/net/sched/act_ct.c (revision 8ef9ea1503d0a129cc6f5cf48fb63633efa5d766)
1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB
2 /* -
3  * net/sched/act_ct.c  Connection Tracking action
4  *
5  * Authors:   Paul Blakey <paulb@mellanox.com>
6  *            Yossi Kuperman <yossiku@mellanox.com>
7  *            Marcelo Ricardo Leitner <marcelo.leitner@gmail.com>
8  */
9 
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/skbuff.h>
14 #include <linux/rtnetlink.h>
15 #include <linux/pkt_cls.h>
16 #include <linux/ip.h>
17 #include <linux/ipv6.h>
18 #include <linux/rhashtable.h>
19 #include <net/netlink.h>
20 #include <net/pkt_sched.h>
21 #include <net/pkt_cls.h>
22 #include <net/act_api.h>
23 #include <net/ip.h>
24 #include <net/ipv6_frag.h>
25 #include <uapi/linux/tc_act/tc_ct.h>
26 #include <net/tc_act/tc_ct.h>
27 #include <net/tc_wrapper.h>
28 
29 #include <net/netfilter/nf_flow_table.h>
30 #include <net/netfilter/nf_conntrack.h>
31 #include <net/netfilter/nf_conntrack_core.h>
32 #include <net/netfilter/nf_conntrack_zones.h>
33 #include <net/netfilter/nf_conntrack_helper.h>
34 #include <net/netfilter/nf_conntrack_acct.h>
35 #include <net/netfilter/ipv6/nf_defrag_ipv6.h>
36 #include <net/netfilter/nf_conntrack_act_ct.h>
37 #include <net/netfilter/nf_conntrack_seqadj.h>
38 #include <uapi/linux/netfilter/nf_nat.h>
39 
40 static struct workqueue_struct *act_ct_wq;
41 static struct rhashtable zones_ht;
42 static DEFINE_MUTEX(zones_mutex);
43 
44 struct zones_ht_key {
45 	struct net *net;
46 	u16 zone;
47 	/* Note : pad[] must be the last field. */
48 	u8  pad[];
49 };
50 
51 struct tcf_ct_flow_table {
52 	struct rhash_head node; /* In zones tables */
53 
54 	struct rcu_work rwork;
55 	struct nf_flowtable nf_ft;
56 	refcount_t ref;
57 	struct zones_ht_key key;
58 
59 	bool dying;
60 };
61 
62 static const struct rhashtable_params zones_params = {
63 	.head_offset = offsetof(struct tcf_ct_flow_table, node),
64 	.key_offset = offsetof(struct tcf_ct_flow_table, key),
65 	.key_len = offsetof(struct zones_ht_key, pad),
66 	.automatic_shrinking = true,
67 };
68 
69 static struct flow_action_entry *
70 tcf_ct_flow_table_flow_action_get_next(struct flow_action *flow_action)
71 {
72 	int i = flow_action->num_entries++;
73 
74 	return &flow_action->entries[i];
75 }
76 
77 static void tcf_ct_add_mangle_action(struct flow_action *action,
78 				     enum flow_action_mangle_base htype,
79 				     u32 offset,
80 				     u32 mask,
81 				     u32 val)
82 {
83 	struct flow_action_entry *entry;
84 
85 	entry = tcf_ct_flow_table_flow_action_get_next(action);
86 	entry->id = FLOW_ACTION_MANGLE;
87 	entry->mangle.htype = htype;
88 	entry->mangle.mask = ~mask;
89 	entry->mangle.offset = offset;
90 	entry->mangle.val = val;
91 }
92 
93 /* The following nat helper functions check if the inverted reverse tuple
94  * (target) is different then the current dir tuple - meaning nat for ports
95  * and/or ip is needed, and add the relevant mangle actions.
96  */
97 static void
98 tcf_ct_flow_table_add_action_nat_ipv4(const struct nf_conntrack_tuple *tuple,
99 				      struct nf_conntrack_tuple target,
100 				      struct flow_action *action)
101 {
102 	if (memcmp(&target.src.u3, &tuple->src.u3, sizeof(target.src.u3)))
103 		tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP4,
104 					 offsetof(struct iphdr, saddr),
105 					 0xFFFFFFFF,
106 					 be32_to_cpu(target.src.u3.ip));
107 	if (memcmp(&target.dst.u3, &tuple->dst.u3, sizeof(target.dst.u3)))
108 		tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP4,
109 					 offsetof(struct iphdr, daddr),
110 					 0xFFFFFFFF,
111 					 be32_to_cpu(target.dst.u3.ip));
112 }
113 
114 static void
115 tcf_ct_add_ipv6_addr_mangle_action(struct flow_action *action,
116 				   union nf_inet_addr *addr,
117 				   u32 offset)
118 {
119 	int i;
120 
121 	for (i = 0; i < sizeof(struct in6_addr) / sizeof(u32); i++)
122 		tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP6,
123 					 i * sizeof(u32) + offset,
124 					 0xFFFFFFFF, be32_to_cpu(addr->ip6[i]));
125 }
126 
127 static void
128 tcf_ct_flow_table_add_action_nat_ipv6(const struct nf_conntrack_tuple *tuple,
129 				      struct nf_conntrack_tuple target,
130 				      struct flow_action *action)
131 {
132 	if (memcmp(&target.src.u3, &tuple->src.u3, sizeof(target.src.u3)))
133 		tcf_ct_add_ipv6_addr_mangle_action(action, &target.src.u3,
134 						   offsetof(struct ipv6hdr,
135 							    saddr));
136 	if (memcmp(&target.dst.u3, &tuple->dst.u3, sizeof(target.dst.u3)))
137 		tcf_ct_add_ipv6_addr_mangle_action(action, &target.dst.u3,
138 						   offsetof(struct ipv6hdr,
139 							    daddr));
140 }
141 
142 static void
143 tcf_ct_flow_table_add_action_nat_tcp(const struct nf_conntrack_tuple *tuple,
144 				     struct nf_conntrack_tuple target,
145 				     struct flow_action *action)
146 {
147 	__be16 target_src = target.src.u.tcp.port;
148 	__be16 target_dst = target.dst.u.tcp.port;
149 
150 	if (target_src != tuple->src.u.tcp.port)
151 		tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_TCP,
152 					 offsetof(struct tcphdr, source),
153 					 0xFFFF, be16_to_cpu(target_src));
154 	if (target_dst != tuple->dst.u.tcp.port)
155 		tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_TCP,
156 					 offsetof(struct tcphdr, dest),
157 					 0xFFFF, be16_to_cpu(target_dst));
158 }
159 
160 static void
161 tcf_ct_flow_table_add_action_nat_udp(const struct nf_conntrack_tuple *tuple,
162 				     struct nf_conntrack_tuple target,
163 				     struct flow_action *action)
164 {
165 	__be16 target_src = target.src.u.udp.port;
166 	__be16 target_dst = target.dst.u.udp.port;
167 
168 	if (target_src != tuple->src.u.udp.port)
169 		tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_UDP,
170 					 offsetof(struct udphdr, source),
171 					 0xFFFF, be16_to_cpu(target_src));
172 	if (target_dst != tuple->dst.u.udp.port)
173 		tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_UDP,
174 					 offsetof(struct udphdr, dest),
175 					 0xFFFF, be16_to_cpu(target_dst));
176 }
177 
178 static void tcf_ct_flow_table_add_action_meta(struct nf_conn *ct,
179 					      enum ip_conntrack_dir dir,
180 					      enum ip_conntrack_info ctinfo,
181 					      struct flow_action *action)
182 {
183 	struct nf_conn_labels *ct_labels;
184 	struct flow_action_entry *entry;
185 	u32 *act_ct_labels;
186 
187 	entry = tcf_ct_flow_table_flow_action_get_next(action);
188 	entry->id = FLOW_ACTION_CT_METADATA;
189 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
190 	entry->ct_metadata.mark = READ_ONCE(ct->mark);
191 #endif
192 	/* aligns with the CT reference on the SKB nf_ct_set */
193 	entry->ct_metadata.cookie = (unsigned long)ct | ctinfo;
194 	entry->ct_metadata.orig_dir = dir == IP_CT_DIR_ORIGINAL;
195 
196 	act_ct_labels = entry->ct_metadata.labels;
197 	ct_labels = nf_ct_labels_find(ct);
198 	if (ct_labels)
199 		memcpy(act_ct_labels, ct_labels->bits, NF_CT_LABELS_MAX_SIZE);
200 	else
201 		memset(act_ct_labels, 0, NF_CT_LABELS_MAX_SIZE);
202 }
203 
204 static int tcf_ct_flow_table_add_action_nat(struct net *net,
205 					    struct nf_conn *ct,
206 					    enum ip_conntrack_dir dir,
207 					    struct flow_action *action)
208 {
209 	const struct nf_conntrack_tuple *tuple = &ct->tuplehash[dir].tuple;
210 	struct nf_conntrack_tuple target;
211 
212 	if (!(ct->status & IPS_NAT_MASK))
213 		return 0;
214 
215 	nf_ct_invert_tuple(&target, &ct->tuplehash[!dir].tuple);
216 
217 	switch (tuple->src.l3num) {
218 	case NFPROTO_IPV4:
219 		tcf_ct_flow_table_add_action_nat_ipv4(tuple, target,
220 						      action);
221 		break;
222 	case NFPROTO_IPV6:
223 		tcf_ct_flow_table_add_action_nat_ipv6(tuple, target,
224 						      action);
225 		break;
226 	default:
227 		return -EOPNOTSUPP;
228 	}
229 
230 	switch (nf_ct_protonum(ct)) {
231 	case IPPROTO_TCP:
232 		tcf_ct_flow_table_add_action_nat_tcp(tuple, target, action);
233 		break;
234 	case IPPROTO_UDP:
235 		tcf_ct_flow_table_add_action_nat_udp(tuple, target, action);
236 		break;
237 	default:
238 		return -EOPNOTSUPP;
239 	}
240 
241 	return 0;
242 }
243 
244 static int tcf_ct_flow_table_fill_actions(struct net *net,
245 					  struct flow_offload *flow,
246 					  enum flow_offload_tuple_dir tdir,
247 					  struct nf_flow_rule *flow_rule)
248 {
249 	struct flow_action *action = &flow_rule->rule->action;
250 	int num_entries = action->num_entries;
251 	struct nf_conn *ct = flow->ct;
252 	enum ip_conntrack_info ctinfo;
253 	enum ip_conntrack_dir dir;
254 	int i, err;
255 
256 	switch (tdir) {
257 	case FLOW_OFFLOAD_DIR_ORIGINAL:
258 		dir = IP_CT_DIR_ORIGINAL;
259 		ctinfo = test_bit(IPS_SEEN_REPLY_BIT, &ct->status) ?
260 			IP_CT_ESTABLISHED : IP_CT_NEW;
261 		if (ctinfo == IP_CT_ESTABLISHED)
262 			set_bit(NF_FLOW_HW_ESTABLISHED, &flow->flags);
263 		break;
264 	case FLOW_OFFLOAD_DIR_REPLY:
265 		dir = IP_CT_DIR_REPLY;
266 		ctinfo = IP_CT_ESTABLISHED_REPLY;
267 		break;
268 	default:
269 		return -EOPNOTSUPP;
270 	}
271 
272 	err = tcf_ct_flow_table_add_action_nat(net, ct, dir, action);
273 	if (err)
274 		goto err_nat;
275 
276 	tcf_ct_flow_table_add_action_meta(ct, dir, ctinfo, action);
277 	return 0;
278 
279 err_nat:
280 	/* Clear filled actions */
281 	for (i = num_entries; i < action->num_entries; i++)
282 		memset(&action->entries[i], 0, sizeof(action->entries[i]));
283 	action->num_entries = num_entries;
284 
285 	return err;
286 }
287 
288 static bool tcf_ct_flow_is_outdated(const struct flow_offload *flow)
289 {
290 	return test_bit(IPS_SEEN_REPLY_BIT, &flow->ct->status) &&
291 	       test_bit(IPS_HW_OFFLOAD_BIT, &flow->ct->status) &&
292 	       !test_bit(NF_FLOW_HW_PENDING, &flow->flags) &&
293 	       !test_bit(NF_FLOW_HW_ESTABLISHED, &flow->flags);
294 }
295 
296 static void tcf_ct_flow_table_get_ref(struct tcf_ct_flow_table *ct_ft);
297 
298 static void tcf_ct_nf_get(struct nf_flowtable *ft)
299 {
300 	struct tcf_ct_flow_table *ct_ft =
301 		container_of(ft, struct tcf_ct_flow_table, nf_ft);
302 
303 	tcf_ct_flow_table_get_ref(ct_ft);
304 }
305 
306 static void tcf_ct_flow_table_put(struct tcf_ct_flow_table *ct_ft);
307 
308 static void tcf_ct_nf_put(struct nf_flowtable *ft)
309 {
310 	struct tcf_ct_flow_table *ct_ft =
311 		container_of(ft, struct tcf_ct_flow_table, nf_ft);
312 
313 	tcf_ct_flow_table_put(ct_ft);
314 }
315 
316 static struct nf_flowtable_type flowtable_ct = {
317 	.gc		= tcf_ct_flow_is_outdated,
318 	.action		= tcf_ct_flow_table_fill_actions,
319 	.get		= tcf_ct_nf_get,
320 	.put		= tcf_ct_nf_put,
321 	.owner		= THIS_MODULE,
322 };
323 
324 static int tcf_ct_flow_table_get(struct net *net, struct tcf_ct_params *params)
325 {
326 	struct zones_ht_key key = { .net = net, .zone = params->zone };
327 	struct tcf_ct_flow_table *ct_ft;
328 	int err = -ENOMEM;
329 
330 	mutex_lock(&zones_mutex);
331 	ct_ft = rhashtable_lookup_fast(&zones_ht, &key, zones_params);
332 	if (ct_ft && refcount_inc_not_zero(&ct_ft->ref))
333 		goto out_unlock;
334 
335 	ct_ft = kzalloc(sizeof(*ct_ft), GFP_KERNEL);
336 	if (!ct_ft)
337 		goto err_alloc;
338 	refcount_set(&ct_ft->ref, 1);
339 
340 	ct_ft->key = key;
341 	err = rhashtable_insert_fast(&zones_ht, &ct_ft->node, zones_params);
342 	if (err)
343 		goto err_insert;
344 
345 	ct_ft->nf_ft.type = &flowtable_ct;
346 	ct_ft->nf_ft.flags |= NF_FLOWTABLE_HW_OFFLOAD |
347 			      NF_FLOWTABLE_COUNTER;
348 	err = nf_flow_table_init(&ct_ft->nf_ft);
349 	if (err)
350 		goto err_init;
351 	write_pnet(&ct_ft->nf_ft.net, net);
352 
353 	__module_get(THIS_MODULE);
354 out_unlock:
355 	params->ct_ft = ct_ft;
356 	params->nf_ft = &ct_ft->nf_ft;
357 	mutex_unlock(&zones_mutex);
358 
359 	return 0;
360 
361 err_init:
362 	rhashtable_remove_fast(&zones_ht, &ct_ft->node, zones_params);
363 err_insert:
364 	kfree(ct_ft);
365 err_alloc:
366 	mutex_unlock(&zones_mutex);
367 	return err;
368 }
369 
370 static void tcf_ct_flow_table_get_ref(struct tcf_ct_flow_table *ct_ft)
371 {
372 	refcount_inc(&ct_ft->ref);
373 }
374 
375 static void tcf_ct_flow_table_cleanup_work(struct work_struct *work)
376 {
377 	struct tcf_ct_flow_table *ct_ft;
378 	struct flow_block *block;
379 
380 	ct_ft = container_of(to_rcu_work(work), struct tcf_ct_flow_table,
381 			     rwork);
382 	nf_flow_table_free(&ct_ft->nf_ft);
383 
384 	block = &ct_ft->nf_ft.flow_block;
385 	down_write(&ct_ft->nf_ft.flow_block_lock);
386 	WARN_ON(!list_empty(&block->cb_list));
387 	up_write(&ct_ft->nf_ft.flow_block_lock);
388 	kfree(ct_ft);
389 
390 	module_put(THIS_MODULE);
391 }
392 
393 static void tcf_ct_flow_table_put(struct tcf_ct_flow_table *ct_ft)
394 {
395 	if (refcount_dec_and_test(&ct_ft->ref)) {
396 		rhashtable_remove_fast(&zones_ht, &ct_ft->node, zones_params);
397 		INIT_RCU_WORK(&ct_ft->rwork, tcf_ct_flow_table_cleanup_work);
398 		queue_rcu_work(act_ct_wq, &ct_ft->rwork);
399 	}
400 }
401 
402 static void tcf_ct_flow_tc_ifidx(struct flow_offload *entry,
403 				 struct nf_conn_act_ct_ext *act_ct_ext, u8 dir)
404 {
405 	entry->tuplehash[dir].tuple.xmit_type = FLOW_OFFLOAD_XMIT_TC;
406 	entry->tuplehash[dir].tuple.tc.iifidx = act_ct_ext->ifindex[dir];
407 }
408 
409 static void tcf_ct_flow_ct_ext_ifidx_update(struct flow_offload *entry)
410 {
411 	struct nf_conn_act_ct_ext *act_ct_ext;
412 
413 	act_ct_ext = nf_conn_act_ct_ext_find(entry->ct);
414 	if (act_ct_ext) {
415 		tcf_ct_flow_tc_ifidx(entry, act_ct_ext, FLOW_OFFLOAD_DIR_ORIGINAL);
416 		tcf_ct_flow_tc_ifidx(entry, act_ct_ext, FLOW_OFFLOAD_DIR_REPLY);
417 	}
418 }
419 
420 static void tcf_ct_flow_table_add(struct tcf_ct_flow_table *ct_ft,
421 				  struct nf_conn *ct,
422 				  bool tcp, bool bidirectional)
423 {
424 	struct nf_conn_act_ct_ext *act_ct_ext;
425 	struct flow_offload *entry;
426 	int err;
427 
428 	if (test_and_set_bit(IPS_OFFLOAD_BIT, &ct->status))
429 		return;
430 
431 	entry = flow_offload_alloc(ct);
432 	if (!entry) {
433 		WARN_ON_ONCE(1);
434 		goto err_alloc;
435 	}
436 
437 	if (tcp) {
438 		ct->proto.tcp.seen[0].flags |= IP_CT_TCP_FLAG_BE_LIBERAL;
439 		ct->proto.tcp.seen[1].flags |= IP_CT_TCP_FLAG_BE_LIBERAL;
440 	}
441 	if (bidirectional)
442 		__set_bit(NF_FLOW_HW_BIDIRECTIONAL, &entry->flags);
443 
444 	act_ct_ext = nf_conn_act_ct_ext_find(ct);
445 	if (act_ct_ext) {
446 		tcf_ct_flow_tc_ifidx(entry, act_ct_ext, FLOW_OFFLOAD_DIR_ORIGINAL);
447 		tcf_ct_flow_tc_ifidx(entry, act_ct_ext, FLOW_OFFLOAD_DIR_REPLY);
448 	}
449 
450 	err = flow_offload_add(&ct_ft->nf_ft, entry);
451 	if (err)
452 		goto err_add;
453 
454 	return;
455 
456 err_add:
457 	flow_offload_free(entry);
458 err_alloc:
459 	clear_bit(IPS_OFFLOAD_BIT, &ct->status);
460 }
461 
462 static void tcf_ct_flow_table_process_conn(struct tcf_ct_flow_table *ct_ft,
463 					   struct nf_conn *ct,
464 					   enum ip_conntrack_info ctinfo)
465 {
466 	bool tcp = false, bidirectional = true;
467 
468 	switch (nf_ct_protonum(ct)) {
469 	case IPPROTO_TCP:
470 		if ((ctinfo != IP_CT_ESTABLISHED &&
471 		     ctinfo != IP_CT_ESTABLISHED_REPLY) ||
472 		    !test_bit(IPS_ASSURED_BIT, &ct->status) ||
473 		    ct->proto.tcp.state != TCP_CONNTRACK_ESTABLISHED)
474 			return;
475 
476 		tcp = true;
477 		break;
478 	case IPPROTO_UDP:
479 		if (!nf_ct_is_confirmed(ct))
480 			return;
481 		if (!test_bit(IPS_ASSURED_BIT, &ct->status))
482 			bidirectional = false;
483 		break;
484 #ifdef CONFIG_NF_CT_PROTO_GRE
485 	case IPPROTO_GRE: {
486 		struct nf_conntrack_tuple *tuple;
487 
488 		if ((ctinfo != IP_CT_ESTABLISHED &&
489 		     ctinfo != IP_CT_ESTABLISHED_REPLY) ||
490 		    !test_bit(IPS_ASSURED_BIT, &ct->status) ||
491 		    ct->status & IPS_NAT_MASK)
492 			return;
493 
494 		tuple = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
495 		/* No support for GRE v1 */
496 		if (tuple->src.u.gre.key || tuple->dst.u.gre.key)
497 			return;
498 		break;
499 	}
500 #endif
501 	default:
502 		return;
503 	}
504 
505 	if (nf_ct_ext_exist(ct, NF_CT_EXT_HELPER) ||
506 	    ct->status & IPS_SEQ_ADJUST)
507 		return;
508 
509 	tcf_ct_flow_table_add(ct_ft, ct, tcp, bidirectional);
510 }
511 
512 static bool
513 tcf_ct_flow_table_fill_tuple_ipv4(struct sk_buff *skb,
514 				  struct flow_offload_tuple *tuple,
515 				  struct tcphdr **tcph)
516 {
517 	struct flow_ports *ports;
518 	unsigned int thoff;
519 	struct iphdr *iph;
520 	size_t hdrsize;
521 	u8 ipproto;
522 
523 	if (!pskb_network_may_pull(skb, sizeof(*iph)))
524 		return false;
525 
526 	iph = ip_hdr(skb);
527 	thoff = iph->ihl * 4;
528 
529 	if (ip_is_fragment(iph) ||
530 	    unlikely(thoff != sizeof(struct iphdr)))
531 		return false;
532 
533 	ipproto = iph->protocol;
534 	switch (ipproto) {
535 	case IPPROTO_TCP:
536 		hdrsize = sizeof(struct tcphdr);
537 		break;
538 	case IPPROTO_UDP:
539 		hdrsize = sizeof(*ports);
540 		break;
541 #ifdef CONFIG_NF_CT_PROTO_GRE
542 	case IPPROTO_GRE:
543 		hdrsize = sizeof(struct gre_base_hdr);
544 		break;
545 #endif
546 	default:
547 		return false;
548 	}
549 
550 	if (iph->ttl <= 1)
551 		return false;
552 
553 	if (!pskb_network_may_pull(skb, thoff + hdrsize))
554 		return false;
555 
556 	switch (ipproto) {
557 	case IPPROTO_TCP:
558 		*tcph = (void *)(skb_network_header(skb) + thoff);
559 		fallthrough;
560 	case IPPROTO_UDP:
561 		ports = (struct flow_ports *)(skb_network_header(skb) + thoff);
562 		tuple->src_port = ports->source;
563 		tuple->dst_port = ports->dest;
564 		break;
565 	case IPPROTO_GRE: {
566 		struct gre_base_hdr *greh;
567 
568 		greh = (struct gre_base_hdr *)(skb_network_header(skb) + thoff);
569 		if ((greh->flags & GRE_VERSION) != GRE_VERSION_0)
570 			return false;
571 		break;
572 	}
573 	}
574 
575 	iph = ip_hdr(skb);
576 
577 	tuple->src_v4.s_addr = iph->saddr;
578 	tuple->dst_v4.s_addr = iph->daddr;
579 	tuple->l3proto = AF_INET;
580 	tuple->l4proto = ipproto;
581 
582 	return true;
583 }
584 
585 static bool
586 tcf_ct_flow_table_fill_tuple_ipv6(struct sk_buff *skb,
587 				  struct flow_offload_tuple *tuple,
588 				  struct tcphdr **tcph)
589 {
590 	struct flow_ports *ports;
591 	struct ipv6hdr *ip6h;
592 	unsigned int thoff;
593 	size_t hdrsize;
594 	u8 nexthdr;
595 
596 	if (!pskb_network_may_pull(skb, sizeof(*ip6h)))
597 		return false;
598 
599 	ip6h = ipv6_hdr(skb);
600 	thoff = sizeof(*ip6h);
601 
602 	nexthdr = ip6h->nexthdr;
603 	switch (nexthdr) {
604 	case IPPROTO_TCP:
605 		hdrsize = sizeof(struct tcphdr);
606 		break;
607 	case IPPROTO_UDP:
608 		hdrsize = sizeof(*ports);
609 		break;
610 #ifdef CONFIG_NF_CT_PROTO_GRE
611 	case IPPROTO_GRE:
612 		hdrsize = sizeof(struct gre_base_hdr);
613 		break;
614 #endif
615 	default:
616 		return false;
617 	}
618 
619 	if (ip6h->hop_limit <= 1)
620 		return false;
621 
622 	if (!pskb_network_may_pull(skb, thoff + hdrsize))
623 		return false;
624 
625 	switch (nexthdr) {
626 	case IPPROTO_TCP:
627 		*tcph = (void *)(skb_network_header(skb) + thoff);
628 		fallthrough;
629 	case IPPROTO_UDP:
630 		ports = (struct flow_ports *)(skb_network_header(skb) + thoff);
631 		tuple->src_port = ports->source;
632 		tuple->dst_port = ports->dest;
633 		break;
634 	case IPPROTO_GRE: {
635 		struct gre_base_hdr *greh;
636 
637 		greh = (struct gre_base_hdr *)(skb_network_header(skb) + thoff);
638 		if ((greh->flags & GRE_VERSION) != GRE_VERSION_0)
639 			return false;
640 		break;
641 	}
642 	}
643 
644 	ip6h = ipv6_hdr(skb);
645 
646 	tuple->src_v6 = ip6h->saddr;
647 	tuple->dst_v6 = ip6h->daddr;
648 	tuple->l3proto = AF_INET6;
649 	tuple->l4proto = nexthdr;
650 
651 	return true;
652 }
653 
654 static bool tcf_ct_flow_table_lookup(struct tcf_ct_params *p,
655 				     struct sk_buff *skb,
656 				     u8 family)
657 {
658 	struct nf_flowtable *nf_ft = &p->ct_ft->nf_ft;
659 	struct flow_offload_tuple_rhash *tuplehash;
660 	struct flow_offload_tuple tuple = {};
661 	enum ip_conntrack_info ctinfo;
662 	struct tcphdr *tcph = NULL;
663 	bool force_refresh = false;
664 	struct flow_offload *flow;
665 	struct nf_conn *ct;
666 	u8 dir;
667 
668 	switch (family) {
669 	case NFPROTO_IPV4:
670 		if (!tcf_ct_flow_table_fill_tuple_ipv4(skb, &tuple, &tcph))
671 			return false;
672 		break;
673 	case NFPROTO_IPV6:
674 		if (!tcf_ct_flow_table_fill_tuple_ipv6(skb, &tuple, &tcph))
675 			return false;
676 		break;
677 	default:
678 		return false;
679 	}
680 
681 	tuplehash = flow_offload_lookup(nf_ft, &tuple);
682 	if (!tuplehash)
683 		return false;
684 
685 	dir = tuplehash->tuple.dir;
686 	flow = container_of(tuplehash, struct flow_offload, tuplehash[dir]);
687 	ct = flow->ct;
688 
689 	if (dir == FLOW_OFFLOAD_DIR_REPLY &&
690 	    !test_bit(NF_FLOW_HW_BIDIRECTIONAL, &flow->flags)) {
691 		/* Only offload reply direction after connection became
692 		 * assured.
693 		 */
694 		if (test_bit(IPS_ASSURED_BIT, &ct->status))
695 			set_bit(NF_FLOW_HW_BIDIRECTIONAL, &flow->flags);
696 		else if (test_bit(NF_FLOW_HW_ESTABLISHED, &flow->flags))
697 			/* If flow_table flow has already been updated to the
698 			 * established state, then don't refresh.
699 			 */
700 			return false;
701 		force_refresh = true;
702 	}
703 
704 	if (tcph && (unlikely(tcph->fin || tcph->rst))) {
705 		flow_offload_teardown(flow);
706 		return false;
707 	}
708 
709 	if (dir == FLOW_OFFLOAD_DIR_ORIGINAL)
710 		ctinfo = test_bit(IPS_SEEN_REPLY_BIT, &ct->status) ?
711 			IP_CT_ESTABLISHED : IP_CT_NEW;
712 	else
713 		ctinfo = IP_CT_ESTABLISHED_REPLY;
714 
715 	nf_conn_act_ct_ext_fill(skb, ct, ctinfo);
716 	tcf_ct_flow_ct_ext_ifidx_update(flow);
717 	flow_offload_refresh(nf_ft, flow, force_refresh);
718 	if (!test_bit(IPS_ASSURED_BIT, &ct->status)) {
719 		/* Process this flow in SW to allow promoting to ASSURED */
720 		return false;
721 	}
722 
723 	nf_conntrack_get(&ct->ct_general);
724 	nf_ct_set(skb, ct, ctinfo);
725 	if (nf_ft->flags & NF_FLOWTABLE_COUNTER)
726 		nf_ct_acct_update(ct, dir, skb->len);
727 
728 	return true;
729 }
730 
731 static int tcf_ct_flow_tables_init(void)
732 {
733 	return rhashtable_init(&zones_ht, &zones_params);
734 }
735 
736 static void tcf_ct_flow_tables_uninit(void)
737 {
738 	rhashtable_destroy(&zones_ht);
739 }
740 
741 static struct tc_action_ops act_ct_ops;
742 
743 struct tc_ct_action_net {
744 	struct tc_action_net tn; /* Must be first */
745 	bool labels;
746 };
747 
748 /* Determine whether skb->_nfct is equal to the result of conntrack lookup. */
749 static bool tcf_ct_skb_nfct_cached(struct net *net, struct sk_buff *skb,
750 				   struct tcf_ct_params *p)
751 {
752 	enum ip_conntrack_info ctinfo;
753 	struct nf_conn *ct;
754 
755 	ct = nf_ct_get(skb, &ctinfo);
756 	if (!ct)
757 		return false;
758 	if (!net_eq(net, read_pnet(&ct->ct_net)))
759 		goto drop_ct;
760 	if (nf_ct_zone(ct)->id != p->zone)
761 		goto drop_ct;
762 	if (p->helper) {
763 		struct nf_conn_help *help;
764 
765 		help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER);
766 		if (help && rcu_access_pointer(help->helper) != p->helper)
767 			goto drop_ct;
768 	}
769 
770 	/* Force conntrack entry direction. */
771 	if ((p->ct_action & TCA_CT_ACT_FORCE) &&
772 	    CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) {
773 		if (nf_ct_is_confirmed(ct))
774 			nf_ct_kill(ct);
775 
776 		goto drop_ct;
777 	}
778 
779 	return true;
780 
781 drop_ct:
782 	nf_ct_put(ct);
783 	nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
784 
785 	return false;
786 }
787 
788 static u8 tcf_ct_skb_nf_family(struct sk_buff *skb)
789 {
790 	u8 family = NFPROTO_UNSPEC;
791 
792 	switch (skb_protocol(skb, true)) {
793 	case htons(ETH_P_IP):
794 		family = NFPROTO_IPV4;
795 		break;
796 	case htons(ETH_P_IPV6):
797 		family = NFPROTO_IPV6;
798 		break;
799 	default:
800 		break;
801 	}
802 
803 	return family;
804 }
805 
806 static int tcf_ct_ipv4_is_fragment(struct sk_buff *skb, bool *frag)
807 {
808 	unsigned int len;
809 
810 	len =  skb_network_offset(skb) + sizeof(struct iphdr);
811 	if (unlikely(skb->len < len))
812 		return -EINVAL;
813 	if (unlikely(!pskb_may_pull(skb, len)))
814 		return -ENOMEM;
815 
816 	*frag = ip_is_fragment(ip_hdr(skb));
817 	return 0;
818 }
819 
820 static int tcf_ct_ipv6_is_fragment(struct sk_buff *skb, bool *frag)
821 {
822 	unsigned int flags = 0, len, payload_ofs = 0;
823 	unsigned short frag_off;
824 	int nexthdr;
825 
826 	len =  skb_network_offset(skb) + sizeof(struct ipv6hdr);
827 	if (unlikely(skb->len < len))
828 		return -EINVAL;
829 	if (unlikely(!pskb_may_pull(skb, len)))
830 		return -ENOMEM;
831 
832 	nexthdr = ipv6_find_hdr(skb, &payload_ofs, -1, &frag_off, &flags);
833 	if (unlikely(nexthdr < 0))
834 		return -EPROTO;
835 
836 	*frag = flags & IP6_FH_F_FRAG;
837 	return 0;
838 }
839 
840 static int tcf_ct_handle_fragments(struct net *net, struct sk_buff *skb,
841 				   u8 family, u16 zone, bool *defrag)
842 {
843 	enum ip_conntrack_info ctinfo;
844 	struct nf_conn *ct;
845 	int err = 0;
846 	bool frag;
847 	u8 proto;
848 	u16 mru;
849 
850 	/* Previously seen (loopback)? Ignore. */
851 	ct = nf_ct_get(skb, &ctinfo);
852 	if ((ct && !nf_ct_is_template(ct)) || ctinfo == IP_CT_UNTRACKED)
853 		return 0;
854 
855 	if (family == NFPROTO_IPV4)
856 		err = tcf_ct_ipv4_is_fragment(skb, &frag);
857 	else
858 		err = tcf_ct_ipv6_is_fragment(skb, &frag);
859 	if (err || !frag)
860 		return err;
861 
862 	err = nf_ct_handle_fragments(net, skb, zone, family, &proto, &mru);
863 	if (err)
864 		return err;
865 
866 	*defrag = true;
867 	tc_skb_cb(skb)->mru = mru;
868 
869 	return 0;
870 }
871 
872 static void tcf_ct_params_free(struct tcf_ct_params *params)
873 {
874 	if (params->helper) {
875 #if IS_ENABLED(CONFIG_NF_NAT)
876 		if (params->ct_action & TCA_CT_ACT_NAT)
877 			nf_nat_helper_put(params->helper);
878 #endif
879 		nf_conntrack_helper_put(params->helper);
880 	}
881 	if (params->ct_ft)
882 		tcf_ct_flow_table_put(params->ct_ft);
883 	if (params->tmpl)
884 		nf_ct_put(params->tmpl);
885 	kfree(params);
886 }
887 
888 static void tcf_ct_params_free_rcu(struct rcu_head *head)
889 {
890 	struct tcf_ct_params *params;
891 
892 	params = container_of(head, struct tcf_ct_params, rcu);
893 	tcf_ct_params_free(params);
894 }
895 
896 static void tcf_ct_act_set_mark(struct nf_conn *ct, u32 mark, u32 mask)
897 {
898 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
899 	u32 new_mark;
900 
901 	if (!mask)
902 		return;
903 
904 	new_mark = mark | (READ_ONCE(ct->mark) & ~(mask));
905 	if (READ_ONCE(ct->mark) != new_mark) {
906 		WRITE_ONCE(ct->mark, new_mark);
907 		if (nf_ct_is_confirmed(ct))
908 			nf_conntrack_event_cache(IPCT_MARK, ct);
909 	}
910 #endif
911 }
912 
913 static void tcf_ct_act_set_labels(struct nf_conn *ct,
914 				  u32 *labels,
915 				  u32 *labels_m)
916 {
917 #if IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS)
918 	size_t labels_sz = sizeof_field(struct tcf_ct_params, labels);
919 
920 	if (!memchr_inv(labels_m, 0, labels_sz))
921 		return;
922 
923 	nf_connlabels_replace(ct, labels, labels_m, 4);
924 #endif
925 }
926 
927 static int tcf_ct_act_nat(struct sk_buff *skb,
928 			  struct nf_conn *ct,
929 			  enum ip_conntrack_info ctinfo,
930 			  int ct_action,
931 			  struct nf_nat_range2 *range,
932 			  bool commit)
933 {
934 #if IS_ENABLED(CONFIG_NF_NAT)
935 	int err, action = 0;
936 
937 	if (!(ct_action & TCA_CT_ACT_NAT))
938 		return NF_ACCEPT;
939 	if (ct_action & TCA_CT_ACT_NAT_SRC)
940 		action |= BIT(NF_NAT_MANIP_SRC);
941 	if (ct_action & TCA_CT_ACT_NAT_DST)
942 		action |= BIT(NF_NAT_MANIP_DST);
943 
944 	err = nf_ct_nat(skb, ct, ctinfo, &action, range, commit);
945 
946 	if (action & BIT(NF_NAT_MANIP_SRC))
947 		tc_skb_cb(skb)->post_ct_snat = 1;
948 	if (action & BIT(NF_NAT_MANIP_DST))
949 		tc_skb_cb(skb)->post_ct_dnat = 1;
950 
951 	return err;
952 #else
953 	return NF_ACCEPT;
954 #endif
955 }
956 
957 TC_INDIRECT_SCOPE int tcf_ct_act(struct sk_buff *skb, const struct tc_action *a,
958 				 struct tcf_result *res)
959 {
960 	struct net *net = dev_net(skb->dev);
961 	enum ip_conntrack_info ctinfo;
962 	struct tcf_ct *c = to_ct(a);
963 	struct nf_conn *tmpl = NULL;
964 	struct nf_hook_state state;
965 	bool cached, commit, clear;
966 	int nh_ofs, err, retval;
967 	struct tcf_ct_params *p;
968 	bool add_helper = false;
969 	bool skip_add = false;
970 	bool defrag = false;
971 	struct nf_conn *ct;
972 	u8 family;
973 
974 	p = rcu_dereference_bh(c->params);
975 
976 	retval = READ_ONCE(c->tcf_action);
977 	commit = p->ct_action & TCA_CT_ACT_COMMIT;
978 	clear = p->ct_action & TCA_CT_ACT_CLEAR;
979 	tmpl = p->tmpl;
980 
981 	tcf_lastuse_update(&c->tcf_tm);
982 	tcf_action_update_bstats(&c->common, skb);
983 
984 	if (clear) {
985 		tc_skb_cb(skb)->post_ct = false;
986 		ct = nf_ct_get(skb, &ctinfo);
987 		if (ct) {
988 			nf_ct_put(ct);
989 			nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
990 		}
991 
992 		goto out_clear;
993 	}
994 
995 	family = tcf_ct_skb_nf_family(skb);
996 	if (family == NFPROTO_UNSPEC)
997 		goto drop;
998 
999 	/* The conntrack module expects to be working at L3.
1000 	 * We also try to pull the IPv4/6 header to linear area
1001 	 */
1002 	nh_ofs = skb_network_offset(skb);
1003 	skb_pull_rcsum(skb, nh_ofs);
1004 	err = tcf_ct_handle_fragments(net, skb, family, p->zone, &defrag);
1005 	if (err)
1006 		goto out_frag;
1007 
1008 	err = nf_ct_skb_network_trim(skb, family);
1009 	if (err)
1010 		goto drop;
1011 
1012 	/* If we are recirculating packets to match on ct fields and
1013 	 * committing with a separate ct action, then we don't need to
1014 	 * actually run the packet through conntrack twice unless it's for a
1015 	 * different zone.
1016 	 */
1017 	cached = tcf_ct_skb_nfct_cached(net, skb, p);
1018 	if (!cached) {
1019 		if (tcf_ct_flow_table_lookup(p, skb, family)) {
1020 			skip_add = true;
1021 			goto do_nat;
1022 		}
1023 
1024 		/* Associate skb with specified zone. */
1025 		if (tmpl) {
1026 			nf_conntrack_put(skb_nfct(skb));
1027 			nf_conntrack_get(&tmpl->ct_general);
1028 			nf_ct_set(skb, tmpl, IP_CT_NEW);
1029 		}
1030 
1031 		state.hook = NF_INET_PRE_ROUTING;
1032 		state.net = net;
1033 		state.pf = family;
1034 		err = nf_conntrack_in(skb, &state);
1035 		if (err != NF_ACCEPT)
1036 			goto out_push;
1037 	}
1038 
1039 do_nat:
1040 	ct = nf_ct_get(skb, &ctinfo);
1041 	if (!ct)
1042 		goto out_push;
1043 	nf_ct_deliver_cached_events(ct);
1044 	nf_conn_act_ct_ext_fill(skb, ct, ctinfo);
1045 
1046 	err = tcf_ct_act_nat(skb, ct, ctinfo, p->ct_action, &p->range, commit);
1047 	if (err != NF_ACCEPT)
1048 		goto drop;
1049 
1050 	if (!nf_ct_is_confirmed(ct) && commit && p->helper && !nfct_help(ct)) {
1051 		err = __nf_ct_try_assign_helper(ct, p->tmpl, GFP_ATOMIC);
1052 		if (err)
1053 			goto drop;
1054 		add_helper = true;
1055 		if (p->ct_action & TCA_CT_ACT_NAT && !nfct_seqadj(ct)) {
1056 			if (!nfct_seqadj_ext_add(ct))
1057 				goto drop;
1058 		}
1059 	}
1060 
1061 	if (nf_ct_is_confirmed(ct) ? ((!cached && !skip_add) || add_helper) : commit) {
1062 		if (nf_ct_helper(skb, ct, ctinfo, family) != NF_ACCEPT)
1063 			goto drop;
1064 	}
1065 
1066 	if (commit) {
1067 		tcf_ct_act_set_mark(ct, p->mark, p->mark_mask);
1068 		tcf_ct_act_set_labels(ct, p->labels, p->labels_mask);
1069 
1070 		if (!nf_ct_is_confirmed(ct))
1071 			nf_conn_act_ct_ext_add(skb, ct, ctinfo);
1072 
1073 		/* This will take care of sending queued events
1074 		 * even if the connection is already confirmed.
1075 		 */
1076 		if (nf_conntrack_confirm(skb) != NF_ACCEPT)
1077 			goto drop;
1078 
1079 		/* The ct may be dropped if a clash has been resolved,
1080 		 * so it's necessary to retrieve it from skb again to
1081 		 * prevent UAF.
1082 		 */
1083 		ct = nf_ct_get(skb, &ctinfo);
1084 		if (!ct)
1085 			skip_add = true;
1086 	}
1087 
1088 	if (!skip_add)
1089 		tcf_ct_flow_table_process_conn(p->ct_ft, ct, ctinfo);
1090 
1091 out_push:
1092 	skb_push_rcsum(skb, nh_ofs);
1093 
1094 	tc_skb_cb(skb)->post_ct = true;
1095 	tc_skb_cb(skb)->zone = p->zone;
1096 out_clear:
1097 	if (defrag)
1098 		qdisc_skb_cb(skb)->pkt_len = skb->len;
1099 	return retval;
1100 
1101 out_frag:
1102 	if (err != -EINPROGRESS)
1103 		tcf_action_inc_drop_qstats(&c->common);
1104 	return TC_ACT_CONSUMED;
1105 
1106 drop:
1107 	tcf_action_inc_drop_qstats(&c->common);
1108 	return TC_ACT_SHOT;
1109 }
1110 
1111 static const struct nla_policy ct_policy[TCA_CT_MAX + 1] = {
1112 	[TCA_CT_ACTION] = { .type = NLA_U16 },
1113 	[TCA_CT_PARMS] = NLA_POLICY_EXACT_LEN(sizeof(struct tc_ct)),
1114 	[TCA_CT_ZONE] = { .type = NLA_U16 },
1115 	[TCA_CT_MARK] = { .type = NLA_U32 },
1116 	[TCA_CT_MARK_MASK] = { .type = NLA_U32 },
1117 	[TCA_CT_LABELS] = { .type = NLA_BINARY,
1118 			    .len = 128 / BITS_PER_BYTE },
1119 	[TCA_CT_LABELS_MASK] = { .type = NLA_BINARY,
1120 				 .len = 128 / BITS_PER_BYTE },
1121 	[TCA_CT_NAT_IPV4_MIN] = { .type = NLA_U32 },
1122 	[TCA_CT_NAT_IPV4_MAX] = { .type = NLA_U32 },
1123 	[TCA_CT_NAT_IPV6_MIN] = NLA_POLICY_EXACT_LEN(sizeof(struct in6_addr)),
1124 	[TCA_CT_NAT_IPV6_MAX] = NLA_POLICY_EXACT_LEN(sizeof(struct in6_addr)),
1125 	[TCA_CT_NAT_PORT_MIN] = { .type = NLA_U16 },
1126 	[TCA_CT_NAT_PORT_MAX] = { .type = NLA_U16 },
1127 	[TCA_CT_HELPER_NAME] = { .type = NLA_STRING, .len = NF_CT_HELPER_NAME_LEN },
1128 	[TCA_CT_HELPER_FAMILY] = { .type = NLA_U8 },
1129 	[TCA_CT_HELPER_PROTO] = { .type = NLA_U8 },
1130 };
1131 
1132 static int tcf_ct_fill_params_nat(struct tcf_ct_params *p,
1133 				  struct tc_ct *parm,
1134 				  struct nlattr **tb,
1135 				  struct netlink_ext_ack *extack)
1136 {
1137 	struct nf_nat_range2 *range;
1138 
1139 	if (!(p->ct_action & TCA_CT_ACT_NAT))
1140 		return 0;
1141 
1142 	if (!IS_ENABLED(CONFIG_NF_NAT)) {
1143 		NL_SET_ERR_MSG_MOD(extack, "Netfilter nat isn't enabled in kernel");
1144 		return -EOPNOTSUPP;
1145 	}
1146 
1147 	if (!(p->ct_action & (TCA_CT_ACT_NAT_SRC | TCA_CT_ACT_NAT_DST)))
1148 		return 0;
1149 
1150 	if ((p->ct_action & TCA_CT_ACT_NAT_SRC) &&
1151 	    (p->ct_action & TCA_CT_ACT_NAT_DST)) {
1152 		NL_SET_ERR_MSG_MOD(extack, "dnat and snat can't be enabled at the same time");
1153 		return -EOPNOTSUPP;
1154 	}
1155 
1156 	range = &p->range;
1157 	if (tb[TCA_CT_NAT_IPV4_MIN]) {
1158 		struct nlattr *max_attr = tb[TCA_CT_NAT_IPV4_MAX];
1159 
1160 		p->ipv4_range = true;
1161 		range->flags |= NF_NAT_RANGE_MAP_IPS;
1162 		range->min_addr.ip =
1163 			nla_get_in_addr(tb[TCA_CT_NAT_IPV4_MIN]);
1164 
1165 		range->max_addr.ip = max_attr ?
1166 				     nla_get_in_addr(max_attr) :
1167 				     range->min_addr.ip;
1168 	} else if (tb[TCA_CT_NAT_IPV6_MIN]) {
1169 		struct nlattr *max_attr = tb[TCA_CT_NAT_IPV6_MAX];
1170 
1171 		p->ipv4_range = false;
1172 		range->flags |= NF_NAT_RANGE_MAP_IPS;
1173 		range->min_addr.in6 =
1174 			nla_get_in6_addr(tb[TCA_CT_NAT_IPV6_MIN]);
1175 
1176 		range->max_addr.in6 = max_attr ?
1177 				      nla_get_in6_addr(max_attr) :
1178 				      range->min_addr.in6;
1179 	}
1180 
1181 	if (tb[TCA_CT_NAT_PORT_MIN]) {
1182 		range->flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1183 		range->min_proto.all = nla_get_be16(tb[TCA_CT_NAT_PORT_MIN]);
1184 
1185 		range->max_proto.all = tb[TCA_CT_NAT_PORT_MAX] ?
1186 				       nla_get_be16(tb[TCA_CT_NAT_PORT_MAX]) :
1187 				       range->min_proto.all;
1188 	}
1189 
1190 	return 0;
1191 }
1192 
1193 static void tcf_ct_set_key_val(struct nlattr **tb,
1194 			       void *val, int val_type,
1195 			       void *mask, int mask_type,
1196 			       int len)
1197 {
1198 	if (!tb[val_type])
1199 		return;
1200 	nla_memcpy(val, tb[val_type], len);
1201 
1202 	if (!mask)
1203 		return;
1204 
1205 	if (mask_type == TCA_CT_UNSPEC || !tb[mask_type])
1206 		memset(mask, 0xff, len);
1207 	else
1208 		nla_memcpy(mask, tb[mask_type], len);
1209 }
1210 
1211 static int tcf_ct_fill_params(struct net *net,
1212 			      struct tcf_ct_params *p,
1213 			      struct tc_ct *parm,
1214 			      struct nlattr **tb,
1215 			      struct netlink_ext_ack *extack)
1216 {
1217 	struct tc_ct_action_net *tn = net_generic(net, act_ct_ops.net_id);
1218 	struct nf_conntrack_zone zone;
1219 	int err, family, proto, len;
1220 	struct nf_conn *tmpl;
1221 	char *name;
1222 
1223 	p->zone = NF_CT_DEFAULT_ZONE_ID;
1224 
1225 	tcf_ct_set_key_val(tb,
1226 			   &p->ct_action, TCA_CT_ACTION,
1227 			   NULL, TCA_CT_UNSPEC,
1228 			   sizeof(p->ct_action));
1229 
1230 	if (p->ct_action & TCA_CT_ACT_CLEAR)
1231 		return 0;
1232 
1233 	err = tcf_ct_fill_params_nat(p, parm, tb, extack);
1234 	if (err)
1235 		return err;
1236 
1237 	if (tb[TCA_CT_MARK]) {
1238 		if (!IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)) {
1239 			NL_SET_ERR_MSG_MOD(extack, "Conntrack mark isn't enabled.");
1240 			return -EOPNOTSUPP;
1241 		}
1242 		tcf_ct_set_key_val(tb,
1243 				   &p->mark, TCA_CT_MARK,
1244 				   &p->mark_mask, TCA_CT_MARK_MASK,
1245 				   sizeof(p->mark));
1246 	}
1247 
1248 	if (tb[TCA_CT_LABELS]) {
1249 		if (!IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS)) {
1250 			NL_SET_ERR_MSG_MOD(extack, "Conntrack labels isn't enabled.");
1251 			return -EOPNOTSUPP;
1252 		}
1253 
1254 		if (!tn->labels) {
1255 			NL_SET_ERR_MSG_MOD(extack, "Failed to set connlabel length");
1256 			return -EOPNOTSUPP;
1257 		}
1258 		tcf_ct_set_key_val(tb,
1259 				   p->labels, TCA_CT_LABELS,
1260 				   p->labels_mask, TCA_CT_LABELS_MASK,
1261 				   sizeof(p->labels));
1262 	}
1263 
1264 	if (tb[TCA_CT_ZONE]) {
1265 		if (!IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES)) {
1266 			NL_SET_ERR_MSG_MOD(extack, "Conntrack zones isn't enabled.");
1267 			return -EOPNOTSUPP;
1268 		}
1269 
1270 		tcf_ct_set_key_val(tb,
1271 				   &p->zone, TCA_CT_ZONE,
1272 				   NULL, TCA_CT_UNSPEC,
1273 				   sizeof(p->zone));
1274 	}
1275 
1276 	nf_ct_zone_init(&zone, p->zone, NF_CT_DEFAULT_ZONE_DIR, 0);
1277 	tmpl = nf_ct_tmpl_alloc(net, &zone, GFP_KERNEL);
1278 	if (!tmpl) {
1279 		NL_SET_ERR_MSG_MOD(extack, "Failed to allocate conntrack template");
1280 		return -ENOMEM;
1281 	}
1282 	p->tmpl = tmpl;
1283 	if (tb[TCA_CT_HELPER_NAME]) {
1284 		name = nla_data(tb[TCA_CT_HELPER_NAME]);
1285 		len = nla_len(tb[TCA_CT_HELPER_NAME]);
1286 		if (len > 16 || name[len - 1] != '\0') {
1287 			NL_SET_ERR_MSG_MOD(extack, "Failed to parse helper name.");
1288 			err = -EINVAL;
1289 			goto err;
1290 		}
1291 		family = tb[TCA_CT_HELPER_FAMILY] ? nla_get_u8(tb[TCA_CT_HELPER_FAMILY]) : AF_INET;
1292 		proto = tb[TCA_CT_HELPER_PROTO] ? nla_get_u8(tb[TCA_CT_HELPER_PROTO]) : IPPROTO_TCP;
1293 		err = nf_ct_add_helper(tmpl, name, family, proto,
1294 				       p->ct_action & TCA_CT_ACT_NAT, &p->helper);
1295 		if (err) {
1296 			NL_SET_ERR_MSG_MOD(extack, "Failed to add helper");
1297 			goto err;
1298 		}
1299 	}
1300 
1301 	if (p->ct_action & TCA_CT_ACT_COMMIT)
1302 		__set_bit(IPS_CONFIRMED_BIT, &tmpl->status);
1303 	return 0;
1304 err:
1305 	nf_ct_put(p->tmpl);
1306 	p->tmpl = NULL;
1307 	return err;
1308 }
1309 
1310 static int tcf_ct_init(struct net *net, struct nlattr *nla,
1311 		       struct nlattr *est, struct tc_action **a,
1312 		       struct tcf_proto *tp, u32 flags,
1313 		       struct netlink_ext_ack *extack)
1314 {
1315 	struct tc_action_net *tn = net_generic(net, act_ct_ops.net_id);
1316 	bool bind = flags & TCA_ACT_FLAGS_BIND;
1317 	struct tcf_ct_params *params = NULL;
1318 	struct nlattr *tb[TCA_CT_MAX + 1];
1319 	struct tcf_chain *goto_ch = NULL;
1320 	struct tc_ct *parm;
1321 	struct tcf_ct *c;
1322 	int err, res = 0;
1323 	u32 index;
1324 
1325 	if (!nla) {
1326 		NL_SET_ERR_MSG_MOD(extack, "Ct requires attributes to be passed");
1327 		return -EINVAL;
1328 	}
1329 
1330 	err = nla_parse_nested(tb, TCA_CT_MAX, nla, ct_policy, extack);
1331 	if (err < 0)
1332 		return err;
1333 
1334 	if (!tb[TCA_CT_PARMS]) {
1335 		NL_SET_ERR_MSG_MOD(extack, "Missing required ct parameters");
1336 		return -EINVAL;
1337 	}
1338 	parm = nla_data(tb[TCA_CT_PARMS]);
1339 	index = parm->index;
1340 	err = tcf_idr_check_alloc(tn, &index, a, bind);
1341 	if (err < 0)
1342 		return err;
1343 
1344 	if (!err) {
1345 		err = tcf_idr_create_from_flags(tn, index, est, a,
1346 						&act_ct_ops, bind, flags);
1347 		if (err) {
1348 			tcf_idr_cleanup(tn, index);
1349 			return err;
1350 		}
1351 		res = ACT_P_CREATED;
1352 	} else {
1353 		if (bind)
1354 			return 0;
1355 
1356 		if (!(flags & TCA_ACT_FLAGS_REPLACE)) {
1357 			tcf_idr_release(*a, bind);
1358 			return -EEXIST;
1359 		}
1360 	}
1361 	err = tcf_action_check_ctrlact(parm->action, tp, &goto_ch, extack);
1362 	if (err < 0)
1363 		goto cleanup;
1364 
1365 	c = to_ct(*a);
1366 
1367 	params = kzalloc(sizeof(*params), GFP_KERNEL);
1368 	if (unlikely(!params)) {
1369 		err = -ENOMEM;
1370 		goto cleanup;
1371 	}
1372 
1373 	err = tcf_ct_fill_params(net, params, parm, tb, extack);
1374 	if (err)
1375 		goto cleanup;
1376 
1377 	err = tcf_ct_flow_table_get(net, params);
1378 	if (err)
1379 		goto cleanup;
1380 
1381 	spin_lock_bh(&c->tcf_lock);
1382 	goto_ch = tcf_action_set_ctrlact(*a, parm->action, goto_ch);
1383 	params = rcu_replace_pointer(c->params, params,
1384 				     lockdep_is_held(&c->tcf_lock));
1385 	spin_unlock_bh(&c->tcf_lock);
1386 
1387 	if (goto_ch)
1388 		tcf_chain_put_by_act(goto_ch);
1389 	if (params)
1390 		call_rcu(&params->rcu, tcf_ct_params_free_rcu);
1391 
1392 	return res;
1393 
1394 cleanup:
1395 	if (goto_ch)
1396 		tcf_chain_put_by_act(goto_ch);
1397 	if (params)
1398 		tcf_ct_params_free(params);
1399 	tcf_idr_release(*a, bind);
1400 	return err;
1401 }
1402 
1403 static void tcf_ct_cleanup(struct tc_action *a)
1404 {
1405 	struct tcf_ct_params *params;
1406 	struct tcf_ct *c = to_ct(a);
1407 
1408 	params = rcu_dereference_protected(c->params, 1);
1409 	if (params)
1410 		call_rcu(&params->rcu, tcf_ct_params_free_rcu);
1411 }
1412 
1413 static int tcf_ct_dump_key_val(struct sk_buff *skb,
1414 			       void *val, int val_type,
1415 			       void *mask, int mask_type,
1416 			       int len)
1417 {
1418 	int err;
1419 
1420 	if (mask && !memchr_inv(mask, 0, len))
1421 		return 0;
1422 
1423 	err = nla_put(skb, val_type, len, val);
1424 	if (err)
1425 		return err;
1426 
1427 	if (mask_type != TCA_CT_UNSPEC) {
1428 		err = nla_put(skb, mask_type, len, mask);
1429 		if (err)
1430 			return err;
1431 	}
1432 
1433 	return 0;
1434 }
1435 
1436 static int tcf_ct_dump_nat(struct sk_buff *skb, struct tcf_ct_params *p)
1437 {
1438 	struct nf_nat_range2 *range = &p->range;
1439 
1440 	if (!(p->ct_action & TCA_CT_ACT_NAT))
1441 		return 0;
1442 
1443 	if (!(p->ct_action & (TCA_CT_ACT_NAT_SRC | TCA_CT_ACT_NAT_DST)))
1444 		return 0;
1445 
1446 	if (range->flags & NF_NAT_RANGE_MAP_IPS) {
1447 		if (p->ipv4_range) {
1448 			if (nla_put_in_addr(skb, TCA_CT_NAT_IPV4_MIN,
1449 					    range->min_addr.ip))
1450 				return -1;
1451 			if (nla_put_in_addr(skb, TCA_CT_NAT_IPV4_MAX,
1452 					    range->max_addr.ip))
1453 				return -1;
1454 		} else {
1455 			if (nla_put_in6_addr(skb, TCA_CT_NAT_IPV6_MIN,
1456 					     &range->min_addr.in6))
1457 				return -1;
1458 			if (nla_put_in6_addr(skb, TCA_CT_NAT_IPV6_MAX,
1459 					     &range->max_addr.in6))
1460 				return -1;
1461 		}
1462 	}
1463 
1464 	if (range->flags & NF_NAT_RANGE_PROTO_SPECIFIED) {
1465 		if (nla_put_be16(skb, TCA_CT_NAT_PORT_MIN,
1466 				 range->min_proto.all))
1467 			return -1;
1468 		if (nla_put_be16(skb, TCA_CT_NAT_PORT_MAX,
1469 				 range->max_proto.all))
1470 			return -1;
1471 	}
1472 
1473 	return 0;
1474 }
1475 
1476 static int tcf_ct_dump_helper(struct sk_buff *skb, struct nf_conntrack_helper *helper)
1477 {
1478 	if (!helper)
1479 		return 0;
1480 
1481 	if (nla_put_string(skb, TCA_CT_HELPER_NAME, helper->name) ||
1482 	    nla_put_u8(skb, TCA_CT_HELPER_FAMILY, helper->tuple.src.l3num) ||
1483 	    nla_put_u8(skb, TCA_CT_HELPER_PROTO, helper->tuple.dst.protonum))
1484 		return -1;
1485 
1486 	return 0;
1487 }
1488 
1489 static inline int tcf_ct_dump(struct sk_buff *skb, struct tc_action *a,
1490 			      int bind, int ref)
1491 {
1492 	unsigned char *b = skb_tail_pointer(skb);
1493 	struct tcf_ct *c = to_ct(a);
1494 	struct tcf_ct_params *p;
1495 
1496 	struct tc_ct opt = {
1497 		.index   = c->tcf_index,
1498 		.refcnt  = refcount_read(&c->tcf_refcnt) - ref,
1499 		.bindcnt = atomic_read(&c->tcf_bindcnt) - bind,
1500 	};
1501 	struct tcf_t t;
1502 
1503 	spin_lock_bh(&c->tcf_lock);
1504 	p = rcu_dereference_protected(c->params,
1505 				      lockdep_is_held(&c->tcf_lock));
1506 	opt.action = c->tcf_action;
1507 
1508 	if (tcf_ct_dump_key_val(skb,
1509 				&p->ct_action, TCA_CT_ACTION,
1510 				NULL, TCA_CT_UNSPEC,
1511 				sizeof(p->ct_action)))
1512 		goto nla_put_failure;
1513 
1514 	if (p->ct_action & TCA_CT_ACT_CLEAR)
1515 		goto skip_dump;
1516 
1517 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
1518 	    tcf_ct_dump_key_val(skb,
1519 				&p->mark, TCA_CT_MARK,
1520 				&p->mark_mask, TCA_CT_MARK_MASK,
1521 				sizeof(p->mark)))
1522 		goto nla_put_failure;
1523 
1524 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1525 	    tcf_ct_dump_key_val(skb,
1526 				p->labels, TCA_CT_LABELS,
1527 				p->labels_mask, TCA_CT_LABELS_MASK,
1528 				sizeof(p->labels)))
1529 		goto nla_put_failure;
1530 
1531 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1532 	    tcf_ct_dump_key_val(skb,
1533 				&p->zone, TCA_CT_ZONE,
1534 				NULL, TCA_CT_UNSPEC,
1535 				sizeof(p->zone)))
1536 		goto nla_put_failure;
1537 
1538 	if (tcf_ct_dump_nat(skb, p))
1539 		goto nla_put_failure;
1540 
1541 	if (tcf_ct_dump_helper(skb, p->helper))
1542 		goto nla_put_failure;
1543 
1544 skip_dump:
1545 	if (nla_put(skb, TCA_CT_PARMS, sizeof(opt), &opt))
1546 		goto nla_put_failure;
1547 
1548 	tcf_tm_dump(&t, &c->tcf_tm);
1549 	if (nla_put_64bit(skb, TCA_CT_TM, sizeof(t), &t, TCA_CT_PAD))
1550 		goto nla_put_failure;
1551 	spin_unlock_bh(&c->tcf_lock);
1552 
1553 	return skb->len;
1554 nla_put_failure:
1555 	spin_unlock_bh(&c->tcf_lock);
1556 	nlmsg_trim(skb, b);
1557 	return -1;
1558 }
1559 
1560 static void tcf_stats_update(struct tc_action *a, u64 bytes, u64 packets,
1561 			     u64 drops, u64 lastuse, bool hw)
1562 {
1563 	struct tcf_ct *c = to_ct(a);
1564 
1565 	tcf_action_update_stats(a, bytes, packets, drops, hw);
1566 	c->tcf_tm.lastuse = max_t(u64, c->tcf_tm.lastuse, lastuse);
1567 }
1568 
1569 static int tcf_ct_offload_act_setup(struct tc_action *act, void *entry_data,
1570 				    u32 *index_inc, bool bind,
1571 				    struct netlink_ext_ack *extack)
1572 {
1573 	if (bind) {
1574 		struct flow_action_entry *entry = entry_data;
1575 
1576 		if (tcf_ct_helper(act))
1577 			return -EOPNOTSUPP;
1578 
1579 		entry->id = FLOW_ACTION_CT;
1580 		entry->ct.action = tcf_ct_action(act);
1581 		entry->ct.zone = tcf_ct_zone(act);
1582 		entry->ct.flow_table = tcf_ct_ft(act);
1583 		*index_inc = 1;
1584 	} else {
1585 		struct flow_offload_action *fl_action = entry_data;
1586 
1587 		fl_action->id = FLOW_ACTION_CT;
1588 	}
1589 
1590 	return 0;
1591 }
1592 
1593 static struct tc_action_ops act_ct_ops = {
1594 	.kind		=	"ct",
1595 	.id		=	TCA_ID_CT,
1596 	.owner		=	THIS_MODULE,
1597 	.act		=	tcf_ct_act,
1598 	.dump		=	tcf_ct_dump,
1599 	.init		=	tcf_ct_init,
1600 	.cleanup	=	tcf_ct_cleanup,
1601 	.stats_update	=	tcf_stats_update,
1602 	.offload_act_setup =	tcf_ct_offload_act_setup,
1603 	.size		=	sizeof(struct tcf_ct),
1604 };
1605 
1606 static __net_init int ct_init_net(struct net *net)
1607 {
1608 	unsigned int n_bits = sizeof_field(struct tcf_ct_params, labels) * 8;
1609 	struct tc_ct_action_net *tn = net_generic(net, act_ct_ops.net_id);
1610 
1611 	if (nf_connlabels_get(net, n_bits - 1)) {
1612 		tn->labels = false;
1613 		pr_err("act_ct: Failed to set connlabels length");
1614 	} else {
1615 		tn->labels = true;
1616 	}
1617 
1618 	return tc_action_net_init(net, &tn->tn, &act_ct_ops);
1619 }
1620 
1621 static void __net_exit ct_exit_net(struct list_head *net_list)
1622 {
1623 	struct net *net;
1624 
1625 	rtnl_lock();
1626 	list_for_each_entry(net, net_list, exit_list) {
1627 		struct tc_ct_action_net *tn = net_generic(net, act_ct_ops.net_id);
1628 
1629 		if (tn->labels)
1630 			nf_connlabels_put(net);
1631 	}
1632 	rtnl_unlock();
1633 
1634 	tc_action_net_exit(net_list, act_ct_ops.net_id);
1635 }
1636 
1637 static struct pernet_operations ct_net_ops = {
1638 	.init = ct_init_net,
1639 	.exit_batch = ct_exit_net,
1640 	.id   = &act_ct_ops.net_id,
1641 	.size = sizeof(struct tc_ct_action_net),
1642 };
1643 
1644 static int __init ct_init_module(void)
1645 {
1646 	int err;
1647 
1648 	act_ct_wq = alloc_ordered_workqueue("act_ct_workqueue", 0);
1649 	if (!act_ct_wq)
1650 		return -ENOMEM;
1651 
1652 	err = tcf_ct_flow_tables_init();
1653 	if (err)
1654 		goto err_tbl_init;
1655 
1656 	err = tcf_register_action(&act_ct_ops, &ct_net_ops);
1657 	if (err)
1658 		goto err_register;
1659 
1660 	static_branch_inc(&tcf_frag_xmit_count);
1661 
1662 	return 0;
1663 
1664 err_register:
1665 	tcf_ct_flow_tables_uninit();
1666 err_tbl_init:
1667 	destroy_workqueue(act_ct_wq);
1668 	return err;
1669 }
1670 
1671 static void __exit ct_cleanup_module(void)
1672 {
1673 	static_branch_dec(&tcf_frag_xmit_count);
1674 	tcf_unregister_action(&act_ct_ops, &ct_net_ops);
1675 	tcf_ct_flow_tables_uninit();
1676 	destroy_workqueue(act_ct_wq);
1677 }
1678 
1679 module_init(ct_init_module);
1680 module_exit(ct_cleanup_module);
1681 MODULE_AUTHOR("Paul Blakey <paulb@mellanox.com>");
1682 MODULE_AUTHOR("Yossi Kuperman <yossiku@mellanox.com>");
1683 MODULE_AUTHOR("Marcelo Ricardo Leitner <marcelo.leitner@gmail.com>");
1684 MODULE_DESCRIPTION("Connection tracking action");
1685 MODULE_LICENSE("GPL v2");
1686