1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB 2 /* - 3 * net/sched/act_ct.c Connection Tracking action 4 * 5 * Authors: Paul Blakey <paulb@mellanox.com> 6 * Yossi Kuperman <yossiku@mellanox.com> 7 * Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> 8 */ 9 10 #include <linux/module.h> 11 #include <linux/init.h> 12 #include <linux/kernel.h> 13 #include <linux/skbuff.h> 14 #include <linux/rtnetlink.h> 15 #include <linux/pkt_cls.h> 16 #include <linux/ip.h> 17 #include <linux/ipv6.h> 18 #include <linux/rhashtable.h> 19 #include <net/netlink.h> 20 #include <net/pkt_sched.h> 21 #include <net/pkt_cls.h> 22 #include <net/act_api.h> 23 #include <net/ip.h> 24 #include <net/ipv6_frag.h> 25 #include <uapi/linux/tc_act/tc_ct.h> 26 #include <net/tc_act/tc_ct.h> 27 28 #include <net/netfilter/nf_flow_table.h> 29 #include <net/netfilter/nf_conntrack.h> 30 #include <net/netfilter/nf_conntrack_core.h> 31 #include <net/netfilter/nf_conntrack_zones.h> 32 #include <net/netfilter/nf_conntrack_helper.h> 33 #include <net/netfilter/nf_conntrack_acct.h> 34 #include <net/netfilter/ipv6/nf_defrag_ipv6.h> 35 #include <uapi/linux/netfilter/nf_nat.h> 36 37 static struct workqueue_struct *act_ct_wq; 38 static struct rhashtable zones_ht; 39 static DEFINE_MUTEX(zones_mutex); 40 41 struct tcf_ct_flow_table { 42 struct rhash_head node; /* In zones tables */ 43 44 struct rcu_work rwork; 45 struct nf_flowtable nf_ft; 46 refcount_t ref; 47 u16 zone; 48 49 bool dying; 50 }; 51 52 static const struct rhashtable_params zones_params = { 53 .head_offset = offsetof(struct tcf_ct_flow_table, node), 54 .key_offset = offsetof(struct tcf_ct_flow_table, zone), 55 .key_len = sizeof_field(struct tcf_ct_flow_table, zone), 56 .automatic_shrinking = true, 57 }; 58 59 static struct flow_action_entry * 60 tcf_ct_flow_table_flow_action_get_next(struct flow_action *flow_action) 61 { 62 int i = flow_action->num_entries++; 63 64 return &flow_action->entries[i]; 65 } 66 67 static void tcf_ct_add_mangle_action(struct flow_action *action, 68 enum flow_action_mangle_base htype, 69 u32 offset, 70 u32 mask, 71 u32 val) 72 { 73 struct flow_action_entry *entry; 74 75 entry = tcf_ct_flow_table_flow_action_get_next(action); 76 entry->id = FLOW_ACTION_MANGLE; 77 entry->mangle.htype = htype; 78 entry->mangle.mask = ~mask; 79 entry->mangle.offset = offset; 80 entry->mangle.val = val; 81 } 82 83 /* The following nat helper functions check if the inverted reverse tuple 84 * (target) is different then the current dir tuple - meaning nat for ports 85 * and/or ip is needed, and add the relevant mangle actions. 86 */ 87 static void 88 tcf_ct_flow_table_add_action_nat_ipv4(const struct nf_conntrack_tuple *tuple, 89 struct nf_conntrack_tuple target, 90 struct flow_action *action) 91 { 92 if (memcmp(&target.src.u3, &tuple->src.u3, sizeof(target.src.u3))) 93 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP4, 94 offsetof(struct iphdr, saddr), 95 0xFFFFFFFF, 96 be32_to_cpu(target.src.u3.ip)); 97 if (memcmp(&target.dst.u3, &tuple->dst.u3, sizeof(target.dst.u3))) 98 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP4, 99 offsetof(struct iphdr, daddr), 100 0xFFFFFFFF, 101 be32_to_cpu(target.dst.u3.ip)); 102 } 103 104 static void 105 tcf_ct_add_ipv6_addr_mangle_action(struct flow_action *action, 106 union nf_inet_addr *addr, 107 u32 offset) 108 { 109 int i; 110 111 for (i = 0; i < sizeof(struct in6_addr) / sizeof(u32); i++) 112 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP6, 113 i * sizeof(u32) + offset, 114 0xFFFFFFFF, be32_to_cpu(addr->ip6[i])); 115 } 116 117 static void 118 tcf_ct_flow_table_add_action_nat_ipv6(const struct nf_conntrack_tuple *tuple, 119 struct nf_conntrack_tuple target, 120 struct flow_action *action) 121 { 122 if (memcmp(&target.src.u3, &tuple->src.u3, sizeof(target.src.u3))) 123 tcf_ct_add_ipv6_addr_mangle_action(action, &target.src.u3, 124 offsetof(struct ipv6hdr, 125 saddr)); 126 if (memcmp(&target.dst.u3, &tuple->dst.u3, sizeof(target.dst.u3))) 127 tcf_ct_add_ipv6_addr_mangle_action(action, &target.dst.u3, 128 offsetof(struct ipv6hdr, 129 daddr)); 130 } 131 132 static void 133 tcf_ct_flow_table_add_action_nat_tcp(const struct nf_conntrack_tuple *tuple, 134 struct nf_conntrack_tuple target, 135 struct flow_action *action) 136 { 137 __be16 target_src = target.src.u.tcp.port; 138 __be16 target_dst = target.dst.u.tcp.port; 139 140 if (target_src != tuple->src.u.tcp.port) 141 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_TCP, 142 offsetof(struct tcphdr, source), 143 0xFFFF, be16_to_cpu(target_src)); 144 if (target_dst != tuple->dst.u.tcp.port) 145 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_TCP, 146 offsetof(struct tcphdr, dest), 147 0xFFFF, be16_to_cpu(target_dst)); 148 } 149 150 static void 151 tcf_ct_flow_table_add_action_nat_udp(const struct nf_conntrack_tuple *tuple, 152 struct nf_conntrack_tuple target, 153 struct flow_action *action) 154 { 155 __be16 target_src = target.src.u.udp.port; 156 __be16 target_dst = target.dst.u.udp.port; 157 158 if (target_src != tuple->src.u.udp.port) 159 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_UDP, 160 offsetof(struct udphdr, source), 161 0xFFFF, be16_to_cpu(target_src)); 162 if (target_dst != tuple->dst.u.udp.port) 163 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_UDP, 164 offsetof(struct udphdr, dest), 165 0xFFFF, be16_to_cpu(target_dst)); 166 } 167 168 static void tcf_ct_flow_table_add_action_meta(struct nf_conn *ct, 169 enum ip_conntrack_dir dir, 170 struct flow_action *action) 171 { 172 struct nf_conn_labels *ct_labels; 173 struct flow_action_entry *entry; 174 enum ip_conntrack_info ctinfo; 175 u32 *act_ct_labels; 176 177 entry = tcf_ct_flow_table_flow_action_get_next(action); 178 entry->id = FLOW_ACTION_CT_METADATA; 179 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 180 entry->ct_metadata.mark = ct->mark; 181 #endif 182 ctinfo = dir == IP_CT_DIR_ORIGINAL ? IP_CT_ESTABLISHED : 183 IP_CT_ESTABLISHED_REPLY; 184 /* aligns with the CT reference on the SKB nf_ct_set */ 185 entry->ct_metadata.cookie = (unsigned long)ct | ctinfo; 186 187 act_ct_labels = entry->ct_metadata.labels; 188 ct_labels = nf_ct_labels_find(ct); 189 if (ct_labels) 190 memcpy(act_ct_labels, ct_labels->bits, NF_CT_LABELS_MAX_SIZE); 191 else 192 memset(act_ct_labels, 0, NF_CT_LABELS_MAX_SIZE); 193 } 194 195 static int tcf_ct_flow_table_add_action_nat(struct net *net, 196 struct nf_conn *ct, 197 enum ip_conntrack_dir dir, 198 struct flow_action *action) 199 { 200 const struct nf_conntrack_tuple *tuple = &ct->tuplehash[dir].tuple; 201 struct nf_conntrack_tuple target; 202 203 if (!(ct->status & IPS_NAT_MASK)) 204 return 0; 205 206 nf_ct_invert_tuple(&target, &ct->tuplehash[!dir].tuple); 207 208 switch (tuple->src.l3num) { 209 case NFPROTO_IPV4: 210 tcf_ct_flow_table_add_action_nat_ipv4(tuple, target, 211 action); 212 break; 213 case NFPROTO_IPV6: 214 tcf_ct_flow_table_add_action_nat_ipv6(tuple, target, 215 action); 216 break; 217 default: 218 return -EOPNOTSUPP; 219 } 220 221 switch (nf_ct_protonum(ct)) { 222 case IPPROTO_TCP: 223 tcf_ct_flow_table_add_action_nat_tcp(tuple, target, action); 224 break; 225 case IPPROTO_UDP: 226 tcf_ct_flow_table_add_action_nat_udp(tuple, target, action); 227 break; 228 default: 229 return -EOPNOTSUPP; 230 } 231 232 return 0; 233 } 234 235 static int tcf_ct_flow_table_fill_actions(struct net *net, 236 const struct flow_offload *flow, 237 enum flow_offload_tuple_dir tdir, 238 struct nf_flow_rule *flow_rule) 239 { 240 struct flow_action *action = &flow_rule->rule->action; 241 int num_entries = action->num_entries; 242 struct nf_conn *ct = flow->ct; 243 enum ip_conntrack_dir dir; 244 int i, err; 245 246 switch (tdir) { 247 case FLOW_OFFLOAD_DIR_ORIGINAL: 248 dir = IP_CT_DIR_ORIGINAL; 249 break; 250 case FLOW_OFFLOAD_DIR_REPLY: 251 dir = IP_CT_DIR_REPLY; 252 break; 253 default: 254 return -EOPNOTSUPP; 255 } 256 257 err = tcf_ct_flow_table_add_action_nat(net, ct, dir, action); 258 if (err) 259 goto err_nat; 260 261 tcf_ct_flow_table_add_action_meta(ct, dir, action); 262 return 0; 263 264 err_nat: 265 /* Clear filled actions */ 266 for (i = num_entries; i < action->num_entries; i++) 267 memset(&action->entries[i], 0, sizeof(action->entries[i])); 268 action->num_entries = num_entries; 269 270 return err; 271 } 272 273 static struct nf_flowtable_type flowtable_ct = { 274 .action = tcf_ct_flow_table_fill_actions, 275 .owner = THIS_MODULE, 276 }; 277 278 static int tcf_ct_flow_table_get(struct tcf_ct_params *params) 279 { 280 struct tcf_ct_flow_table *ct_ft; 281 int err = -ENOMEM; 282 283 mutex_lock(&zones_mutex); 284 ct_ft = rhashtable_lookup_fast(&zones_ht, ¶ms->zone, zones_params); 285 if (ct_ft && refcount_inc_not_zero(&ct_ft->ref)) 286 goto out_unlock; 287 288 ct_ft = kzalloc(sizeof(*ct_ft), GFP_KERNEL); 289 if (!ct_ft) 290 goto err_alloc; 291 refcount_set(&ct_ft->ref, 1); 292 293 ct_ft->zone = params->zone; 294 err = rhashtable_insert_fast(&zones_ht, &ct_ft->node, zones_params); 295 if (err) 296 goto err_insert; 297 298 ct_ft->nf_ft.type = &flowtable_ct; 299 ct_ft->nf_ft.flags |= NF_FLOWTABLE_HW_OFFLOAD; 300 err = nf_flow_table_init(&ct_ft->nf_ft); 301 if (err) 302 goto err_init; 303 304 __module_get(THIS_MODULE); 305 out_unlock: 306 params->ct_ft = ct_ft; 307 params->nf_ft = &ct_ft->nf_ft; 308 mutex_unlock(&zones_mutex); 309 310 return 0; 311 312 err_init: 313 rhashtable_remove_fast(&zones_ht, &ct_ft->node, zones_params); 314 err_insert: 315 kfree(ct_ft); 316 err_alloc: 317 mutex_unlock(&zones_mutex); 318 return err; 319 } 320 321 static void tcf_ct_flow_table_cleanup_work(struct work_struct *work) 322 { 323 struct tcf_ct_flow_table *ct_ft; 324 325 ct_ft = container_of(to_rcu_work(work), struct tcf_ct_flow_table, 326 rwork); 327 nf_flow_table_free(&ct_ft->nf_ft); 328 kfree(ct_ft); 329 330 module_put(THIS_MODULE); 331 } 332 333 static void tcf_ct_flow_table_put(struct tcf_ct_params *params) 334 { 335 struct tcf_ct_flow_table *ct_ft = params->ct_ft; 336 337 if (refcount_dec_and_test(¶ms->ct_ft->ref)) { 338 rhashtable_remove_fast(&zones_ht, &ct_ft->node, zones_params); 339 INIT_RCU_WORK(&ct_ft->rwork, tcf_ct_flow_table_cleanup_work); 340 queue_rcu_work(act_ct_wq, &ct_ft->rwork); 341 } 342 } 343 344 static void tcf_ct_flow_table_add(struct tcf_ct_flow_table *ct_ft, 345 struct nf_conn *ct, 346 bool tcp) 347 { 348 struct flow_offload *entry; 349 int err; 350 351 if (test_and_set_bit(IPS_OFFLOAD_BIT, &ct->status)) 352 return; 353 354 entry = flow_offload_alloc(ct); 355 if (!entry) { 356 WARN_ON_ONCE(1); 357 goto err_alloc; 358 } 359 360 if (tcp) { 361 ct->proto.tcp.seen[0].flags |= IP_CT_TCP_FLAG_BE_LIBERAL; 362 ct->proto.tcp.seen[1].flags |= IP_CT_TCP_FLAG_BE_LIBERAL; 363 } 364 365 err = flow_offload_add(&ct_ft->nf_ft, entry); 366 if (err) 367 goto err_add; 368 369 return; 370 371 err_add: 372 flow_offload_free(entry); 373 err_alloc: 374 clear_bit(IPS_OFFLOAD_BIT, &ct->status); 375 } 376 377 static void tcf_ct_flow_table_process_conn(struct tcf_ct_flow_table *ct_ft, 378 struct nf_conn *ct, 379 enum ip_conntrack_info ctinfo) 380 { 381 bool tcp = false; 382 383 if (ctinfo != IP_CT_ESTABLISHED && ctinfo != IP_CT_ESTABLISHED_REPLY) 384 return; 385 386 switch (nf_ct_protonum(ct)) { 387 case IPPROTO_TCP: 388 tcp = true; 389 if (ct->proto.tcp.state != TCP_CONNTRACK_ESTABLISHED) 390 return; 391 break; 392 case IPPROTO_UDP: 393 break; 394 default: 395 return; 396 } 397 398 if (nf_ct_ext_exist(ct, NF_CT_EXT_HELPER) || 399 ct->status & IPS_SEQ_ADJUST) 400 return; 401 402 tcf_ct_flow_table_add(ct_ft, ct, tcp); 403 } 404 405 static bool 406 tcf_ct_flow_table_fill_tuple_ipv4(struct sk_buff *skb, 407 struct flow_offload_tuple *tuple, 408 struct tcphdr **tcph) 409 { 410 struct flow_ports *ports; 411 unsigned int thoff; 412 struct iphdr *iph; 413 414 if (!pskb_network_may_pull(skb, sizeof(*iph))) 415 return false; 416 417 iph = ip_hdr(skb); 418 thoff = iph->ihl * 4; 419 420 if (ip_is_fragment(iph) || 421 unlikely(thoff != sizeof(struct iphdr))) 422 return false; 423 424 if (iph->protocol != IPPROTO_TCP && 425 iph->protocol != IPPROTO_UDP) 426 return false; 427 428 if (iph->ttl <= 1) 429 return false; 430 431 if (!pskb_network_may_pull(skb, iph->protocol == IPPROTO_TCP ? 432 thoff + sizeof(struct tcphdr) : 433 thoff + sizeof(*ports))) 434 return false; 435 436 iph = ip_hdr(skb); 437 if (iph->protocol == IPPROTO_TCP) 438 *tcph = (void *)(skb_network_header(skb) + thoff); 439 440 ports = (struct flow_ports *)(skb_network_header(skb) + thoff); 441 tuple->src_v4.s_addr = iph->saddr; 442 tuple->dst_v4.s_addr = iph->daddr; 443 tuple->src_port = ports->source; 444 tuple->dst_port = ports->dest; 445 tuple->l3proto = AF_INET; 446 tuple->l4proto = iph->protocol; 447 448 return true; 449 } 450 451 static bool 452 tcf_ct_flow_table_fill_tuple_ipv6(struct sk_buff *skb, 453 struct flow_offload_tuple *tuple, 454 struct tcphdr **tcph) 455 { 456 struct flow_ports *ports; 457 struct ipv6hdr *ip6h; 458 unsigned int thoff; 459 460 if (!pskb_network_may_pull(skb, sizeof(*ip6h))) 461 return false; 462 463 ip6h = ipv6_hdr(skb); 464 465 if (ip6h->nexthdr != IPPROTO_TCP && 466 ip6h->nexthdr != IPPROTO_UDP) 467 return false; 468 469 if (ip6h->hop_limit <= 1) 470 return false; 471 472 thoff = sizeof(*ip6h); 473 if (!pskb_network_may_pull(skb, ip6h->nexthdr == IPPROTO_TCP ? 474 thoff + sizeof(struct tcphdr) : 475 thoff + sizeof(*ports))) 476 return false; 477 478 ip6h = ipv6_hdr(skb); 479 if (ip6h->nexthdr == IPPROTO_TCP) 480 *tcph = (void *)(skb_network_header(skb) + thoff); 481 482 ports = (struct flow_ports *)(skb_network_header(skb) + thoff); 483 tuple->src_v6 = ip6h->saddr; 484 tuple->dst_v6 = ip6h->daddr; 485 tuple->src_port = ports->source; 486 tuple->dst_port = ports->dest; 487 tuple->l3proto = AF_INET6; 488 tuple->l4proto = ip6h->nexthdr; 489 490 return true; 491 } 492 493 static bool tcf_ct_flow_table_lookup(struct tcf_ct_params *p, 494 struct sk_buff *skb, 495 u8 family) 496 { 497 struct nf_flowtable *nf_ft = &p->ct_ft->nf_ft; 498 struct flow_offload_tuple_rhash *tuplehash; 499 struct flow_offload_tuple tuple = {}; 500 enum ip_conntrack_info ctinfo; 501 struct tcphdr *tcph = NULL; 502 struct flow_offload *flow; 503 struct nf_conn *ct; 504 u8 dir; 505 506 /* Previously seen or loopback */ 507 ct = nf_ct_get(skb, &ctinfo); 508 if ((ct && !nf_ct_is_template(ct)) || ctinfo == IP_CT_UNTRACKED) 509 return false; 510 511 switch (family) { 512 case NFPROTO_IPV4: 513 if (!tcf_ct_flow_table_fill_tuple_ipv4(skb, &tuple, &tcph)) 514 return false; 515 break; 516 case NFPROTO_IPV6: 517 if (!tcf_ct_flow_table_fill_tuple_ipv6(skb, &tuple, &tcph)) 518 return false; 519 break; 520 default: 521 return false; 522 } 523 524 tuplehash = flow_offload_lookup(nf_ft, &tuple); 525 if (!tuplehash) 526 return false; 527 528 dir = tuplehash->tuple.dir; 529 flow = container_of(tuplehash, struct flow_offload, tuplehash[dir]); 530 ct = flow->ct; 531 532 if (tcph && (unlikely(tcph->fin || tcph->rst))) { 533 flow_offload_teardown(flow); 534 return false; 535 } 536 537 ctinfo = dir == FLOW_OFFLOAD_DIR_ORIGINAL ? IP_CT_ESTABLISHED : 538 IP_CT_ESTABLISHED_REPLY; 539 540 flow_offload_refresh(nf_ft, flow); 541 nf_conntrack_get(&ct->ct_general); 542 nf_ct_set(skb, ct, ctinfo); 543 nf_ct_acct_update(ct, dir, skb->len); 544 545 return true; 546 } 547 548 static int tcf_ct_flow_tables_init(void) 549 { 550 return rhashtable_init(&zones_ht, &zones_params); 551 } 552 553 static void tcf_ct_flow_tables_uninit(void) 554 { 555 rhashtable_destroy(&zones_ht); 556 } 557 558 static struct tc_action_ops act_ct_ops; 559 static unsigned int ct_net_id; 560 561 struct tc_ct_action_net { 562 struct tc_action_net tn; /* Must be first */ 563 bool labels; 564 }; 565 566 /* Determine whether skb->_nfct is equal to the result of conntrack lookup. */ 567 static bool tcf_ct_skb_nfct_cached(struct net *net, struct sk_buff *skb, 568 u16 zone_id, bool force) 569 { 570 enum ip_conntrack_info ctinfo; 571 struct nf_conn *ct; 572 573 ct = nf_ct_get(skb, &ctinfo); 574 if (!ct) 575 return false; 576 if (!net_eq(net, read_pnet(&ct->ct_net))) 577 return false; 578 if (nf_ct_zone(ct)->id != zone_id) 579 return false; 580 581 /* Force conntrack entry direction. */ 582 if (force && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) { 583 if (nf_ct_is_confirmed(ct)) 584 nf_ct_kill(ct); 585 586 nf_conntrack_put(&ct->ct_general); 587 nf_ct_set(skb, NULL, IP_CT_UNTRACKED); 588 589 return false; 590 } 591 592 return true; 593 } 594 595 /* Trim the skb to the length specified by the IP/IPv6 header, 596 * removing any trailing lower-layer padding. This prepares the skb 597 * for higher-layer processing that assumes skb->len excludes padding 598 * (such as nf_ip_checksum). The caller needs to pull the skb to the 599 * network header, and ensure ip_hdr/ipv6_hdr points to valid data. 600 */ 601 static int tcf_ct_skb_network_trim(struct sk_buff *skb, int family) 602 { 603 unsigned int len; 604 int err; 605 606 switch (family) { 607 case NFPROTO_IPV4: 608 len = ntohs(ip_hdr(skb)->tot_len); 609 break; 610 case NFPROTO_IPV6: 611 len = sizeof(struct ipv6hdr) 612 + ntohs(ipv6_hdr(skb)->payload_len); 613 break; 614 default: 615 len = skb->len; 616 } 617 618 err = pskb_trim_rcsum(skb, len); 619 620 return err; 621 } 622 623 static u8 tcf_ct_skb_nf_family(struct sk_buff *skb) 624 { 625 u8 family = NFPROTO_UNSPEC; 626 627 switch (skb_protocol(skb, true)) { 628 case htons(ETH_P_IP): 629 family = NFPROTO_IPV4; 630 break; 631 case htons(ETH_P_IPV6): 632 family = NFPROTO_IPV6; 633 break; 634 default: 635 break; 636 } 637 638 return family; 639 } 640 641 static int tcf_ct_ipv4_is_fragment(struct sk_buff *skb, bool *frag) 642 { 643 unsigned int len; 644 645 len = skb_network_offset(skb) + sizeof(struct iphdr); 646 if (unlikely(skb->len < len)) 647 return -EINVAL; 648 if (unlikely(!pskb_may_pull(skb, len))) 649 return -ENOMEM; 650 651 *frag = ip_is_fragment(ip_hdr(skb)); 652 return 0; 653 } 654 655 static int tcf_ct_ipv6_is_fragment(struct sk_buff *skb, bool *frag) 656 { 657 unsigned int flags = 0, len, payload_ofs = 0; 658 unsigned short frag_off; 659 int nexthdr; 660 661 len = skb_network_offset(skb) + sizeof(struct ipv6hdr); 662 if (unlikely(skb->len < len)) 663 return -EINVAL; 664 if (unlikely(!pskb_may_pull(skb, len))) 665 return -ENOMEM; 666 667 nexthdr = ipv6_find_hdr(skb, &payload_ofs, -1, &frag_off, &flags); 668 if (unlikely(nexthdr < 0)) 669 return -EPROTO; 670 671 *frag = flags & IP6_FH_F_FRAG; 672 return 0; 673 } 674 675 static int tcf_ct_handle_fragments(struct net *net, struct sk_buff *skb, 676 u8 family, u16 zone, bool *defrag) 677 { 678 enum ip_conntrack_info ctinfo; 679 struct qdisc_skb_cb cb; 680 struct nf_conn *ct; 681 int err = 0; 682 bool frag; 683 684 /* Previously seen (loopback)? Ignore. */ 685 ct = nf_ct_get(skb, &ctinfo); 686 if ((ct && !nf_ct_is_template(ct)) || ctinfo == IP_CT_UNTRACKED) 687 return 0; 688 689 if (family == NFPROTO_IPV4) 690 err = tcf_ct_ipv4_is_fragment(skb, &frag); 691 else 692 err = tcf_ct_ipv6_is_fragment(skb, &frag); 693 if (err || !frag) 694 return err; 695 696 skb_get(skb); 697 cb = *qdisc_skb_cb(skb); 698 699 if (family == NFPROTO_IPV4) { 700 enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone; 701 702 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm)); 703 local_bh_disable(); 704 err = ip_defrag(net, skb, user); 705 local_bh_enable(); 706 if (err && err != -EINPROGRESS) 707 return err; 708 709 if (!err) { 710 *defrag = true; 711 cb.mru = IPCB(skb)->frag_max_size; 712 } 713 } else { /* NFPROTO_IPV6 */ 714 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6) 715 enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone; 716 717 memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm)); 718 err = nf_ct_frag6_gather(net, skb, user); 719 if (err && err != -EINPROGRESS) 720 goto out_free; 721 722 if (!err) { 723 *defrag = true; 724 cb.mru = IP6CB(skb)->frag_max_size; 725 } 726 #else 727 err = -EOPNOTSUPP; 728 goto out_free; 729 #endif 730 } 731 732 *qdisc_skb_cb(skb) = cb; 733 skb_clear_hash(skb); 734 skb->ignore_df = 1; 735 return err; 736 737 out_free: 738 kfree_skb(skb); 739 return err; 740 } 741 742 static void tcf_ct_params_free(struct rcu_head *head) 743 { 744 struct tcf_ct_params *params = container_of(head, 745 struct tcf_ct_params, rcu); 746 747 tcf_ct_flow_table_put(params); 748 749 if (params->tmpl) 750 nf_conntrack_put(¶ms->tmpl->ct_general); 751 kfree(params); 752 } 753 754 #if IS_ENABLED(CONFIG_NF_NAT) 755 /* Modelled after nf_nat_ipv[46]_fn(). 756 * range is only used for new, uninitialized NAT state. 757 * Returns either NF_ACCEPT or NF_DROP. 758 */ 759 static int ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct, 760 enum ip_conntrack_info ctinfo, 761 const struct nf_nat_range2 *range, 762 enum nf_nat_manip_type maniptype) 763 { 764 __be16 proto = skb_protocol(skb, true); 765 int hooknum, err = NF_ACCEPT; 766 767 /* See HOOK2MANIP(). */ 768 if (maniptype == NF_NAT_MANIP_SRC) 769 hooknum = NF_INET_LOCAL_IN; /* Source NAT */ 770 else 771 hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */ 772 773 switch (ctinfo) { 774 case IP_CT_RELATED: 775 case IP_CT_RELATED_REPLY: 776 if (proto == htons(ETH_P_IP) && 777 ip_hdr(skb)->protocol == IPPROTO_ICMP) { 778 if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo, 779 hooknum)) 780 err = NF_DROP; 781 goto out; 782 } else if (IS_ENABLED(CONFIG_IPV6) && proto == htons(ETH_P_IPV6)) { 783 __be16 frag_off; 784 u8 nexthdr = ipv6_hdr(skb)->nexthdr; 785 int hdrlen = ipv6_skip_exthdr(skb, 786 sizeof(struct ipv6hdr), 787 &nexthdr, &frag_off); 788 789 if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) { 790 if (!nf_nat_icmpv6_reply_translation(skb, ct, 791 ctinfo, 792 hooknum, 793 hdrlen)) 794 err = NF_DROP; 795 goto out; 796 } 797 } 798 /* Non-ICMP, fall thru to initialize if needed. */ 799 fallthrough; 800 case IP_CT_NEW: 801 /* Seen it before? This can happen for loopback, retrans, 802 * or local packets. 803 */ 804 if (!nf_nat_initialized(ct, maniptype)) { 805 /* Initialize according to the NAT action. */ 806 err = (range && range->flags & NF_NAT_RANGE_MAP_IPS) 807 /* Action is set up to establish a new 808 * mapping. 809 */ 810 ? nf_nat_setup_info(ct, range, maniptype) 811 : nf_nat_alloc_null_binding(ct, hooknum); 812 if (err != NF_ACCEPT) 813 goto out; 814 } 815 break; 816 817 case IP_CT_ESTABLISHED: 818 case IP_CT_ESTABLISHED_REPLY: 819 break; 820 821 default: 822 err = NF_DROP; 823 goto out; 824 } 825 826 err = nf_nat_packet(ct, ctinfo, hooknum, skb); 827 out: 828 return err; 829 } 830 #endif /* CONFIG_NF_NAT */ 831 832 static void tcf_ct_act_set_mark(struct nf_conn *ct, u32 mark, u32 mask) 833 { 834 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 835 u32 new_mark; 836 837 if (!mask) 838 return; 839 840 new_mark = mark | (ct->mark & ~(mask)); 841 if (ct->mark != new_mark) { 842 ct->mark = new_mark; 843 if (nf_ct_is_confirmed(ct)) 844 nf_conntrack_event_cache(IPCT_MARK, ct); 845 } 846 #endif 847 } 848 849 static void tcf_ct_act_set_labels(struct nf_conn *ct, 850 u32 *labels, 851 u32 *labels_m) 852 { 853 #if IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) 854 size_t labels_sz = sizeof_field(struct tcf_ct_params, labels); 855 856 if (!memchr_inv(labels_m, 0, labels_sz)) 857 return; 858 859 nf_connlabels_replace(ct, labels, labels_m, 4); 860 #endif 861 } 862 863 static int tcf_ct_act_nat(struct sk_buff *skb, 864 struct nf_conn *ct, 865 enum ip_conntrack_info ctinfo, 866 int ct_action, 867 struct nf_nat_range2 *range, 868 bool commit) 869 { 870 #if IS_ENABLED(CONFIG_NF_NAT) 871 int err; 872 enum nf_nat_manip_type maniptype; 873 874 if (!(ct_action & TCA_CT_ACT_NAT)) 875 return NF_ACCEPT; 876 877 /* Add NAT extension if not confirmed yet. */ 878 if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct)) 879 return NF_DROP; /* Can't NAT. */ 880 881 if (ctinfo != IP_CT_NEW && (ct->status & IPS_NAT_MASK) && 882 (ctinfo != IP_CT_RELATED || commit)) { 883 /* NAT an established or related connection like before. */ 884 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY) 885 /* This is the REPLY direction for a connection 886 * for which NAT was applied in the forward 887 * direction. Do the reverse NAT. 888 */ 889 maniptype = ct->status & IPS_SRC_NAT 890 ? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC; 891 else 892 maniptype = ct->status & IPS_SRC_NAT 893 ? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST; 894 } else if (ct_action & TCA_CT_ACT_NAT_SRC) { 895 maniptype = NF_NAT_MANIP_SRC; 896 } else if (ct_action & TCA_CT_ACT_NAT_DST) { 897 maniptype = NF_NAT_MANIP_DST; 898 } else { 899 return NF_ACCEPT; 900 } 901 902 err = ct_nat_execute(skb, ct, ctinfo, range, maniptype); 903 if (err == NF_ACCEPT && 904 ct->status & IPS_SRC_NAT && ct->status & IPS_DST_NAT) { 905 if (maniptype == NF_NAT_MANIP_SRC) 906 maniptype = NF_NAT_MANIP_DST; 907 else 908 maniptype = NF_NAT_MANIP_SRC; 909 910 err = ct_nat_execute(skb, ct, ctinfo, range, maniptype); 911 } 912 return err; 913 #else 914 return NF_ACCEPT; 915 #endif 916 } 917 918 static int tcf_ct_act(struct sk_buff *skb, const struct tc_action *a, 919 struct tcf_result *res) 920 { 921 struct net *net = dev_net(skb->dev); 922 bool cached, commit, clear, force; 923 enum ip_conntrack_info ctinfo; 924 struct tcf_ct *c = to_ct(a); 925 struct nf_conn *tmpl = NULL; 926 struct nf_hook_state state; 927 int nh_ofs, err, retval; 928 struct tcf_ct_params *p; 929 bool skip_add = false; 930 bool defrag = false; 931 struct nf_conn *ct; 932 u8 family; 933 934 p = rcu_dereference_bh(c->params); 935 936 retval = READ_ONCE(c->tcf_action); 937 commit = p->ct_action & TCA_CT_ACT_COMMIT; 938 clear = p->ct_action & TCA_CT_ACT_CLEAR; 939 force = p->ct_action & TCA_CT_ACT_FORCE; 940 tmpl = p->tmpl; 941 942 tcf_lastuse_update(&c->tcf_tm); 943 944 if (clear) { 945 ct = nf_ct_get(skb, &ctinfo); 946 if (ct) { 947 nf_conntrack_put(&ct->ct_general); 948 nf_ct_set(skb, NULL, IP_CT_UNTRACKED); 949 } 950 951 goto out; 952 } 953 954 family = tcf_ct_skb_nf_family(skb); 955 if (family == NFPROTO_UNSPEC) 956 goto drop; 957 958 /* The conntrack module expects to be working at L3. 959 * We also try to pull the IPv4/6 header to linear area 960 */ 961 nh_ofs = skb_network_offset(skb); 962 skb_pull_rcsum(skb, nh_ofs); 963 err = tcf_ct_handle_fragments(net, skb, family, p->zone, &defrag); 964 if (err == -EINPROGRESS) { 965 retval = TC_ACT_STOLEN; 966 goto out; 967 } 968 if (err) 969 goto drop; 970 971 err = tcf_ct_skb_network_trim(skb, family); 972 if (err) 973 goto drop; 974 975 /* If we are recirculating packets to match on ct fields and 976 * committing with a separate ct action, then we don't need to 977 * actually run the packet through conntrack twice unless it's for a 978 * different zone. 979 */ 980 cached = tcf_ct_skb_nfct_cached(net, skb, p->zone, force); 981 if (!cached) { 982 if (!commit && tcf_ct_flow_table_lookup(p, skb, family)) { 983 skip_add = true; 984 goto do_nat; 985 } 986 987 /* Associate skb with specified zone. */ 988 if (tmpl) { 989 ct = nf_ct_get(skb, &ctinfo); 990 if (skb_nfct(skb)) 991 nf_conntrack_put(skb_nfct(skb)); 992 nf_conntrack_get(&tmpl->ct_general); 993 nf_ct_set(skb, tmpl, IP_CT_NEW); 994 } 995 996 state.hook = NF_INET_PRE_ROUTING; 997 state.net = net; 998 state.pf = family; 999 err = nf_conntrack_in(skb, &state); 1000 if (err != NF_ACCEPT) 1001 goto out_push; 1002 } 1003 1004 do_nat: 1005 ct = nf_ct_get(skb, &ctinfo); 1006 if (!ct) 1007 goto out_push; 1008 nf_ct_deliver_cached_events(ct); 1009 1010 err = tcf_ct_act_nat(skb, ct, ctinfo, p->ct_action, &p->range, commit); 1011 if (err != NF_ACCEPT) 1012 goto drop; 1013 1014 if (commit) { 1015 tcf_ct_act_set_mark(ct, p->mark, p->mark_mask); 1016 tcf_ct_act_set_labels(ct, p->labels, p->labels_mask); 1017 1018 /* This will take care of sending queued events 1019 * even if the connection is already confirmed. 1020 */ 1021 nf_conntrack_confirm(skb); 1022 } else if (!skip_add) { 1023 tcf_ct_flow_table_process_conn(p->ct_ft, ct, ctinfo); 1024 } 1025 1026 out_push: 1027 skb_push_rcsum(skb, nh_ofs); 1028 1029 out: 1030 tcf_action_update_bstats(&c->common, skb); 1031 if (defrag) 1032 qdisc_skb_cb(skb)->pkt_len = skb->len; 1033 return retval; 1034 1035 drop: 1036 tcf_action_inc_drop_qstats(&c->common); 1037 return TC_ACT_SHOT; 1038 } 1039 1040 static const struct nla_policy ct_policy[TCA_CT_MAX + 1] = { 1041 [TCA_CT_ACTION] = { .type = NLA_U16 }, 1042 [TCA_CT_PARMS] = NLA_POLICY_EXACT_LEN(sizeof(struct tc_ct)), 1043 [TCA_CT_ZONE] = { .type = NLA_U16 }, 1044 [TCA_CT_MARK] = { .type = NLA_U32 }, 1045 [TCA_CT_MARK_MASK] = { .type = NLA_U32 }, 1046 [TCA_CT_LABELS] = { .type = NLA_BINARY, 1047 .len = 128 / BITS_PER_BYTE }, 1048 [TCA_CT_LABELS_MASK] = { .type = NLA_BINARY, 1049 .len = 128 / BITS_PER_BYTE }, 1050 [TCA_CT_NAT_IPV4_MIN] = { .type = NLA_U32 }, 1051 [TCA_CT_NAT_IPV4_MAX] = { .type = NLA_U32 }, 1052 [TCA_CT_NAT_IPV6_MIN] = NLA_POLICY_EXACT_LEN(sizeof(struct in6_addr)), 1053 [TCA_CT_NAT_IPV6_MAX] = NLA_POLICY_EXACT_LEN(sizeof(struct in6_addr)), 1054 [TCA_CT_NAT_PORT_MIN] = { .type = NLA_U16 }, 1055 [TCA_CT_NAT_PORT_MAX] = { .type = NLA_U16 }, 1056 }; 1057 1058 static int tcf_ct_fill_params_nat(struct tcf_ct_params *p, 1059 struct tc_ct *parm, 1060 struct nlattr **tb, 1061 struct netlink_ext_ack *extack) 1062 { 1063 struct nf_nat_range2 *range; 1064 1065 if (!(p->ct_action & TCA_CT_ACT_NAT)) 1066 return 0; 1067 1068 if (!IS_ENABLED(CONFIG_NF_NAT)) { 1069 NL_SET_ERR_MSG_MOD(extack, "Netfilter nat isn't enabled in kernel"); 1070 return -EOPNOTSUPP; 1071 } 1072 1073 if (!(p->ct_action & (TCA_CT_ACT_NAT_SRC | TCA_CT_ACT_NAT_DST))) 1074 return 0; 1075 1076 if ((p->ct_action & TCA_CT_ACT_NAT_SRC) && 1077 (p->ct_action & TCA_CT_ACT_NAT_DST)) { 1078 NL_SET_ERR_MSG_MOD(extack, "dnat and snat can't be enabled at the same time"); 1079 return -EOPNOTSUPP; 1080 } 1081 1082 range = &p->range; 1083 if (tb[TCA_CT_NAT_IPV4_MIN]) { 1084 struct nlattr *max_attr = tb[TCA_CT_NAT_IPV4_MAX]; 1085 1086 p->ipv4_range = true; 1087 range->flags |= NF_NAT_RANGE_MAP_IPS; 1088 range->min_addr.ip = 1089 nla_get_in_addr(tb[TCA_CT_NAT_IPV4_MIN]); 1090 1091 range->max_addr.ip = max_attr ? 1092 nla_get_in_addr(max_attr) : 1093 range->min_addr.ip; 1094 } else if (tb[TCA_CT_NAT_IPV6_MIN]) { 1095 struct nlattr *max_attr = tb[TCA_CT_NAT_IPV6_MAX]; 1096 1097 p->ipv4_range = false; 1098 range->flags |= NF_NAT_RANGE_MAP_IPS; 1099 range->min_addr.in6 = 1100 nla_get_in6_addr(tb[TCA_CT_NAT_IPV6_MIN]); 1101 1102 range->max_addr.in6 = max_attr ? 1103 nla_get_in6_addr(max_attr) : 1104 range->min_addr.in6; 1105 } 1106 1107 if (tb[TCA_CT_NAT_PORT_MIN]) { 1108 range->flags |= NF_NAT_RANGE_PROTO_SPECIFIED; 1109 range->min_proto.all = nla_get_be16(tb[TCA_CT_NAT_PORT_MIN]); 1110 1111 range->max_proto.all = tb[TCA_CT_NAT_PORT_MAX] ? 1112 nla_get_be16(tb[TCA_CT_NAT_PORT_MAX]) : 1113 range->min_proto.all; 1114 } 1115 1116 return 0; 1117 } 1118 1119 static void tcf_ct_set_key_val(struct nlattr **tb, 1120 void *val, int val_type, 1121 void *mask, int mask_type, 1122 int len) 1123 { 1124 if (!tb[val_type]) 1125 return; 1126 nla_memcpy(val, tb[val_type], len); 1127 1128 if (!mask) 1129 return; 1130 1131 if (mask_type == TCA_CT_UNSPEC || !tb[mask_type]) 1132 memset(mask, 0xff, len); 1133 else 1134 nla_memcpy(mask, tb[mask_type], len); 1135 } 1136 1137 static int tcf_ct_fill_params(struct net *net, 1138 struct tcf_ct_params *p, 1139 struct tc_ct *parm, 1140 struct nlattr **tb, 1141 struct netlink_ext_ack *extack) 1142 { 1143 struct tc_ct_action_net *tn = net_generic(net, ct_net_id); 1144 struct nf_conntrack_zone zone; 1145 struct nf_conn *tmpl; 1146 int err; 1147 1148 p->zone = NF_CT_DEFAULT_ZONE_ID; 1149 1150 tcf_ct_set_key_val(tb, 1151 &p->ct_action, TCA_CT_ACTION, 1152 NULL, TCA_CT_UNSPEC, 1153 sizeof(p->ct_action)); 1154 1155 if (p->ct_action & TCA_CT_ACT_CLEAR) 1156 return 0; 1157 1158 err = tcf_ct_fill_params_nat(p, parm, tb, extack); 1159 if (err) 1160 return err; 1161 1162 if (tb[TCA_CT_MARK]) { 1163 if (!IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)) { 1164 NL_SET_ERR_MSG_MOD(extack, "Conntrack mark isn't enabled."); 1165 return -EOPNOTSUPP; 1166 } 1167 tcf_ct_set_key_val(tb, 1168 &p->mark, TCA_CT_MARK, 1169 &p->mark_mask, TCA_CT_MARK_MASK, 1170 sizeof(p->mark)); 1171 } 1172 1173 if (tb[TCA_CT_LABELS]) { 1174 if (!IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS)) { 1175 NL_SET_ERR_MSG_MOD(extack, "Conntrack labels isn't enabled."); 1176 return -EOPNOTSUPP; 1177 } 1178 1179 if (!tn->labels) { 1180 NL_SET_ERR_MSG_MOD(extack, "Failed to set connlabel length"); 1181 return -EOPNOTSUPP; 1182 } 1183 tcf_ct_set_key_val(tb, 1184 p->labels, TCA_CT_LABELS, 1185 p->labels_mask, TCA_CT_LABELS_MASK, 1186 sizeof(p->labels)); 1187 } 1188 1189 if (tb[TCA_CT_ZONE]) { 1190 if (!IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES)) { 1191 NL_SET_ERR_MSG_MOD(extack, "Conntrack zones isn't enabled."); 1192 return -EOPNOTSUPP; 1193 } 1194 1195 tcf_ct_set_key_val(tb, 1196 &p->zone, TCA_CT_ZONE, 1197 NULL, TCA_CT_UNSPEC, 1198 sizeof(p->zone)); 1199 } 1200 1201 if (p->zone == NF_CT_DEFAULT_ZONE_ID) 1202 return 0; 1203 1204 nf_ct_zone_init(&zone, p->zone, NF_CT_DEFAULT_ZONE_DIR, 0); 1205 tmpl = nf_ct_tmpl_alloc(net, &zone, GFP_KERNEL); 1206 if (!tmpl) { 1207 NL_SET_ERR_MSG_MOD(extack, "Failed to allocate conntrack template"); 1208 return -ENOMEM; 1209 } 1210 __set_bit(IPS_CONFIRMED_BIT, &tmpl->status); 1211 nf_conntrack_get(&tmpl->ct_general); 1212 p->tmpl = tmpl; 1213 1214 return 0; 1215 } 1216 1217 static int tcf_ct_init(struct net *net, struct nlattr *nla, 1218 struct nlattr *est, struct tc_action **a, 1219 int replace, int bind, bool rtnl_held, 1220 struct tcf_proto *tp, u32 flags, 1221 struct netlink_ext_ack *extack) 1222 { 1223 struct tc_action_net *tn = net_generic(net, ct_net_id); 1224 struct tcf_ct_params *params = NULL; 1225 struct nlattr *tb[TCA_CT_MAX + 1]; 1226 struct tcf_chain *goto_ch = NULL; 1227 struct tc_ct *parm; 1228 struct tcf_ct *c; 1229 int err, res = 0; 1230 u32 index; 1231 1232 if (!nla) { 1233 NL_SET_ERR_MSG_MOD(extack, "Ct requires attributes to be passed"); 1234 return -EINVAL; 1235 } 1236 1237 err = nla_parse_nested(tb, TCA_CT_MAX, nla, ct_policy, extack); 1238 if (err < 0) 1239 return err; 1240 1241 if (!tb[TCA_CT_PARMS]) { 1242 NL_SET_ERR_MSG_MOD(extack, "Missing required ct parameters"); 1243 return -EINVAL; 1244 } 1245 parm = nla_data(tb[TCA_CT_PARMS]); 1246 index = parm->index; 1247 err = tcf_idr_check_alloc(tn, &index, a, bind); 1248 if (err < 0) 1249 return err; 1250 1251 if (!err) { 1252 err = tcf_idr_create_from_flags(tn, index, est, a, 1253 &act_ct_ops, bind, flags); 1254 if (err) { 1255 tcf_idr_cleanup(tn, index); 1256 return err; 1257 } 1258 res = ACT_P_CREATED; 1259 } else { 1260 if (bind) 1261 return 0; 1262 1263 if (!replace) { 1264 tcf_idr_release(*a, bind); 1265 return -EEXIST; 1266 } 1267 } 1268 err = tcf_action_check_ctrlact(parm->action, tp, &goto_ch, extack); 1269 if (err < 0) 1270 goto cleanup; 1271 1272 c = to_ct(*a); 1273 1274 params = kzalloc(sizeof(*params), GFP_KERNEL); 1275 if (unlikely(!params)) { 1276 err = -ENOMEM; 1277 goto cleanup; 1278 } 1279 1280 err = tcf_ct_fill_params(net, params, parm, tb, extack); 1281 if (err) 1282 goto cleanup; 1283 1284 err = tcf_ct_flow_table_get(params); 1285 if (err) 1286 goto cleanup; 1287 1288 spin_lock_bh(&c->tcf_lock); 1289 goto_ch = tcf_action_set_ctrlact(*a, parm->action, goto_ch); 1290 params = rcu_replace_pointer(c->params, params, 1291 lockdep_is_held(&c->tcf_lock)); 1292 spin_unlock_bh(&c->tcf_lock); 1293 1294 if (goto_ch) 1295 tcf_chain_put_by_act(goto_ch); 1296 if (params) 1297 call_rcu(¶ms->rcu, tcf_ct_params_free); 1298 1299 return res; 1300 1301 cleanup: 1302 if (goto_ch) 1303 tcf_chain_put_by_act(goto_ch); 1304 kfree(params); 1305 tcf_idr_release(*a, bind); 1306 return err; 1307 } 1308 1309 static void tcf_ct_cleanup(struct tc_action *a) 1310 { 1311 struct tcf_ct_params *params; 1312 struct tcf_ct *c = to_ct(a); 1313 1314 params = rcu_dereference_protected(c->params, 1); 1315 if (params) 1316 call_rcu(¶ms->rcu, tcf_ct_params_free); 1317 } 1318 1319 static int tcf_ct_dump_key_val(struct sk_buff *skb, 1320 void *val, int val_type, 1321 void *mask, int mask_type, 1322 int len) 1323 { 1324 int err; 1325 1326 if (mask && !memchr_inv(mask, 0, len)) 1327 return 0; 1328 1329 err = nla_put(skb, val_type, len, val); 1330 if (err) 1331 return err; 1332 1333 if (mask_type != TCA_CT_UNSPEC) { 1334 err = nla_put(skb, mask_type, len, mask); 1335 if (err) 1336 return err; 1337 } 1338 1339 return 0; 1340 } 1341 1342 static int tcf_ct_dump_nat(struct sk_buff *skb, struct tcf_ct_params *p) 1343 { 1344 struct nf_nat_range2 *range = &p->range; 1345 1346 if (!(p->ct_action & TCA_CT_ACT_NAT)) 1347 return 0; 1348 1349 if (!(p->ct_action & (TCA_CT_ACT_NAT_SRC | TCA_CT_ACT_NAT_DST))) 1350 return 0; 1351 1352 if (range->flags & NF_NAT_RANGE_MAP_IPS) { 1353 if (p->ipv4_range) { 1354 if (nla_put_in_addr(skb, TCA_CT_NAT_IPV4_MIN, 1355 range->min_addr.ip)) 1356 return -1; 1357 if (nla_put_in_addr(skb, TCA_CT_NAT_IPV4_MAX, 1358 range->max_addr.ip)) 1359 return -1; 1360 } else { 1361 if (nla_put_in6_addr(skb, TCA_CT_NAT_IPV6_MIN, 1362 &range->min_addr.in6)) 1363 return -1; 1364 if (nla_put_in6_addr(skb, TCA_CT_NAT_IPV6_MAX, 1365 &range->max_addr.in6)) 1366 return -1; 1367 } 1368 } 1369 1370 if (range->flags & NF_NAT_RANGE_PROTO_SPECIFIED) { 1371 if (nla_put_be16(skb, TCA_CT_NAT_PORT_MIN, 1372 range->min_proto.all)) 1373 return -1; 1374 if (nla_put_be16(skb, TCA_CT_NAT_PORT_MAX, 1375 range->max_proto.all)) 1376 return -1; 1377 } 1378 1379 return 0; 1380 } 1381 1382 static inline int tcf_ct_dump(struct sk_buff *skb, struct tc_action *a, 1383 int bind, int ref) 1384 { 1385 unsigned char *b = skb_tail_pointer(skb); 1386 struct tcf_ct *c = to_ct(a); 1387 struct tcf_ct_params *p; 1388 1389 struct tc_ct opt = { 1390 .index = c->tcf_index, 1391 .refcnt = refcount_read(&c->tcf_refcnt) - ref, 1392 .bindcnt = atomic_read(&c->tcf_bindcnt) - bind, 1393 }; 1394 struct tcf_t t; 1395 1396 spin_lock_bh(&c->tcf_lock); 1397 p = rcu_dereference_protected(c->params, 1398 lockdep_is_held(&c->tcf_lock)); 1399 opt.action = c->tcf_action; 1400 1401 if (tcf_ct_dump_key_val(skb, 1402 &p->ct_action, TCA_CT_ACTION, 1403 NULL, TCA_CT_UNSPEC, 1404 sizeof(p->ct_action))) 1405 goto nla_put_failure; 1406 1407 if (p->ct_action & TCA_CT_ACT_CLEAR) 1408 goto skip_dump; 1409 1410 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && 1411 tcf_ct_dump_key_val(skb, 1412 &p->mark, TCA_CT_MARK, 1413 &p->mark_mask, TCA_CT_MARK_MASK, 1414 sizeof(p->mark))) 1415 goto nla_put_failure; 1416 1417 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 1418 tcf_ct_dump_key_val(skb, 1419 p->labels, TCA_CT_LABELS, 1420 p->labels_mask, TCA_CT_LABELS_MASK, 1421 sizeof(p->labels))) 1422 goto nla_put_failure; 1423 1424 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 1425 tcf_ct_dump_key_val(skb, 1426 &p->zone, TCA_CT_ZONE, 1427 NULL, TCA_CT_UNSPEC, 1428 sizeof(p->zone))) 1429 goto nla_put_failure; 1430 1431 if (tcf_ct_dump_nat(skb, p)) 1432 goto nla_put_failure; 1433 1434 skip_dump: 1435 if (nla_put(skb, TCA_CT_PARMS, sizeof(opt), &opt)) 1436 goto nla_put_failure; 1437 1438 tcf_tm_dump(&t, &c->tcf_tm); 1439 if (nla_put_64bit(skb, TCA_CT_TM, sizeof(t), &t, TCA_CT_PAD)) 1440 goto nla_put_failure; 1441 spin_unlock_bh(&c->tcf_lock); 1442 1443 return skb->len; 1444 nla_put_failure: 1445 spin_unlock_bh(&c->tcf_lock); 1446 nlmsg_trim(skb, b); 1447 return -1; 1448 } 1449 1450 static int tcf_ct_walker(struct net *net, struct sk_buff *skb, 1451 struct netlink_callback *cb, int type, 1452 const struct tc_action_ops *ops, 1453 struct netlink_ext_ack *extack) 1454 { 1455 struct tc_action_net *tn = net_generic(net, ct_net_id); 1456 1457 return tcf_generic_walker(tn, skb, cb, type, ops, extack); 1458 } 1459 1460 static int tcf_ct_search(struct net *net, struct tc_action **a, u32 index) 1461 { 1462 struct tc_action_net *tn = net_generic(net, ct_net_id); 1463 1464 return tcf_idr_search(tn, a, index); 1465 } 1466 1467 static void tcf_stats_update(struct tc_action *a, u64 bytes, u64 packets, 1468 u64 drops, u64 lastuse, bool hw) 1469 { 1470 struct tcf_ct *c = to_ct(a); 1471 1472 tcf_action_update_stats(a, bytes, packets, drops, hw); 1473 c->tcf_tm.lastuse = max_t(u64, c->tcf_tm.lastuse, lastuse); 1474 } 1475 1476 static struct tc_action_ops act_ct_ops = { 1477 .kind = "ct", 1478 .id = TCA_ID_CT, 1479 .owner = THIS_MODULE, 1480 .act = tcf_ct_act, 1481 .dump = tcf_ct_dump, 1482 .init = tcf_ct_init, 1483 .cleanup = tcf_ct_cleanup, 1484 .walk = tcf_ct_walker, 1485 .lookup = tcf_ct_search, 1486 .stats_update = tcf_stats_update, 1487 .size = sizeof(struct tcf_ct), 1488 }; 1489 1490 static __net_init int ct_init_net(struct net *net) 1491 { 1492 unsigned int n_bits = sizeof_field(struct tcf_ct_params, labels) * 8; 1493 struct tc_ct_action_net *tn = net_generic(net, ct_net_id); 1494 1495 if (nf_connlabels_get(net, n_bits - 1)) { 1496 tn->labels = false; 1497 pr_err("act_ct: Failed to set connlabels length"); 1498 } else { 1499 tn->labels = true; 1500 } 1501 1502 return tc_action_net_init(net, &tn->tn, &act_ct_ops); 1503 } 1504 1505 static void __net_exit ct_exit_net(struct list_head *net_list) 1506 { 1507 struct net *net; 1508 1509 rtnl_lock(); 1510 list_for_each_entry(net, net_list, exit_list) { 1511 struct tc_ct_action_net *tn = net_generic(net, ct_net_id); 1512 1513 if (tn->labels) 1514 nf_connlabels_put(net); 1515 } 1516 rtnl_unlock(); 1517 1518 tc_action_net_exit(net_list, ct_net_id); 1519 } 1520 1521 static struct pernet_operations ct_net_ops = { 1522 .init = ct_init_net, 1523 .exit_batch = ct_exit_net, 1524 .id = &ct_net_id, 1525 .size = sizeof(struct tc_ct_action_net), 1526 }; 1527 1528 static int __init ct_init_module(void) 1529 { 1530 int err; 1531 1532 act_ct_wq = alloc_ordered_workqueue("act_ct_workqueue", 0); 1533 if (!act_ct_wq) 1534 return -ENOMEM; 1535 1536 err = tcf_ct_flow_tables_init(); 1537 if (err) 1538 goto err_tbl_init; 1539 1540 err = tcf_register_action(&act_ct_ops, &ct_net_ops); 1541 if (err) 1542 goto err_register; 1543 1544 return 0; 1545 1546 err_register: 1547 tcf_ct_flow_tables_uninit(); 1548 err_tbl_init: 1549 destroy_workqueue(act_ct_wq); 1550 return err; 1551 } 1552 1553 static void __exit ct_cleanup_module(void) 1554 { 1555 tcf_unregister_action(&act_ct_ops, &ct_net_ops); 1556 tcf_ct_flow_tables_uninit(); 1557 destroy_workqueue(act_ct_wq); 1558 } 1559 1560 module_init(ct_init_module); 1561 module_exit(ct_cleanup_module); 1562 MODULE_AUTHOR("Paul Blakey <paulb@mellanox.com>"); 1563 MODULE_AUTHOR("Yossi Kuperman <yossiku@mellanox.com>"); 1564 MODULE_AUTHOR("Marcelo Ricardo Leitner <marcelo.leitner@gmail.com>"); 1565 MODULE_DESCRIPTION("Connection tracking action"); 1566 MODULE_LICENSE("GPL v2"); 1567