1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB 2 /* - 3 * net/sched/act_ct.c Connection Tracking action 4 * 5 * Authors: Paul Blakey <paulb@mellanox.com> 6 * Yossi Kuperman <yossiku@mellanox.com> 7 * Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> 8 */ 9 10 #include <linux/module.h> 11 #include <linux/init.h> 12 #include <linux/kernel.h> 13 #include <linux/skbuff.h> 14 #include <linux/rtnetlink.h> 15 #include <linux/pkt_cls.h> 16 #include <linux/ip.h> 17 #include <linux/ipv6.h> 18 #include <linux/rhashtable.h> 19 #include <net/netlink.h> 20 #include <net/pkt_sched.h> 21 #include <net/pkt_cls.h> 22 #include <net/act_api.h> 23 #include <net/ip.h> 24 #include <net/ipv6_frag.h> 25 #include <uapi/linux/tc_act/tc_ct.h> 26 #include <net/tc_act/tc_ct.h> 27 #include <net/tc_wrapper.h> 28 29 #include <net/netfilter/nf_flow_table.h> 30 #include <net/netfilter/nf_conntrack.h> 31 #include <net/netfilter/nf_conntrack_core.h> 32 #include <net/netfilter/nf_conntrack_zones.h> 33 #include <net/netfilter/nf_conntrack_helper.h> 34 #include <net/netfilter/nf_conntrack_acct.h> 35 #include <net/netfilter/ipv6/nf_defrag_ipv6.h> 36 #include <net/netfilter/nf_conntrack_act_ct.h> 37 #include <net/netfilter/nf_conntrack_seqadj.h> 38 #include <uapi/linux/netfilter/nf_nat.h> 39 40 static struct workqueue_struct *act_ct_wq; 41 static struct rhashtable zones_ht; 42 static DEFINE_MUTEX(zones_mutex); 43 44 struct tcf_ct_flow_table { 45 struct rhash_head node; /* In zones tables */ 46 47 struct rcu_work rwork; 48 struct nf_flowtable nf_ft; 49 refcount_t ref; 50 u16 zone; 51 52 bool dying; 53 }; 54 55 static const struct rhashtable_params zones_params = { 56 .head_offset = offsetof(struct tcf_ct_flow_table, node), 57 .key_offset = offsetof(struct tcf_ct_flow_table, zone), 58 .key_len = sizeof_field(struct tcf_ct_flow_table, zone), 59 .automatic_shrinking = true, 60 }; 61 62 static struct flow_action_entry * 63 tcf_ct_flow_table_flow_action_get_next(struct flow_action *flow_action) 64 { 65 int i = flow_action->num_entries++; 66 67 return &flow_action->entries[i]; 68 } 69 70 static void tcf_ct_add_mangle_action(struct flow_action *action, 71 enum flow_action_mangle_base htype, 72 u32 offset, 73 u32 mask, 74 u32 val) 75 { 76 struct flow_action_entry *entry; 77 78 entry = tcf_ct_flow_table_flow_action_get_next(action); 79 entry->id = FLOW_ACTION_MANGLE; 80 entry->mangle.htype = htype; 81 entry->mangle.mask = ~mask; 82 entry->mangle.offset = offset; 83 entry->mangle.val = val; 84 } 85 86 /* The following nat helper functions check if the inverted reverse tuple 87 * (target) is different then the current dir tuple - meaning nat for ports 88 * and/or ip is needed, and add the relevant mangle actions. 89 */ 90 static void 91 tcf_ct_flow_table_add_action_nat_ipv4(const struct nf_conntrack_tuple *tuple, 92 struct nf_conntrack_tuple target, 93 struct flow_action *action) 94 { 95 if (memcmp(&target.src.u3, &tuple->src.u3, sizeof(target.src.u3))) 96 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP4, 97 offsetof(struct iphdr, saddr), 98 0xFFFFFFFF, 99 be32_to_cpu(target.src.u3.ip)); 100 if (memcmp(&target.dst.u3, &tuple->dst.u3, sizeof(target.dst.u3))) 101 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP4, 102 offsetof(struct iphdr, daddr), 103 0xFFFFFFFF, 104 be32_to_cpu(target.dst.u3.ip)); 105 } 106 107 static void 108 tcf_ct_add_ipv6_addr_mangle_action(struct flow_action *action, 109 union nf_inet_addr *addr, 110 u32 offset) 111 { 112 int i; 113 114 for (i = 0; i < sizeof(struct in6_addr) / sizeof(u32); i++) 115 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP6, 116 i * sizeof(u32) + offset, 117 0xFFFFFFFF, be32_to_cpu(addr->ip6[i])); 118 } 119 120 static void 121 tcf_ct_flow_table_add_action_nat_ipv6(const struct nf_conntrack_tuple *tuple, 122 struct nf_conntrack_tuple target, 123 struct flow_action *action) 124 { 125 if (memcmp(&target.src.u3, &tuple->src.u3, sizeof(target.src.u3))) 126 tcf_ct_add_ipv6_addr_mangle_action(action, &target.src.u3, 127 offsetof(struct ipv6hdr, 128 saddr)); 129 if (memcmp(&target.dst.u3, &tuple->dst.u3, sizeof(target.dst.u3))) 130 tcf_ct_add_ipv6_addr_mangle_action(action, &target.dst.u3, 131 offsetof(struct ipv6hdr, 132 daddr)); 133 } 134 135 static void 136 tcf_ct_flow_table_add_action_nat_tcp(const struct nf_conntrack_tuple *tuple, 137 struct nf_conntrack_tuple target, 138 struct flow_action *action) 139 { 140 __be16 target_src = target.src.u.tcp.port; 141 __be16 target_dst = target.dst.u.tcp.port; 142 143 if (target_src != tuple->src.u.tcp.port) 144 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_TCP, 145 offsetof(struct tcphdr, source), 146 0xFFFF, be16_to_cpu(target_src)); 147 if (target_dst != tuple->dst.u.tcp.port) 148 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_TCP, 149 offsetof(struct tcphdr, dest), 150 0xFFFF, be16_to_cpu(target_dst)); 151 } 152 153 static void 154 tcf_ct_flow_table_add_action_nat_udp(const struct nf_conntrack_tuple *tuple, 155 struct nf_conntrack_tuple target, 156 struct flow_action *action) 157 { 158 __be16 target_src = target.src.u.udp.port; 159 __be16 target_dst = target.dst.u.udp.port; 160 161 if (target_src != tuple->src.u.udp.port) 162 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_UDP, 163 offsetof(struct udphdr, source), 164 0xFFFF, be16_to_cpu(target_src)); 165 if (target_dst != tuple->dst.u.udp.port) 166 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_UDP, 167 offsetof(struct udphdr, dest), 168 0xFFFF, be16_to_cpu(target_dst)); 169 } 170 171 static void tcf_ct_flow_table_add_action_meta(struct nf_conn *ct, 172 enum ip_conntrack_dir dir, 173 enum ip_conntrack_info ctinfo, 174 struct flow_action *action) 175 { 176 struct nf_conn_labels *ct_labels; 177 struct flow_action_entry *entry; 178 u32 *act_ct_labels; 179 180 entry = tcf_ct_flow_table_flow_action_get_next(action); 181 entry->id = FLOW_ACTION_CT_METADATA; 182 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 183 entry->ct_metadata.mark = READ_ONCE(ct->mark); 184 #endif 185 /* aligns with the CT reference on the SKB nf_ct_set */ 186 entry->ct_metadata.cookie = (unsigned long)ct | ctinfo; 187 entry->ct_metadata.orig_dir = dir == IP_CT_DIR_ORIGINAL; 188 189 act_ct_labels = entry->ct_metadata.labels; 190 ct_labels = nf_ct_labels_find(ct); 191 if (ct_labels) 192 memcpy(act_ct_labels, ct_labels->bits, NF_CT_LABELS_MAX_SIZE); 193 else 194 memset(act_ct_labels, 0, NF_CT_LABELS_MAX_SIZE); 195 } 196 197 static int tcf_ct_flow_table_add_action_nat(struct net *net, 198 struct nf_conn *ct, 199 enum ip_conntrack_dir dir, 200 struct flow_action *action) 201 { 202 const struct nf_conntrack_tuple *tuple = &ct->tuplehash[dir].tuple; 203 struct nf_conntrack_tuple target; 204 205 if (!(ct->status & IPS_NAT_MASK)) 206 return 0; 207 208 nf_ct_invert_tuple(&target, &ct->tuplehash[!dir].tuple); 209 210 switch (tuple->src.l3num) { 211 case NFPROTO_IPV4: 212 tcf_ct_flow_table_add_action_nat_ipv4(tuple, target, 213 action); 214 break; 215 case NFPROTO_IPV6: 216 tcf_ct_flow_table_add_action_nat_ipv6(tuple, target, 217 action); 218 break; 219 default: 220 return -EOPNOTSUPP; 221 } 222 223 switch (nf_ct_protonum(ct)) { 224 case IPPROTO_TCP: 225 tcf_ct_flow_table_add_action_nat_tcp(tuple, target, action); 226 break; 227 case IPPROTO_UDP: 228 tcf_ct_flow_table_add_action_nat_udp(tuple, target, action); 229 break; 230 default: 231 return -EOPNOTSUPP; 232 } 233 234 return 0; 235 } 236 237 static int tcf_ct_flow_table_fill_actions(struct net *net, 238 struct flow_offload *flow, 239 enum flow_offload_tuple_dir tdir, 240 struct nf_flow_rule *flow_rule) 241 { 242 struct flow_action *action = &flow_rule->rule->action; 243 int num_entries = action->num_entries; 244 struct nf_conn *ct = flow->ct; 245 enum ip_conntrack_info ctinfo; 246 enum ip_conntrack_dir dir; 247 int i, err; 248 249 switch (tdir) { 250 case FLOW_OFFLOAD_DIR_ORIGINAL: 251 dir = IP_CT_DIR_ORIGINAL; 252 ctinfo = test_bit(IPS_SEEN_REPLY_BIT, &ct->status) ? 253 IP_CT_ESTABLISHED : IP_CT_NEW; 254 if (ctinfo == IP_CT_ESTABLISHED) 255 set_bit(NF_FLOW_HW_ESTABLISHED, &flow->flags); 256 break; 257 case FLOW_OFFLOAD_DIR_REPLY: 258 dir = IP_CT_DIR_REPLY; 259 ctinfo = IP_CT_ESTABLISHED_REPLY; 260 break; 261 default: 262 return -EOPNOTSUPP; 263 } 264 265 err = tcf_ct_flow_table_add_action_nat(net, ct, dir, action); 266 if (err) 267 goto err_nat; 268 269 tcf_ct_flow_table_add_action_meta(ct, dir, ctinfo, action); 270 return 0; 271 272 err_nat: 273 /* Clear filled actions */ 274 for (i = num_entries; i < action->num_entries; i++) 275 memset(&action->entries[i], 0, sizeof(action->entries[i])); 276 action->num_entries = num_entries; 277 278 return err; 279 } 280 281 static bool tcf_ct_flow_is_outdated(const struct flow_offload *flow) 282 { 283 return test_bit(IPS_SEEN_REPLY_BIT, &flow->ct->status) && 284 test_bit(IPS_HW_OFFLOAD_BIT, &flow->ct->status) && 285 !test_bit(NF_FLOW_HW_PENDING, &flow->flags) && 286 !test_bit(NF_FLOW_HW_ESTABLISHED, &flow->flags); 287 } 288 289 static struct nf_flowtable_type flowtable_ct = { 290 .gc = tcf_ct_flow_is_outdated, 291 .action = tcf_ct_flow_table_fill_actions, 292 .owner = THIS_MODULE, 293 }; 294 295 static int tcf_ct_flow_table_get(struct net *net, struct tcf_ct_params *params) 296 { 297 struct tcf_ct_flow_table *ct_ft; 298 int err = -ENOMEM; 299 300 mutex_lock(&zones_mutex); 301 ct_ft = rhashtable_lookup_fast(&zones_ht, ¶ms->zone, zones_params); 302 if (ct_ft && refcount_inc_not_zero(&ct_ft->ref)) 303 goto out_unlock; 304 305 ct_ft = kzalloc(sizeof(*ct_ft), GFP_KERNEL); 306 if (!ct_ft) 307 goto err_alloc; 308 refcount_set(&ct_ft->ref, 1); 309 310 ct_ft->zone = params->zone; 311 err = rhashtable_insert_fast(&zones_ht, &ct_ft->node, zones_params); 312 if (err) 313 goto err_insert; 314 315 ct_ft->nf_ft.type = &flowtable_ct; 316 ct_ft->nf_ft.flags |= NF_FLOWTABLE_HW_OFFLOAD | 317 NF_FLOWTABLE_COUNTER; 318 err = nf_flow_table_init(&ct_ft->nf_ft); 319 if (err) 320 goto err_init; 321 write_pnet(&ct_ft->nf_ft.net, net); 322 323 __module_get(THIS_MODULE); 324 out_unlock: 325 params->ct_ft = ct_ft; 326 params->nf_ft = &ct_ft->nf_ft; 327 mutex_unlock(&zones_mutex); 328 329 return 0; 330 331 err_init: 332 rhashtable_remove_fast(&zones_ht, &ct_ft->node, zones_params); 333 err_insert: 334 kfree(ct_ft); 335 err_alloc: 336 mutex_unlock(&zones_mutex); 337 return err; 338 } 339 340 static void tcf_ct_flow_table_cleanup_work(struct work_struct *work) 341 { 342 struct flow_block_cb *block_cb, *tmp_cb; 343 struct tcf_ct_flow_table *ct_ft; 344 struct flow_block *block; 345 346 ct_ft = container_of(to_rcu_work(work), struct tcf_ct_flow_table, 347 rwork); 348 nf_flow_table_free(&ct_ft->nf_ft); 349 350 /* Remove any remaining callbacks before cleanup */ 351 block = &ct_ft->nf_ft.flow_block; 352 down_write(&ct_ft->nf_ft.flow_block_lock); 353 list_for_each_entry_safe(block_cb, tmp_cb, &block->cb_list, list) { 354 list_del(&block_cb->list); 355 flow_block_cb_free(block_cb); 356 } 357 up_write(&ct_ft->nf_ft.flow_block_lock); 358 kfree(ct_ft); 359 360 module_put(THIS_MODULE); 361 } 362 363 static void tcf_ct_flow_table_put(struct tcf_ct_flow_table *ct_ft) 364 { 365 if (refcount_dec_and_test(&ct_ft->ref)) { 366 rhashtable_remove_fast(&zones_ht, &ct_ft->node, zones_params); 367 INIT_RCU_WORK(&ct_ft->rwork, tcf_ct_flow_table_cleanup_work); 368 queue_rcu_work(act_ct_wq, &ct_ft->rwork); 369 } 370 } 371 372 static void tcf_ct_flow_tc_ifidx(struct flow_offload *entry, 373 struct nf_conn_act_ct_ext *act_ct_ext, u8 dir) 374 { 375 entry->tuplehash[dir].tuple.xmit_type = FLOW_OFFLOAD_XMIT_TC; 376 entry->tuplehash[dir].tuple.tc.iifidx = act_ct_ext->ifindex[dir]; 377 } 378 379 static void tcf_ct_flow_table_add(struct tcf_ct_flow_table *ct_ft, 380 struct nf_conn *ct, 381 bool tcp, bool bidirectional) 382 { 383 struct nf_conn_act_ct_ext *act_ct_ext; 384 struct flow_offload *entry; 385 int err; 386 387 if (test_and_set_bit(IPS_OFFLOAD_BIT, &ct->status)) 388 return; 389 390 entry = flow_offload_alloc(ct); 391 if (!entry) { 392 WARN_ON_ONCE(1); 393 goto err_alloc; 394 } 395 396 if (tcp) { 397 ct->proto.tcp.seen[0].flags |= IP_CT_TCP_FLAG_BE_LIBERAL; 398 ct->proto.tcp.seen[1].flags |= IP_CT_TCP_FLAG_BE_LIBERAL; 399 } 400 if (bidirectional) 401 __set_bit(NF_FLOW_HW_BIDIRECTIONAL, &entry->flags); 402 403 act_ct_ext = nf_conn_act_ct_ext_find(ct); 404 if (act_ct_ext) { 405 tcf_ct_flow_tc_ifidx(entry, act_ct_ext, FLOW_OFFLOAD_DIR_ORIGINAL); 406 tcf_ct_flow_tc_ifidx(entry, act_ct_ext, FLOW_OFFLOAD_DIR_REPLY); 407 } 408 409 err = flow_offload_add(&ct_ft->nf_ft, entry); 410 if (err) 411 goto err_add; 412 413 return; 414 415 err_add: 416 flow_offload_free(entry); 417 err_alloc: 418 clear_bit(IPS_OFFLOAD_BIT, &ct->status); 419 } 420 421 static void tcf_ct_flow_table_process_conn(struct tcf_ct_flow_table *ct_ft, 422 struct nf_conn *ct, 423 enum ip_conntrack_info ctinfo) 424 { 425 bool tcp = false, bidirectional = true; 426 427 switch (nf_ct_protonum(ct)) { 428 case IPPROTO_TCP: 429 if ((ctinfo != IP_CT_ESTABLISHED && 430 ctinfo != IP_CT_ESTABLISHED_REPLY) || 431 !test_bit(IPS_ASSURED_BIT, &ct->status) || 432 ct->proto.tcp.state != TCP_CONNTRACK_ESTABLISHED) 433 return; 434 435 tcp = true; 436 break; 437 case IPPROTO_UDP: 438 if (!nf_ct_is_confirmed(ct)) 439 return; 440 if (!test_bit(IPS_ASSURED_BIT, &ct->status)) 441 bidirectional = false; 442 break; 443 #ifdef CONFIG_NF_CT_PROTO_GRE 444 case IPPROTO_GRE: { 445 struct nf_conntrack_tuple *tuple; 446 447 if ((ctinfo != IP_CT_ESTABLISHED && 448 ctinfo != IP_CT_ESTABLISHED_REPLY) || 449 !test_bit(IPS_ASSURED_BIT, &ct->status) || 450 ct->status & IPS_NAT_MASK) 451 return; 452 453 tuple = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple; 454 /* No support for GRE v1 */ 455 if (tuple->src.u.gre.key || tuple->dst.u.gre.key) 456 return; 457 break; 458 } 459 #endif 460 default: 461 return; 462 } 463 464 if (nf_ct_ext_exist(ct, NF_CT_EXT_HELPER) || 465 ct->status & IPS_SEQ_ADJUST) 466 return; 467 468 tcf_ct_flow_table_add(ct_ft, ct, tcp, bidirectional); 469 } 470 471 static bool 472 tcf_ct_flow_table_fill_tuple_ipv4(struct sk_buff *skb, 473 struct flow_offload_tuple *tuple, 474 struct tcphdr **tcph) 475 { 476 struct flow_ports *ports; 477 unsigned int thoff; 478 struct iphdr *iph; 479 size_t hdrsize; 480 u8 ipproto; 481 482 if (!pskb_network_may_pull(skb, sizeof(*iph))) 483 return false; 484 485 iph = ip_hdr(skb); 486 thoff = iph->ihl * 4; 487 488 if (ip_is_fragment(iph) || 489 unlikely(thoff != sizeof(struct iphdr))) 490 return false; 491 492 ipproto = iph->protocol; 493 switch (ipproto) { 494 case IPPROTO_TCP: 495 hdrsize = sizeof(struct tcphdr); 496 break; 497 case IPPROTO_UDP: 498 hdrsize = sizeof(*ports); 499 break; 500 #ifdef CONFIG_NF_CT_PROTO_GRE 501 case IPPROTO_GRE: 502 hdrsize = sizeof(struct gre_base_hdr); 503 break; 504 #endif 505 default: 506 return false; 507 } 508 509 if (iph->ttl <= 1) 510 return false; 511 512 if (!pskb_network_may_pull(skb, thoff + hdrsize)) 513 return false; 514 515 switch (ipproto) { 516 case IPPROTO_TCP: 517 *tcph = (void *)(skb_network_header(skb) + thoff); 518 fallthrough; 519 case IPPROTO_UDP: 520 ports = (struct flow_ports *)(skb_network_header(skb) + thoff); 521 tuple->src_port = ports->source; 522 tuple->dst_port = ports->dest; 523 break; 524 case IPPROTO_GRE: { 525 struct gre_base_hdr *greh; 526 527 greh = (struct gre_base_hdr *)(skb_network_header(skb) + thoff); 528 if ((greh->flags & GRE_VERSION) != GRE_VERSION_0) 529 return false; 530 break; 531 } 532 } 533 534 iph = ip_hdr(skb); 535 536 tuple->src_v4.s_addr = iph->saddr; 537 tuple->dst_v4.s_addr = iph->daddr; 538 tuple->l3proto = AF_INET; 539 tuple->l4proto = ipproto; 540 541 return true; 542 } 543 544 static bool 545 tcf_ct_flow_table_fill_tuple_ipv6(struct sk_buff *skb, 546 struct flow_offload_tuple *tuple, 547 struct tcphdr **tcph) 548 { 549 struct flow_ports *ports; 550 struct ipv6hdr *ip6h; 551 unsigned int thoff; 552 size_t hdrsize; 553 u8 nexthdr; 554 555 if (!pskb_network_may_pull(skb, sizeof(*ip6h))) 556 return false; 557 558 ip6h = ipv6_hdr(skb); 559 thoff = sizeof(*ip6h); 560 561 nexthdr = ip6h->nexthdr; 562 switch (nexthdr) { 563 case IPPROTO_TCP: 564 hdrsize = sizeof(struct tcphdr); 565 break; 566 case IPPROTO_UDP: 567 hdrsize = sizeof(*ports); 568 break; 569 #ifdef CONFIG_NF_CT_PROTO_GRE 570 case IPPROTO_GRE: 571 hdrsize = sizeof(struct gre_base_hdr); 572 break; 573 #endif 574 default: 575 return false; 576 } 577 578 if (ip6h->hop_limit <= 1) 579 return false; 580 581 if (!pskb_network_may_pull(skb, thoff + hdrsize)) 582 return false; 583 584 switch (nexthdr) { 585 case IPPROTO_TCP: 586 *tcph = (void *)(skb_network_header(skb) + thoff); 587 fallthrough; 588 case IPPROTO_UDP: 589 ports = (struct flow_ports *)(skb_network_header(skb) + thoff); 590 tuple->src_port = ports->source; 591 tuple->dst_port = ports->dest; 592 break; 593 case IPPROTO_GRE: { 594 struct gre_base_hdr *greh; 595 596 greh = (struct gre_base_hdr *)(skb_network_header(skb) + thoff); 597 if ((greh->flags & GRE_VERSION) != GRE_VERSION_0) 598 return false; 599 break; 600 } 601 } 602 603 ip6h = ipv6_hdr(skb); 604 605 tuple->src_v6 = ip6h->saddr; 606 tuple->dst_v6 = ip6h->daddr; 607 tuple->l3proto = AF_INET6; 608 tuple->l4proto = nexthdr; 609 610 return true; 611 } 612 613 static bool tcf_ct_flow_table_lookup(struct tcf_ct_params *p, 614 struct sk_buff *skb, 615 u8 family) 616 { 617 struct nf_flowtable *nf_ft = &p->ct_ft->nf_ft; 618 struct flow_offload_tuple_rhash *tuplehash; 619 struct flow_offload_tuple tuple = {}; 620 enum ip_conntrack_info ctinfo; 621 struct tcphdr *tcph = NULL; 622 bool force_refresh = false; 623 struct flow_offload *flow; 624 struct nf_conn *ct; 625 u8 dir; 626 627 switch (family) { 628 case NFPROTO_IPV4: 629 if (!tcf_ct_flow_table_fill_tuple_ipv4(skb, &tuple, &tcph)) 630 return false; 631 break; 632 case NFPROTO_IPV6: 633 if (!tcf_ct_flow_table_fill_tuple_ipv6(skb, &tuple, &tcph)) 634 return false; 635 break; 636 default: 637 return false; 638 } 639 640 tuplehash = flow_offload_lookup(nf_ft, &tuple); 641 if (!tuplehash) 642 return false; 643 644 dir = tuplehash->tuple.dir; 645 flow = container_of(tuplehash, struct flow_offload, tuplehash[dir]); 646 ct = flow->ct; 647 648 if (dir == FLOW_OFFLOAD_DIR_REPLY && 649 !test_bit(NF_FLOW_HW_BIDIRECTIONAL, &flow->flags)) { 650 /* Only offload reply direction after connection became 651 * assured. 652 */ 653 if (test_bit(IPS_ASSURED_BIT, &ct->status)) 654 set_bit(NF_FLOW_HW_BIDIRECTIONAL, &flow->flags); 655 else if (test_bit(NF_FLOW_HW_ESTABLISHED, &flow->flags)) 656 /* If flow_table flow has already been updated to the 657 * established state, then don't refresh. 658 */ 659 return false; 660 force_refresh = true; 661 } 662 663 if (tcph && (unlikely(tcph->fin || tcph->rst))) { 664 flow_offload_teardown(flow); 665 return false; 666 } 667 668 if (dir == FLOW_OFFLOAD_DIR_ORIGINAL) 669 ctinfo = test_bit(IPS_SEEN_REPLY_BIT, &ct->status) ? 670 IP_CT_ESTABLISHED : IP_CT_NEW; 671 else 672 ctinfo = IP_CT_ESTABLISHED_REPLY; 673 674 flow_offload_refresh(nf_ft, flow, force_refresh); 675 if (!test_bit(IPS_ASSURED_BIT, &ct->status)) { 676 /* Process this flow in SW to allow promoting to ASSURED */ 677 return false; 678 } 679 680 nf_conntrack_get(&ct->ct_general); 681 nf_ct_set(skb, ct, ctinfo); 682 if (nf_ft->flags & NF_FLOWTABLE_COUNTER) 683 nf_ct_acct_update(ct, dir, skb->len); 684 685 return true; 686 } 687 688 static int tcf_ct_flow_tables_init(void) 689 { 690 return rhashtable_init(&zones_ht, &zones_params); 691 } 692 693 static void tcf_ct_flow_tables_uninit(void) 694 { 695 rhashtable_destroy(&zones_ht); 696 } 697 698 static struct tc_action_ops act_ct_ops; 699 700 struct tc_ct_action_net { 701 struct tc_action_net tn; /* Must be first */ 702 bool labels; 703 }; 704 705 /* Determine whether skb->_nfct is equal to the result of conntrack lookup. */ 706 static bool tcf_ct_skb_nfct_cached(struct net *net, struct sk_buff *skb, 707 struct tcf_ct_params *p) 708 { 709 enum ip_conntrack_info ctinfo; 710 struct nf_conn *ct; 711 712 ct = nf_ct_get(skb, &ctinfo); 713 if (!ct) 714 return false; 715 if (!net_eq(net, read_pnet(&ct->ct_net))) 716 goto drop_ct; 717 if (nf_ct_zone(ct)->id != p->zone) 718 goto drop_ct; 719 if (p->helper) { 720 struct nf_conn_help *help; 721 722 help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER); 723 if (help && rcu_access_pointer(help->helper) != p->helper) 724 goto drop_ct; 725 } 726 727 /* Force conntrack entry direction. */ 728 if ((p->ct_action & TCA_CT_ACT_FORCE) && 729 CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) { 730 if (nf_ct_is_confirmed(ct)) 731 nf_ct_kill(ct); 732 733 goto drop_ct; 734 } 735 736 return true; 737 738 drop_ct: 739 nf_ct_put(ct); 740 nf_ct_set(skb, NULL, IP_CT_UNTRACKED); 741 742 return false; 743 } 744 745 static u8 tcf_ct_skb_nf_family(struct sk_buff *skb) 746 { 747 u8 family = NFPROTO_UNSPEC; 748 749 switch (skb_protocol(skb, true)) { 750 case htons(ETH_P_IP): 751 family = NFPROTO_IPV4; 752 break; 753 case htons(ETH_P_IPV6): 754 family = NFPROTO_IPV6; 755 break; 756 default: 757 break; 758 } 759 760 return family; 761 } 762 763 static int tcf_ct_ipv4_is_fragment(struct sk_buff *skb, bool *frag) 764 { 765 unsigned int len; 766 767 len = skb_network_offset(skb) + sizeof(struct iphdr); 768 if (unlikely(skb->len < len)) 769 return -EINVAL; 770 if (unlikely(!pskb_may_pull(skb, len))) 771 return -ENOMEM; 772 773 *frag = ip_is_fragment(ip_hdr(skb)); 774 return 0; 775 } 776 777 static int tcf_ct_ipv6_is_fragment(struct sk_buff *skb, bool *frag) 778 { 779 unsigned int flags = 0, len, payload_ofs = 0; 780 unsigned short frag_off; 781 int nexthdr; 782 783 len = skb_network_offset(skb) + sizeof(struct ipv6hdr); 784 if (unlikely(skb->len < len)) 785 return -EINVAL; 786 if (unlikely(!pskb_may_pull(skb, len))) 787 return -ENOMEM; 788 789 nexthdr = ipv6_find_hdr(skb, &payload_ofs, -1, &frag_off, &flags); 790 if (unlikely(nexthdr < 0)) 791 return -EPROTO; 792 793 *frag = flags & IP6_FH_F_FRAG; 794 return 0; 795 } 796 797 static int tcf_ct_handle_fragments(struct net *net, struct sk_buff *skb, 798 u8 family, u16 zone, bool *defrag) 799 { 800 enum ip_conntrack_info ctinfo; 801 struct nf_conn *ct; 802 int err = 0; 803 bool frag; 804 u8 proto; 805 u16 mru; 806 807 /* Previously seen (loopback)? Ignore. */ 808 ct = nf_ct_get(skb, &ctinfo); 809 if ((ct && !nf_ct_is_template(ct)) || ctinfo == IP_CT_UNTRACKED) 810 return 0; 811 812 if (family == NFPROTO_IPV4) 813 err = tcf_ct_ipv4_is_fragment(skb, &frag); 814 else 815 err = tcf_ct_ipv6_is_fragment(skb, &frag); 816 if (err || !frag) 817 return err; 818 819 skb_get(skb); 820 err = nf_ct_handle_fragments(net, skb, zone, family, &proto, &mru); 821 if (err) 822 return err; 823 824 *defrag = true; 825 tc_skb_cb(skb)->mru = mru; 826 827 return 0; 828 } 829 830 static void tcf_ct_params_free(struct tcf_ct_params *params) 831 { 832 if (params->helper) { 833 #if IS_ENABLED(CONFIG_NF_NAT) 834 if (params->ct_action & TCA_CT_ACT_NAT) 835 nf_nat_helper_put(params->helper); 836 #endif 837 nf_conntrack_helper_put(params->helper); 838 } 839 if (params->ct_ft) 840 tcf_ct_flow_table_put(params->ct_ft); 841 if (params->tmpl) 842 nf_ct_put(params->tmpl); 843 kfree(params); 844 } 845 846 static void tcf_ct_params_free_rcu(struct rcu_head *head) 847 { 848 struct tcf_ct_params *params; 849 850 params = container_of(head, struct tcf_ct_params, rcu); 851 tcf_ct_params_free(params); 852 } 853 854 static void tcf_ct_act_set_mark(struct nf_conn *ct, u32 mark, u32 mask) 855 { 856 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 857 u32 new_mark; 858 859 if (!mask) 860 return; 861 862 new_mark = mark | (READ_ONCE(ct->mark) & ~(mask)); 863 if (READ_ONCE(ct->mark) != new_mark) { 864 WRITE_ONCE(ct->mark, new_mark); 865 if (nf_ct_is_confirmed(ct)) 866 nf_conntrack_event_cache(IPCT_MARK, ct); 867 } 868 #endif 869 } 870 871 static void tcf_ct_act_set_labels(struct nf_conn *ct, 872 u32 *labels, 873 u32 *labels_m) 874 { 875 #if IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) 876 size_t labels_sz = sizeof_field(struct tcf_ct_params, labels); 877 878 if (!memchr_inv(labels_m, 0, labels_sz)) 879 return; 880 881 nf_connlabels_replace(ct, labels, labels_m, 4); 882 #endif 883 } 884 885 static int tcf_ct_act_nat(struct sk_buff *skb, 886 struct nf_conn *ct, 887 enum ip_conntrack_info ctinfo, 888 int ct_action, 889 struct nf_nat_range2 *range, 890 bool commit) 891 { 892 #if IS_ENABLED(CONFIG_NF_NAT) 893 int err, action = 0; 894 895 if (!(ct_action & TCA_CT_ACT_NAT)) 896 return NF_ACCEPT; 897 if (ct_action & TCA_CT_ACT_NAT_SRC) 898 action |= BIT(NF_NAT_MANIP_SRC); 899 if (ct_action & TCA_CT_ACT_NAT_DST) 900 action |= BIT(NF_NAT_MANIP_DST); 901 902 err = nf_ct_nat(skb, ct, ctinfo, &action, range, commit); 903 904 if (action & BIT(NF_NAT_MANIP_SRC)) 905 tc_skb_cb(skb)->post_ct_snat = 1; 906 if (action & BIT(NF_NAT_MANIP_DST)) 907 tc_skb_cb(skb)->post_ct_dnat = 1; 908 909 return err; 910 #else 911 return NF_ACCEPT; 912 #endif 913 } 914 915 TC_INDIRECT_SCOPE int tcf_ct_act(struct sk_buff *skb, const struct tc_action *a, 916 struct tcf_result *res) 917 { 918 struct net *net = dev_net(skb->dev); 919 enum ip_conntrack_info ctinfo; 920 struct tcf_ct *c = to_ct(a); 921 struct nf_conn *tmpl = NULL; 922 struct nf_hook_state state; 923 bool cached, commit, clear; 924 int nh_ofs, err, retval; 925 struct tcf_ct_params *p; 926 bool add_helper = false; 927 bool skip_add = false; 928 bool defrag = false; 929 struct nf_conn *ct; 930 u8 family; 931 932 p = rcu_dereference_bh(c->params); 933 934 retval = READ_ONCE(c->tcf_action); 935 commit = p->ct_action & TCA_CT_ACT_COMMIT; 936 clear = p->ct_action & TCA_CT_ACT_CLEAR; 937 tmpl = p->tmpl; 938 939 tcf_lastuse_update(&c->tcf_tm); 940 tcf_action_update_bstats(&c->common, skb); 941 942 if (clear) { 943 tc_skb_cb(skb)->post_ct = false; 944 ct = nf_ct_get(skb, &ctinfo); 945 if (ct) { 946 nf_ct_put(ct); 947 nf_ct_set(skb, NULL, IP_CT_UNTRACKED); 948 } 949 950 goto out_clear; 951 } 952 953 family = tcf_ct_skb_nf_family(skb); 954 if (family == NFPROTO_UNSPEC) 955 goto drop; 956 957 /* The conntrack module expects to be working at L3. 958 * We also try to pull the IPv4/6 header to linear area 959 */ 960 nh_ofs = skb_network_offset(skb); 961 skb_pull_rcsum(skb, nh_ofs); 962 err = tcf_ct_handle_fragments(net, skb, family, p->zone, &defrag); 963 if (err == -EINPROGRESS) { 964 retval = TC_ACT_STOLEN; 965 goto out_clear; 966 } 967 if (err) 968 goto drop; 969 970 err = nf_ct_skb_network_trim(skb, family); 971 if (err) 972 goto drop; 973 974 /* If we are recirculating packets to match on ct fields and 975 * committing with a separate ct action, then we don't need to 976 * actually run the packet through conntrack twice unless it's for a 977 * different zone. 978 */ 979 cached = tcf_ct_skb_nfct_cached(net, skb, p); 980 if (!cached) { 981 if (tcf_ct_flow_table_lookup(p, skb, family)) { 982 skip_add = true; 983 goto do_nat; 984 } 985 986 /* Associate skb with specified zone. */ 987 if (tmpl) { 988 nf_conntrack_put(skb_nfct(skb)); 989 nf_conntrack_get(&tmpl->ct_general); 990 nf_ct_set(skb, tmpl, IP_CT_NEW); 991 } 992 993 state.hook = NF_INET_PRE_ROUTING; 994 state.net = net; 995 state.pf = family; 996 err = nf_conntrack_in(skb, &state); 997 if (err != NF_ACCEPT) 998 goto out_push; 999 } 1000 1001 do_nat: 1002 ct = nf_ct_get(skb, &ctinfo); 1003 if (!ct) 1004 goto out_push; 1005 nf_ct_deliver_cached_events(ct); 1006 nf_conn_act_ct_ext_fill(skb, ct, ctinfo); 1007 1008 err = tcf_ct_act_nat(skb, ct, ctinfo, p->ct_action, &p->range, commit); 1009 if (err != NF_ACCEPT) 1010 goto drop; 1011 1012 if (!nf_ct_is_confirmed(ct) && commit && p->helper && !nfct_help(ct)) { 1013 err = __nf_ct_try_assign_helper(ct, p->tmpl, GFP_ATOMIC); 1014 if (err) 1015 goto drop; 1016 add_helper = true; 1017 if (p->ct_action & TCA_CT_ACT_NAT && !nfct_seqadj(ct)) { 1018 if (!nfct_seqadj_ext_add(ct)) 1019 goto drop; 1020 } 1021 } 1022 1023 if (nf_ct_is_confirmed(ct) ? ((!cached && !skip_add) || add_helper) : commit) { 1024 if (nf_ct_helper(skb, ct, ctinfo, family) != NF_ACCEPT) 1025 goto drop; 1026 } 1027 1028 if (commit) { 1029 tcf_ct_act_set_mark(ct, p->mark, p->mark_mask); 1030 tcf_ct_act_set_labels(ct, p->labels, p->labels_mask); 1031 1032 if (!nf_ct_is_confirmed(ct)) 1033 nf_conn_act_ct_ext_add(ct); 1034 1035 /* This will take care of sending queued events 1036 * even if the connection is already confirmed. 1037 */ 1038 if (nf_conntrack_confirm(skb) != NF_ACCEPT) 1039 goto drop; 1040 } 1041 1042 if (!skip_add) 1043 tcf_ct_flow_table_process_conn(p->ct_ft, ct, ctinfo); 1044 1045 out_push: 1046 skb_push_rcsum(skb, nh_ofs); 1047 1048 tc_skb_cb(skb)->post_ct = true; 1049 tc_skb_cb(skb)->zone = p->zone; 1050 out_clear: 1051 if (defrag) 1052 qdisc_skb_cb(skb)->pkt_len = skb->len; 1053 return retval; 1054 1055 drop: 1056 tcf_action_inc_drop_qstats(&c->common); 1057 return TC_ACT_SHOT; 1058 } 1059 1060 static const struct nla_policy ct_policy[TCA_CT_MAX + 1] = { 1061 [TCA_CT_ACTION] = { .type = NLA_U16 }, 1062 [TCA_CT_PARMS] = NLA_POLICY_EXACT_LEN(sizeof(struct tc_ct)), 1063 [TCA_CT_ZONE] = { .type = NLA_U16 }, 1064 [TCA_CT_MARK] = { .type = NLA_U32 }, 1065 [TCA_CT_MARK_MASK] = { .type = NLA_U32 }, 1066 [TCA_CT_LABELS] = { .type = NLA_BINARY, 1067 .len = 128 / BITS_PER_BYTE }, 1068 [TCA_CT_LABELS_MASK] = { .type = NLA_BINARY, 1069 .len = 128 / BITS_PER_BYTE }, 1070 [TCA_CT_NAT_IPV4_MIN] = { .type = NLA_U32 }, 1071 [TCA_CT_NAT_IPV4_MAX] = { .type = NLA_U32 }, 1072 [TCA_CT_NAT_IPV6_MIN] = NLA_POLICY_EXACT_LEN(sizeof(struct in6_addr)), 1073 [TCA_CT_NAT_IPV6_MAX] = NLA_POLICY_EXACT_LEN(sizeof(struct in6_addr)), 1074 [TCA_CT_NAT_PORT_MIN] = { .type = NLA_U16 }, 1075 [TCA_CT_NAT_PORT_MAX] = { .type = NLA_U16 }, 1076 [TCA_CT_HELPER_NAME] = { .type = NLA_STRING, .len = NF_CT_HELPER_NAME_LEN }, 1077 [TCA_CT_HELPER_FAMILY] = { .type = NLA_U8 }, 1078 [TCA_CT_HELPER_PROTO] = { .type = NLA_U8 }, 1079 }; 1080 1081 static int tcf_ct_fill_params_nat(struct tcf_ct_params *p, 1082 struct tc_ct *parm, 1083 struct nlattr **tb, 1084 struct netlink_ext_ack *extack) 1085 { 1086 struct nf_nat_range2 *range; 1087 1088 if (!(p->ct_action & TCA_CT_ACT_NAT)) 1089 return 0; 1090 1091 if (!IS_ENABLED(CONFIG_NF_NAT)) { 1092 NL_SET_ERR_MSG_MOD(extack, "Netfilter nat isn't enabled in kernel"); 1093 return -EOPNOTSUPP; 1094 } 1095 1096 if (!(p->ct_action & (TCA_CT_ACT_NAT_SRC | TCA_CT_ACT_NAT_DST))) 1097 return 0; 1098 1099 if ((p->ct_action & TCA_CT_ACT_NAT_SRC) && 1100 (p->ct_action & TCA_CT_ACT_NAT_DST)) { 1101 NL_SET_ERR_MSG_MOD(extack, "dnat and snat can't be enabled at the same time"); 1102 return -EOPNOTSUPP; 1103 } 1104 1105 range = &p->range; 1106 if (tb[TCA_CT_NAT_IPV4_MIN]) { 1107 struct nlattr *max_attr = tb[TCA_CT_NAT_IPV4_MAX]; 1108 1109 p->ipv4_range = true; 1110 range->flags |= NF_NAT_RANGE_MAP_IPS; 1111 range->min_addr.ip = 1112 nla_get_in_addr(tb[TCA_CT_NAT_IPV4_MIN]); 1113 1114 range->max_addr.ip = max_attr ? 1115 nla_get_in_addr(max_attr) : 1116 range->min_addr.ip; 1117 } else if (tb[TCA_CT_NAT_IPV6_MIN]) { 1118 struct nlattr *max_attr = tb[TCA_CT_NAT_IPV6_MAX]; 1119 1120 p->ipv4_range = false; 1121 range->flags |= NF_NAT_RANGE_MAP_IPS; 1122 range->min_addr.in6 = 1123 nla_get_in6_addr(tb[TCA_CT_NAT_IPV6_MIN]); 1124 1125 range->max_addr.in6 = max_attr ? 1126 nla_get_in6_addr(max_attr) : 1127 range->min_addr.in6; 1128 } 1129 1130 if (tb[TCA_CT_NAT_PORT_MIN]) { 1131 range->flags |= NF_NAT_RANGE_PROTO_SPECIFIED; 1132 range->min_proto.all = nla_get_be16(tb[TCA_CT_NAT_PORT_MIN]); 1133 1134 range->max_proto.all = tb[TCA_CT_NAT_PORT_MAX] ? 1135 nla_get_be16(tb[TCA_CT_NAT_PORT_MAX]) : 1136 range->min_proto.all; 1137 } 1138 1139 return 0; 1140 } 1141 1142 static void tcf_ct_set_key_val(struct nlattr **tb, 1143 void *val, int val_type, 1144 void *mask, int mask_type, 1145 int len) 1146 { 1147 if (!tb[val_type]) 1148 return; 1149 nla_memcpy(val, tb[val_type], len); 1150 1151 if (!mask) 1152 return; 1153 1154 if (mask_type == TCA_CT_UNSPEC || !tb[mask_type]) 1155 memset(mask, 0xff, len); 1156 else 1157 nla_memcpy(mask, tb[mask_type], len); 1158 } 1159 1160 static int tcf_ct_fill_params(struct net *net, 1161 struct tcf_ct_params *p, 1162 struct tc_ct *parm, 1163 struct nlattr **tb, 1164 struct netlink_ext_ack *extack) 1165 { 1166 struct tc_ct_action_net *tn = net_generic(net, act_ct_ops.net_id); 1167 struct nf_conntrack_zone zone; 1168 int err, family, proto, len; 1169 struct nf_conn *tmpl; 1170 char *name; 1171 1172 p->zone = NF_CT_DEFAULT_ZONE_ID; 1173 1174 tcf_ct_set_key_val(tb, 1175 &p->ct_action, TCA_CT_ACTION, 1176 NULL, TCA_CT_UNSPEC, 1177 sizeof(p->ct_action)); 1178 1179 if (p->ct_action & TCA_CT_ACT_CLEAR) 1180 return 0; 1181 1182 err = tcf_ct_fill_params_nat(p, parm, tb, extack); 1183 if (err) 1184 return err; 1185 1186 if (tb[TCA_CT_MARK]) { 1187 if (!IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)) { 1188 NL_SET_ERR_MSG_MOD(extack, "Conntrack mark isn't enabled."); 1189 return -EOPNOTSUPP; 1190 } 1191 tcf_ct_set_key_val(tb, 1192 &p->mark, TCA_CT_MARK, 1193 &p->mark_mask, TCA_CT_MARK_MASK, 1194 sizeof(p->mark)); 1195 } 1196 1197 if (tb[TCA_CT_LABELS]) { 1198 if (!IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS)) { 1199 NL_SET_ERR_MSG_MOD(extack, "Conntrack labels isn't enabled."); 1200 return -EOPNOTSUPP; 1201 } 1202 1203 if (!tn->labels) { 1204 NL_SET_ERR_MSG_MOD(extack, "Failed to set connlabel length"); 1205 return -EOPNOTSUPP; 1206 } 1207 tcf_ct_set_key_val(tb, 1208 p->labels, TCA_CT_LABELS, 1209 p->labels_mask, TCA_CT_LABELS_MASK, 1210 sizeof(p->labels)); 1211 } 1212 1213 if (tb[TCA_CT_ZONE]) { 1214 if (!IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES)) { 1215 NL_SET_ERR_MSG_MOD(extack, "Conntrack zones isn't enabled."); 1216 return -EOPNOTSUPP; 1217 } 1218 1219 tcf_ct_set_key_val(tb, 1220 &p->zone, TCA_CT_ZONE, 1221 NULL, TCA_CT_UNSPEC, 1222 sizeof(p->zone)); 1223 } 1224 1225 nf_ct_zone_init(&zone, p->zone, NF_CT_DEFAULT_ZONE_DIR, 0); 1226 tmpl = nf_ct_tmpl_alloc(net, &zone, GFP_KERNEL); 1227 if (!tmpl) { 1228 NL_SET_ERR_MSG_MOD(extack, "Failed to allocate conntrack template"); 1229 return -ENOMEM; 1230 } 1231 p->tmpl = tmpl; 1232 if (tb[TCA_CT_HELPER_NAME]) { 1233 name = nla_data(tb[TCA_CT_HELPER_NAME]); 1234 len = nla_len(tb[TCA_CT_HELPER_NAME]); 1235 if (len > 16 || name[len - 1] != '\0') { 1236 NL_SET_ERR_MSG_MOD(extack, "Failed to parse helper name."); 1237 err = -EINVAL; 1238 goto err; 1239 } 1240 family = tb[TCA_CT_HELPER_FAMILY] ? nla_get_u8(tb[TCA_CT_HELPER_FAMILY]) : AF_INET; 1241 proto = tb[TCA_CT_HELPER_PROTO] ? nla_get_u8(tb[TCA_CT_HELPER_PROTO]) : IPPROTO_TCP; 1242 err = nf_ct_add_helper(tmpl, name, family, proto, 1243 p->ct_action & TCA_CT_ACT_NAT, &p->helper); 1244 if (err) { 1245 NL_SET_ERR_MSG_MOD(extack, "Failed to add helper"); 1246 goto err; 1247 } 1248 } 1249 1250 if (p->ct_action & TCA_CT_ACT_COMMIT) 1251 __set_bit(IPS_CONFIRMED_BIT, &tmpl->status); 1252 return 0; 1253 err: 1254 nf_ct_put(p->tmpl); 1255 p->tmpl = NULL; 1256 return err; 1257 } 1258 1259 static int tcf_ct_init(struct net *net, struct nlattr *nla, 1260 struct nlattr *est, struct tc_action **a, 1261 struct tcf_proto *tp, u32 flags, 1262 struct netlink_ext_ack *extack) 1263 { 1264 struct tc_action_net *tn = net_generic(net, act_ct_ops.net_id); 1265 bool bind = flags & TCA_ACT_FLAGS_BIND; 1266 struct tcf_ct_params *params = NULL; 1267 struct nlattr *tb[TCA_CT_MAX + 1]; 1268 struct tcf_chain *goto_ch = NULL; 1269 struct tc_ct *parm; 1270 struct tcf_ct *c; 1271 int err, res = 0; 1272 u32 index; 1273 1274 if (!nla) { 1275 NL_SET_ERR_MSG_MOD(extack, "Ct requires attributes to be passed"); 1276 return -EINVAL; 1277 } 1278 1279 err = nla_parse_nested(tb, TCA_CT_MAX, nla, ct_policy, extack); 1280 if (err < 0) 1281 return err; 1282 1283 if (!tb[TCA_CT_PARMS]) { 1284 NL_SET_ERR_MSG_MOD(extack, "Missing required ct parameters"); 1285 return -EINVAL; 1286 } 1287 parm = nla_data(tb[TCA_CT_PARMS]); 1288 index = parm->index; 1289 err = tcf_idr_check_alloc(tn, &index, a, bind); 1290 if (err < 0) 1291 return err; 1292 1293 if (!err) { 1294 err = tcf_idr_create_from_flags(tn, index, est, a, 1295 &act_ct_ops, bind, flags); 1296 if (err) { 1297 tcf_idr_cleanup(tn, index); 1298 return err; 1299 } 1300 res = ACT_P_CREATED; 1301 } else { 1302 if (bind) 1303 return 0; 1304 1305 if (!(flags & TCA_ACT_FLAGS_REPLACE)) { 1306 tcf_idr_release(*a, bind); 1307 return -EEXIST; 1308 } 1309 } 1310 err = tcf_action_check_ctrlact(parm->action, tp, &goto_ch, extack); 1311 if (err < 0) 1312 goto cleanup; 1313 1314 c = to_ct(*a); 1315 1316 params = kzalloc(sizeof(*params), GFP_KERNEL); 1317 if (unlikely(!params)) { 1318 err = -ENOMEM; 1319 goto cleanup; 1320 } 1321 1322 err = tcf_ct_fill_params(net, params, parm, tb, extack); 1323 if (err) 1324 goto cleanup; 1325 1326 err = tcf_ct_flow_table_get(net, params); 1327 if (err) 1328 goto cleanup; 1329 1330 spin_lock_bh(&c->tcf_lock); 1331 goto_ch = tcf_action_set_ctrlact(*a, parm->action, goto_ch); 1332 params = rcu_replace_pointer(c->params, params, 1333 lockdep_is_held(&c->tcf_lock)); 1334 spin_unlock_bh(&c->tcf_lock); 1335 1336 if (goto_ch) 1337 tcf_chain_put_by_act(goto_ch); 1338 if (params) 1339 call_rcu(¶ms->rcu, tcf_ct_params_free_rcu); 1340 1341 return res; 1342 1343 cleanup: 1344 if (goto_ch) 1345 tcf_chain_put_by_act(goto_ch); 1346 if (params) 1347 tcf_ct_params_free(params); 1348 tcf_idr_release(*a, bind); 1349 return err; 1350 } 1351 1352 static void tcf_ct_cleanup(struct tc_action *a) 1353 { 1354 struct tcf_ct_params *params; 1355 struct tcf_ct *c = to_ct(a); 1356 1357 params = rcu_dereference_protected(c->params, 1); 1358 if (params) 1359 call_rcu(¶ms->rcu, tcf_ct_params_free_rcu); 1360 } 1361 1362 static int tcf_ct_dump_key_val(struct sk_buff *skb, 1363 void *val, int val_type, 1364 void *mask, int mask_type, 1365 int len) 1366 { 1367 int err; 1368 1369 if (mask && !memchr_inv(mask, 0, len)) 1370 return 0; 1371 1372 err = nla_put(skb, val_type, len, val); 1373 if (err) 1374 return err; 1375 1376 if (mask_type != TCA_CT_UNSPEC) { 1377 err = nla_put(skb, mask_type, len, mask); 1378 if (err) 1379 return err; 1380 } 1381 1382 return 0; 1383 } 1384 1385 static int tcf_ct_dump_nat(struct sk_buff *skb, struct tcf_ct_params *p) 1386 { 1387 struct nf_nat_range2 *range = &p->range; 1388 1389 if (!(p->ct_action & TCA_CT_ACT_NAT)) 1390 return 0; 1391 1392 if (!(p->ct_action & (TCA_CT_ACT_NAT_SRC | TCA_CT_ACT_NAT_DST))) 1393 return 0; 1394 1395 if (range->flags & NF_NAT_RANGE_MAP_IPS) { 1396 if (p->ipv4_range) { 1397 if (nla_put_in_addr(skb, TCA_CT_NAT_IPV4_MIN, 1398 range->min_addr.ip)) 1399 return -1; 1400 if (nla_put_in_addr(skb, TCA_CT_NAT_IPV4_MAX, 1401 range->max_addr.ip)) 1402 return -1; 1403 } else { 1404 if (nla_put_in6_addr(skb, TCA_CT_NAT_IPV6_MIN, 1405 &range->min_addr.in6)) 1406 return -1; 1407 if (nla_put_in6_addr(skb, TCA_CT_NAT_IPV6_MAX, 1408 &range->max_addr.in6)) 1409 return -1; 1410 } 1411 } 1412 1413 if (range->flags & NF_NAT_RANGE_PROTO_SPECIFIED) { 1414 if (nla_put_be16(skb, TCA_CT_NAT_PORT_MIN, 1415 range->min_proto.all)) 1416 return -1; 1417 if (nla_put_be16(skb, TCA_CT_NAT_PORT_MAX, 1418 range->max_proto.all)) 1419 return -1; 1420 } 1421 1422 return 0; 1423 } 1424 1425 static int tcf_ct_dump_helper(struct sk_buff *skb, struct nf_conntrack_helper *helper) 1426 { 1427 if (!helper) 1428 return 0; 1429 1430 if (nla_put_string(skb, TCA_CT_HELPER_NAME, helper->name) || 1431 nla_put_u8(skb, TCA_CT_HELPER_FAMILY, helper->tuple.src.l3num) || 1432 nla_put_u8(skb, TCA_CT_HELPER_PROTO, helper->tuple.dst.protonum)) 1433 return -1; 1434 1435 return 0; 1436 } 1437 1438 static inline int tcf_ct_dump(struct sk_buff *skb, struct tc_action *a, 1439 int bind, int ref) 1440 { 1441 unsigned char *b = skb_tail_pointer(skb); 1442 struct tcf_ct *c = to_ct(a); 1443 struct tcf_ct_params *p; 1444 1445 struct tc_ct opt = { 1446 .index = c->tcf_index, 1447 .refcnt = refcount_read(&c->tcf_refcnt) - ref, 1448 .bindcnt = atomic_read(&c->tcf_bindcnt) - bind, 1449 }; 1450 struct tcf_t t; 1451 1452 spin_lock_bh(&c->tcf_lock); 1453 p = rcu_dereference_protected(c->params, 1454 lockdep_is_held(&c->tcf_lock)); 1455 opt.action = c->tcf_action; 1456 1457 if (tcf_ct_dump_key_val(skb, 1458 &p->ct_action, TCA_CT_ACTION, 1459 NULL, TCA_CT_UNSPEC, 1460 sizeof(p->ct_action))) 1461 goto nla_put_failure; 1462 1463 if (p->ct_action & TCA_CT_ACT_CLEAR) 1464 goto skip_dump; 1465 1466 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && 1467 tcf_ct_dump_key_val(skb, 1468 &p->mark, TCA_CT_MARK, 1469 &p->mark_mask, TCA_CT_MARK_MASK, 1470 sizeof(p->mark))) 1471 goto nla_put_failure; 1472 1473 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 1474 tcf_ct_dump_key_val(skb, 1475 p->labels, TCA_CT_LABELS, 1476 p->labels_mask, TCA_CT_LABELS_MASK, 1477 sizeof(p->labels))) 1478 goto nla_put_failure; 1479 1480 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 1481 tcf_ct_dump_key_val(skb, 1482 &p->zone, TCA_CT_ZONE, 1483 NULL, TCA_CT_UNSPEC, 1484 sizeof(p->zone))) 1485 goto nla_put_failure; 1486 1487 if (tcf_ct_dump_nat(skb, p)) 1488 goto nla_put_failure; 1489 1490 if (tcf_ct_dump_helper(skb, p->helper)) 1491 goto nla_put_failure; 1492 1493 skip_dump: 1494 if (nla_put(skb, TCA_CT_PARMS, sizeof(opt), &opt)) 1495 goto nla_put_failure; 1496 1497 tcf_tm_dump(&t, &c->tcf_tm); 1498 if (nla_put_64bit(skb, TCA_CT_TM, sizeof(t), &t, TCA_CT_PAD)) 1499 goto nla_put_failure; 1500 spin_unlock_bh(&c->tcf_lock); 1501 1502 return skb->len; 1503 nla_put_failure: 1504 spin_unlock_bh(&c->tcf_lock); 1505 nlmsg_trim(skb, b); 1506 return -1; 1507 } 1508 1509 static void tcf_stats_update(struct tc_action *a, u64 bytes, u64 packets, 1510 u64 drops, u64 lastuse, bool hw) 1511 { 1512 struct tcf_ct *c = to_ct(a); 1513 1514 tcf_action_update_stats(a, bytes, packets, drops, hw); 1515 c->tcf_tm.lastuse = max_t(u64, c->tcf_tm.lastuse, lastuse); 1516 } 1517 1518 static int tcf_ct_offload_act_setup(struct tc_action *act, void *entry_data, 1519 u32 *index_inc, bool bind, 1520 struct netlink_ext_ack *extack) 1521 { 1522 if (bind) { 1523 struct flow_action_entry *entry = entry_data; 1524 1525 entry->id = FLOW_ACTION_CT; 1526 entry->ct.action = tcf_ct_action(act); 1527 entry->ct.zone = tcf_ct_zone(act); 1528 entry->ct.flow_table = tcf_ct_ft(act); 1529 *index_inc = 1; 1530 } else { 1531 struct flow_offload_action *fl_action = entry_data; 1532 1533 fl_action->id = FLOW_ACTION_CT; 1534 } 1535 1536 return 0; 1537 } 1538 1539 static struct tc_action_ops act_ct_ops = { 1540 .kind = "ct", 1541 .id = TCA_ID_CT, 1542 .owner = THIS_MODULE, 1543 .act = tcf_ct_act, 1544 .dump = tcf_ct_dump, 1545 .init = tcf_ct_init, 1546 .cleanup = tcf_ct_cleanup, 1547 .stats_update = tcf_stats_update, 1548 .offload_act_setup = tcf_ct_offload_act_setup, 1549 .size = sizeof(struct tcf_ct), 1550 }; 1551 1552 static __net_init int ct_init_net(struct net *net) 1553 { 1554 unsigned int n_bits = sizeof_field(struct tcf_ct_params, labels) * 8; 1555 struct tc_ct_action_net *tn = net_generic(net, act_ct_ops.net_id); 1556 1557 if (nf_connlabels_get(net, n_bits - 1)) { 1558 tn->labels = false; 1559 pr_err("act_ct: Failed to set connlabels length"); 1560 } else { 1561 tn->labels = true; 1562 } 1563 1564 return tc_action_net_init(net, &tn->tn, &act_ct_ops); 1565 } 1566 1567 static void __net_exit ct_exit_net(struct list_head *net_list) 1568 { 1569 struct net *net; 1570 1571 rtnl_lock(); 1572 list_for_each_entry(net, net_list, exit_list) { 1573 struct tc_ct_action_net *tn = net_generic(net, act_ct_ops.net_id); 1574 1575 if (tn->labels) 1576 nf_connlabels_put(net); 1577 } 1578 rtnl_unlock(); 1579 1580 tc_action_net_exit(net_list, act_ct_ops.net_id); 1581 } 1582 1583 static struct pernet_operations ct_net_ops = { 1584 .init = ct_init_net, 1585 .exit_batch = ct_exit_net, 1586 .id = &act_ct_ops.net_id, 1587 .size = sizeof(struct tc_ct_action_net), 1588 }; 1589 1590 static int __init ct_init_module(void) 1591 { 1592 int err; 1593 1594 act_ct_wq = alloc_ordered_workqueue("act_ct_workqueue", 0); 1595 if (!act_ct_wq) 1596 return -ENOMEM; 1597 1598 err = tcf_ct_flow_tables_init(); 1599 if (err) 1600 goto err_tbl_init; 1601 1602 err = tcf_register_action(&act_ct_ops, &ct_net_ops); 1603 if (err) 1604 goto err_register; 1605 1606 static_branch_inc(&tcf_frag_xmit_count); 1607 1608 return 0; 1609 1610 err_register: 1611 tcf_ct_flow_tables_uninit(); 1612 err_tbl_init: 1613 destroy_workqueue(act_ct_wq); 1614 return err; 1615 } 1616 1617 static void __exit ct_cleanup_module(void) 1618 { 1619 static_branch_dec(&tcf_frag_xmit_count); 1620 tcf_unregister_action(&act_ct_ops, &ct_net_ops); 1621 tcf_ct_flow_tables_uninit(); 1622 destroy_workqueue(act_ct_wq); 1623 } 1624 1625 module_init(ct_init_module); 1626 module_exit(ct_cleanup_module); 1627 MODULE_AUTHOR("Paul Blakey <paulb@mellanox.com>"); 1628 MODULE_AUTHOR("Yossi Kuperman <yossiku@mellanox.com>"); 1629 MODULE_AUTHOR("Marcelo Ricardo Leitner <marcelo.leitner@gmail.com>"); 1630 MODULE_DESCRIPTION("Connection tracking action"); 1631 MODULE_LICENSE("GPL v2"); 1632