1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB 2 /* - 3 * net/sched/act_ct.c Connection Tracking action 4 * 5 * Authors: Paul Blakey <paulb@mellanox.com> 6 * Yossi Kuperman <yossiku@mellanox.com> 7 * Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> 8 */ 9 10 #include <linux/module.h> 11 #include <linux/init.h> 12 #include <linux/kernel.h> 13 #include <linux/skbuff.h> 14 #include <linux/rtnetlink.h> 15 #include <linux/pkt_cls.h> 16 #include <linux/ip.h> 17 #include <linux/ipv6.h> 18 #include <linux/rhashtable.h> 19 #include <net/netlink.h> 20 #include <net/pkt_sched.h> 21 #include <net/pkt_cls.h> 22 #include <net/act_api.h> 23 #include <net/ip.h> 24 #include <net/ipv6_frag.h> 25 #include <uapi/linux/tc_act/tc_ct.h> 26 #include <net/tc_act/tc_ct.h> 27 #include <net/tc_wrapper.h> 28 29 #include <net/netfilter/nf_flow_table.h> 30 #include <net/netfilter/nf_conntrack.h> 31 #include <net/netfilter/nf_conntrack_core.h> 32 #include <net/netfilter/nf_conntrack_zones.h> 33 #include <net/netfilter/nf_conntrack_helper.h> 34 #include <net/netfilter/nf_conntrack_acct.h> 35 #include <net/netfilter/ipv6/nf_defrag_ipv6.h> 36 #include <net/netfilter/nf_conntrack_act_ct.h> 37 #include <net/netfilter/nf_conntrack_seqadj.h> 38 #include <uapi/linux/netfilter/nf_nat.h> 39 40 static struct workqueue_struct *act_ct_wq; 41 static struct rhashtable zones_ht; 42 static DEFINE_MUTEX(zones_mutex); 43 44 struct tcf_ct_flow_table { 45 struct rhash_head node; /* In zones tables */ 46 47 struct rcu_work rwork; 48 struct nf_flowtable nf_ft; 49 refcount_t ref; 50 u16 zone; 51 52 bool dying; 53 }; 54 55 static const struct rhashtable_params zones_params = { 56 .head_offset = offsetof(struct tcf_ct_flow_table, node), 57 .key_offset = offsetof(struct tcf_ct_flow_table, zone), 58 .key_len = sizeof_field(struct tcf_ct_flow_table, zone), 59 .automatic_shrinking = true, 60 }; 61 62 static struct flow_action_entry * 63 tcf_ct_flow_table_flow_action_get_next(struct flow_action *flow_action) 64 { 65 int i = flow_action->num_entries++; 66 67 return &flow_action->entries[i]; 68 } 69 70 static void tcf_ct_add_mangle_action(struct flow_action *action, 71 enum flow_action_mangle_base htype, 72 u32 offset, 73 u32 mask, 74 u32 val) 75 { 76 struct flow_action_entry *entry; 77 78 entry = tcf_ct_flow_table_flow_action_get_next(action); 79 entry->id = FLOW_ACTION_MANGLE; 80 entry->mangle.htype = htype; 81 entry->mangle.mask = ~mask; 82 entry->mangle.offset = offset; 83 entry->mangle.val = val; 84 } 85 86 /* The following nat helper functions check if the inverted reverse tuple 87 * (target) is different then the current dir tuple - meaning nat for ports 88 * and/or ip is needed, and add the relevant mangle actions. 89 */ 90 static void 91 tcf_ct_flow_table_add_action_nat_ipv4(const struct nf_conntrack_tuple *tuple, 92 struct nf_conntrack_tuple target, 93 struct flow_action *action) 94 { 95 if (memcmp(&target.src.u3, &tuple->src.u3, sizeof(target.src.u3))) 96 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP4, 97 offsetof(struct iphdr, saddr), 98 0xFFFFFFFF, 99 be32_to_cpu(target.src.u3.ip)); 100 if (memcmp(&target.dst.u3, &tuple->dst.u3, sizeof(target.dst.u3))) 101 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP4, 102 offsetof(struct iphdr, daddr), 103 0xFFFFFFFF, 104 be32_to_cpu(target.dst.u3.ip)); 105 } 106 107 static void 108 tcf_ct_add_ipv6_addr_mangle_action(struct flow_action *action, 109 union nf_inet_addr *addr, 110 u32 offset) 111 { 112 int i; 113 114 for (i = 0; i < sizeof(struct in6_addr) / sizeof(u32); i++) 115 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP6, 116 i * sizeof(u32) + offset, 117 0xFFFFFFFF, be32_to_cpu(addr->ip6[i])); 118 } 119 120 static void 121 tcf_ct_flow_table_add_action_nat_ipv6(const struct nf_conntrack_tuple *tuple, 122 struct nf_conntrack_tuple target, 123 struct flow_action *action) 124 { 125 if (memcmp(&target.src.u3, &tuple->src.u3, sizeof(target.src.u3))) 126 tcf_ct_add_ipv6_addr_mangle_action(action, &target.src.u3, 127 offsetof(struct ipv6hdr, 128 saddr)); 129 if (memcmp(&target.dst.u3, &tuple->dst.u3, sizeof(target.dst.u3))) 130 tcf_ct_add_ipv6_addr_mangle_action(action, &target.dst.u3, 131 offsetof(struct ipv6hdr, 132 daddr)); 133 } 134 135 static void 136 tcf_ct_flow_table_add_action_nat_tcp(const struct nf_conntrack_tuple *tuple, 137 struct nf_conntrack_tuple target, 138 struct flow_action *action) 139 { 140 __be16 target_src = target.src.u.tcp.port; 141 __be16 target_dst = target.dst.u.tcp.port; 142 143 if (target_src != tuple->src.u.tcp.port) 144 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_TCP, 145 offsetof(struct tcphdr, source), 146 0xFFFF, be16_to_cpu(target_src)); 147 if (target_dst != tuple->dst.u.tcp.port) 148 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_TCP, 149 offsetof(struct tcphdr, dest), 150 0xFFFF, be16_to_cpu(target_dst)); 151 } 152 153 static void 154 tcf_ct_flow_table_add_action_nat_udp(const struct nf_conntrack_tuple *tuple, 155 struct nf_conntrack_tuple target, 156 struct flow_action *action) 157 { 158 __be16 target_src = target.src.u.udp.port; 159 __be16 target_dst = target.dst.u.udp.port; 160 161 if (target_src != tuple->src.u.udp.port) 162 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_UDP, 163 offsetof(struct udphdr, source), 164 0xFFFF, be16_to_cpu(target_src)); 165 if (target_dst != tuple->dst.u.udp.port) 166 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_UDP, 167 offsetof(struct udphdr, dest), 168 0xFFFF, be16_to_cpu(target_dst)); 169 } 170 171 static void tcf_ct_flow_table_add_action_meta(struct nf_conn *ct, 172 enum ip_conntrack_dir dir, 173 enum ip_conntrack_info ctinfo, 174 struct flow_action *action) 175 { 176 struct nf_conn_labels *ct_labels; 177 struct flow_action_entry *entry; 178 u32 *act_ct_labels; 179 180 entry = tcf_ct_flow_table_flow_action_get_next(action); 181 entry->id = FLOW_ACTION_CT_METADATA; 182 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 183 entry->ct_metadata.mark = READ_ONCE(ct->mark); 184 #endif 185 /* aligns with the CT reference on the SKB nf_ct_set */ 186 entry->ct_metadata.cookie = (unsigned long)ct | ctinfo; 187 entry->ct_metadata.orig_dir = dir == IP_CT_DIR_ORIGINAL; 188 189 act_ct_labels = entry->ct_metadata.labels; 190 ct_labels = nf_ct_labels_find(ct); 191 if (ct_labels) 192 memcpy(act_ct_labels, ct_labels->bits, NF_CT_LABELS_MAX_SIZE); 193 else 194 memset(act_ct_labels, 0, NF_CT_LABELS_MAX_SIZE); 195 } 196 197 static int tcf_ct_flow_table_add_action_nat(struct net *net, 198 struct nf_conn *ct, 199 enum ip_conntrack_dir dir, 200 struct flow_action *action) 201 { 202 const struct nf_conntrack_tuple *tuple = &ct->tuplehash[dir].tuple; 203 struct nf_conntrack_tuple target; 204 205 if (!(ct->status & IPS_NAT_MASK)) 206 return 0; 207 208 nf_ct_invert_tuple(&target, &ct->tuplehash[!dir].tuple); 209 210 switch (tuple->src.l3num) { 211 case NFPROTO_IPV4: 212 tcf_ct_flow_table_add_action_nat_ipv4(tuple, target, 213 action); 214 break; 215 case NFPROTO_IPV6: 216 tcf_ct_flow_table_add_action_nat_ipv6(tuple, target, 217 action); 218 break; 219 default: 220 return -EOPNOTSUPP; 221 } 222 223 switch (nf_ct_protonum(ct)) { 224 case IPPROTO_TCP: 225 tcf_ct_flow_table_add_action_nat_tcp(tuple, target, action); 226 break; 227 case IPPROTO_UDP: 228 tcf_ct_flow_table_add_action_nat_udp(tuple, target, action); 229 break; 230 default: 231 return -EOPNOTSUPP; 232 } 233 234 return 0; 235 } 236 237 static int tcf_ct_flow_table_fill_actions(struct net *net, 238 struct flow_offload *flow, 239 enum flow_offload_tuple_dir tdir, 240 struct nf_flow_rule *flow_rule) 241 { 242 struct flow_action *action = &flow_rule->rule->action; 243 int num_entries = action->num_entries; 244 struct nf_conn *ct = flow->ct; 245 enum ip_conntrack_info ctinfo; 246 enum ip_conntrack_dir dir; 247 int i, err; 248 249 switch (tdir) { 250 case FLOW_OFFLOAD_DIR_ORIGINAL: 251 dir = IP_CT_DIR_ORIGINAL; 252 ctinfo = test_bit(IPS_SEEN_REPLY_BIT, &ct->status) ? 253 IP_CT_ESTABLISHED : IP_CT_NEW; 254 if (ctinfo == IP_CT_ESTABLISHED) 255 set_bit(NF_FLOW_HW_ESTABLISHED, &flow->flags); 256 break; 257 case FLOW_OFFLOAD_DIR_REPLY: 258 dir = IP_CT_DIR_REPLY; 259 ctinfo = IP_CT_ESTABLISHED_REPLY; 260 break; 261 default: 262 return -EOPNOTSUPP; 263 } 264 265 err = tcf_ct_flow_table_add_action_nat(net, ct, dir, action); 266 if (err) 267 goto err_nat; 268 269 tcf_ct_flow_table_add_action_meta(ct, dir, ctinfo, action); 270 return 0; 271 272 err_nat: 273 /* Clear filled actions */ 274 for (i = num_entries; i < action->num_entries; i++) 275 memset(&action->entries[i], 0, sizeof(action->entries[i])); 276 action->num_entries = num_entries; 277 278 return err; 279 } 280 281 static struct nf_flowtable_type flowtable_ct = { 282 .action = tcf_ct_flow_table_fill_actions, 283 .owner = THIS_MODULE, 284 }; 285 286 static int tcf_ct_flow_table_get(struct net *net, struct tcf_ct_params *params) 287 { 288 struct tcf_ct_flow_table *ct_ft; 289 int err = -ENOMEM; 290 291 mutex_lock(&zones_mutex); 292 ct_ft = rhashtable_lookup_fast(&zones_ht, ¶ms->zone, zones_params); 293 if (ct_ft && refcount_inc_not_zero(&ct_ft->ref)) 294 goto out_unlock; 295 296 ct_ft = kzalloc(sizeof(*ct_ft), GFP_KERNEL); 297 if (!ct_ft) 298 goto err_alloc; 299 refcount_set(&ct_ft->ref, 1); 300 301 ct_ft->zone = params->zone; 302 err = rhashtable_insert_fast(&zones_ht, &ct_ft->node, zones_params); 303 if (err) 304 goto err_insert; 305 306 ct_ft->nf_ft.type = &flowtable_ct; 307 ct_ft->nf_ft.flags |= NF_FLOWTABLE_HW_OFFLOAD | 308 NF_FLOWTABLE_COUNTER; 309 err = nf_flow_table_init(&ct_ft->nf_ft); 310 if (err) 311 goto err_init; 312 write_pnet(&ct_ft->nf_ft.net, net); 313 314 __module_get(THIS_MODULE); 315 out_unlock: 316 params->ct_ft = ct_ft; 317 params->nf_ft = &ct_ft->nf_ft; 318 mutex_unlock(&zones_mutex); 319 320 return 0; 321 322 err_init: 323 rhashtable_remove_fast(&zones_ht, &ct_ft->node, zones_params); 324 err_insert: 325 kfree(ct_ft); 326 err_alloc: 327 mutex_unlock(&zones_mutex); 328 return err; 329 } 330 331 static void tcf_ct_flow_table_cleanup_work(struct work_struct *work) 332 { 333 struct flow_block_cb *block_cb, *tmp_cb; 334 struct tcf_ct_flow_table *ct_ft; 335 struct flow_block *block; 336 337 ct_ft = container_of(to_rcu_work(work), struct tcf_ct_flow_table, 338 rwork); 339 nf_flow_table_free(&ct_ft->nf_ft); 340 341 /* Remove any remaining callbacks before cleanup */ 342 block = &ct_ft->nf_ft.flow_block; 343 down_write(&ct_ft->nf_ft.flow_block_lock); 344 list_for_each_entry_safe(block_cb, tmp_cb, &block->cb_list, list) { 345 list_del(&block_cb->list); 346 flow_block_cb_free(block_cb); 347 } 348 up_write(&ct_ft->nf_ft.flow_block_lock); 349 kfree(ct_ft); 350 351 module_put(THIS_MODULE); 352 } 353 354 static void tcf_ct_flow_table_put(struct tcf_ct_flow_table *ct_ft) 355 { 356 if (refcount_dec_and_test(&ct_ft->ref)) { 357 rhashtable_remove_fast(&zones_ht, &ct_ft->node, zones_params); 358 INIT_RCU_WORK(&ct_ft->rwork, tcf_ct_flow_table_cleanup_work); 359 queue_rcu_work(act_ct_wq, &ct_ft->rwork); 360 } 361 } 362 363 static void tcf_ct_flow_tc_ifidx(struct flow_offload *entry, 364 struct nf_conn_act_ct_ext *act_ct_ext, u8 dir) 365 { 366 entry->tuplehash[dir].tuple.xmit_type = FLOW_OFFLOAD_XMIT_TC; 367 entry->tuplehash[dir].tuple.tc.iifidx = act_ct_ext->ifindex[dir]; 368 } 369 370 static void tcf_ct_flow_table_add(struct tcf_ct_flow_table *ct_ft, 371 struct nf_conn *ct, 372 bool tcp, bool bidirectional) 373 { 374 struct nf_conn_act_ct_ext *act_ct_ext; 375 struct flow_offload *entry; 376 int err; 377 378 if (test_and_set_bit(IPS_OFFLOAD_BIT, &ct->status)) 379 return; 380 381 entry = flow_offload_alloc(ct); 382 if (!entry) { 383 WARN_ON_ONCE(1); 384 goto err_alloc; 385 } 386 387 if (tcp) { 388 ct->proto.tcp.seen[0].flags |= IP_CT_TCP_FLAG_BE_LIBERAL; 389 ct->proto.tcp.seen[1].flags |= IP_CT_TCP_FLAG_BE_LIBERAL; 390 } 391 if (bidirectional) 392 __set_bit(NF_FLOW_HW_BIDIRECTIONAL, &entry->flags); 393 394 act_ct_ext = nf_conn_act_ct_ext_find(ct); 395 if (act_ct_ext) { 396 tcf_ct_flow_tc_ifidx(entry, act_ct_ext, FLOW_OFFLOAD_DIR_ORIGINAL); 397 tcf_ct_flow_tc_ifidx(entry, act_ct_ext, FLOW_OFFLOAD_DIR_REPLY); 398 } 399 400 err = flow_offload_add(&ct_ft->nf_ft, entry); 401 if (err) 402 goto err_add; 403 404 return; 405 406 err_add: 407 flow_offload_free(entry); 408 err_alloc: 409 clear_bit(IPS_OFFLOAD_BIT, &ct->status); 410 } 411 412 static void tcf_ct_flow_table_process_conn(struct tcf_ct_flow_table *ct_ft, 413 struct nf_conn *ct, 414 enum ip_conntrack_info ctinfo) 415 { 416 bool tcp = false, bidirectional = true; 417 418 switch (nf_ct_protonum(ct)) { 419 case IPPROTO_TCP: 420 if ((ctinfo != IP_CT_ESTABLISHED && 421 ctinfo != IP_CT_ESTABLISHED_REPLY) || 422 !test_bit(IPS_ASSURED_BIT, &ct->status) || 423 ct->proto.tcp.state != TCP_CONNTRACK_ESTABLISHED) 424 return; 425 426 tcp = true; 427 break; 428 case IPPROTO_UDP: 429 if (!nf_ct_is_confirmed(ct)) 430 return; 431 if (!test_bit(IPS_ASSURED_BIT, &ct->status)) 432 bidirectional = false; 433 break; 434 #ifdef CONFIG_NF_CT_PROTO_GRE 435 case IPPROTO_GRE: { 436 struct nf_conntrack_tuple *tuple; 437 438 if ((ctinfo != IP_CT_ESTABLISHED && 439 ctinfo != IP_CT_ESTABLISHED_REPLY) || 440 !test_bit(IPS_ASSURED_BIT, &ct->status) || 441 ct->status & IPS_NAT_MASK) 442 return; 443 444 tuple = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple; 445 /* No support for GRE v1 */ 446 if (tuple->src.u.gre.key || tuple->dst.u.gre.key) 447 return; 448 break; 449 } 450 #endif 451 default: 452 return; 453 } 454 455 if (nf_ct_ext_exist(ct, NF_CT_EXT_HELPER) || 456 ct->status & IPS_SEQ_ADJUST) 457 return; 458 459 tcf_ct_flow_table_add(ct_ft, ct, tcp, bidirectional); 460 } 461 462 static bool 463 tcf_ct_flow_table_fill_tuple_ipv4(struct sk_buff *skb, 464 struct flow_offload_tuple *tuple, 465 struct tcphdr **tcph) 466 { 467 struct flow_ports *ports; 468 unsigned int thoff; 469 struct iphdr *iph; 470 size_t hdrsize; 471 u8 ipproto; 472 473 if (!pskb_network_may_pull(skb, sizeof(*iph))) 474 return false; 475 476 iph = ip_hdr(skb); 477 thoff = iph->ihl * 4; 478 479 if (ip_is_fragment(iph) || 480 unlikely(thoff != sizeof(struct iphdr))) 481 return false; 482 483 ipproto = iph->protocol; 484 switch (ipproto) { 485 case IPPROTO_TCP: 486 hdrsize = sizeof(struct tcphdr); 487 break; 488 case IPPROTO_UDP: 489 hdrsize = sizeof(*ports); 490 break; 491 #ifdef CONFIG_NF_CT_PROTO_GRE 492 case IPPROTO_GRE: 493 hdrsize = sizeof(struct gre_base_hdr); 494 break; 495 #endif 496 default: 497 return false; 498 } 499 500 if (iph->ttl <= 1) 501 return false; 502 503 if (!pskb_network_may_pull(skb, thoff + hdrsize)) 504 return false; 505 506 switch (ipproto) { 507 case IPPROTO_TCP: 508 *tcph = (void *)(skb_network_header(skb) + thoff); 509 fallthrough; 510 case IPPROTO_UDP: 511 ports = (struct flow_ports *)(skb_network_header(skb) + thoff); 512 tuple->src_port = ports->source; 513 tuple->dst_port = ports->dest; 514 break; 515 case IPPROTO_GRE: { 516 struct gre_base_hdr *greh; 517 518 greh = (struct gre_base_hdr *)(skb_network_header(skb) + thoff); 519 if ((greh->flags & GRE_VERSION) != GRE_VERSION_0) 520 return false; 521 break; 522 } 523 } 524 525 iph = ip_hdr(skb); 526 527 tuple->src_v4.s_addr = iph->saddr; 528 tuple->dst_v4.s_addr = iph->daddr; 529 tuple->l3proto = AF_INET; 530 tuple->l4proto = ipproto; 531 532 return true; 533 } 534 535 static bool 536 tcf_ct_flow_table_fill_tuple_ipv6(struct sk_buff *skb, 537 struct flow_offload_tuple *tuple, 538 struct tcphdr **tcph) 539 { 540 struct flow_ports *ports; 541 struct ipv6hdr *ip6h; 542 unsigned int thoff; 543 size_t hdrsize; 544 u8 nexthdr; 545 546 if (!pskb_network_may_pull(skb, sizeof(*ip6h))) 547 return false; 548 549 ip6h = ipv6_hdr(skb); 550 thoff = sizeof(*ip6h); 551 552 nexthdr = ip6h->nexthdr; 553 switch (nexthdr) { 554 case IPPROTO_TCP: 555 hdrsize = sizeof(struct tcphdr); 556 break; 557 case IPPROTO_UDP: 558 hdrsize = sizeof(*ports); 559 break; 560 #ifdef CONFIG_NF_CT_PROTO_GRE 561 case IPPROTO_GRE: 562 hdrsize = sizeof(struct gre_base_hdr); 563 break; 564 #endif 565 default: 566 return false; 567 } 568 569 if (ip6h->hop_limit <= 1) 570 return false; 571 572 if (!pskb_network_may_pull(skb, thoff + hdrsize)) 573 return false; 574 575 switch (nexthdr) { 576 case IPPROTO_TCP: 577 *tcph = (void *)(skb_network_header(skb) + thoff); 578 fallthrough; 579 case IPPROTO_UDP: 580 ports = (struct flow_ports *)(skb_network_header(skb) + thoff); 581 tuple->src_port = ports->source; 582 tuple->dst_port = ports->dest; 583 break; 584 case IPPROTO_GRE: { 585 struct gre_base_hdr *greh; 586 587 greh = (struct gre_base_hdr *)(skb_network_header(skb) + thoff); 588 if ((greh->flags & GRE_VERSION) != GRE_VERSION_0) 589 return false; 590 break; 591 } 592 } 593 594 ip6h = ipv6_hdr(skb); 595 596 tuple->src_v6 = ip6h->saddr; 597 tuple->dst_v6 = ip6h->daddr; 598 tuple->l3proto = AF_INET6; 599 tuple->l4proto = nexthdr; 600 601 return true; 602 } 603 604 static bool tcf_ct_flow_table_lookup(struct tcf_ct_params *p, 605 struct sk_buff *skb, 606 u8 family) 607 { 608 struct nf_flowtable *nf_ft = &p->ct_ft->nf_ft; 609 struct flow_offload_tuple_rhash *tuplehash; 610 struct flow_offload_tuple tuple = {}; 611 enum ip_conntrack_info ctinfo; 612 struct tcphdr *tcph = NULL; 613 struct flow_offload *flow; 614 struct nf_conn *ct; 615 u8 dir; 616 617 switch (family) { 618 case NFPROTO_IPV4: 619 if (!tcf_ct_flow_table_fill_tuple_ipv4(skb, &tuple, &tcph)) 620 return false; 621 break; 622 case NFPROTO_IPV6: 623 if (!tcf_ct_flow_table_fill_tuple_ipv6(skb, &tuple, &tcph)) 624 return false; 625 break; 626 default: 627 return false; 628 } 629 630 tuplehash = flow_offload_lookup(nf_ft, &tuple); 631 if (!tuplehash) 632 return false; 633 634 dir = tuplehash->tuple.dir; 635 flow = container_of(tuplehash, struct flow_offload, tuplehash[dir]); 636 ct = flow->ct; 637 638 if (dir == FLOW_OFFLOAD_DIR_REPLY && 639 !test_bit(NF_FLOW_HW_BIDIRECTIONAL, &flow->flags)) { 640 /* Only offload reply direction after connection became 641 * assured. 642 */ 643 if (test_bit(IPS_ASSURED_BIT, &ct->status)) 644 set_bit(NF_FLOW_HW_BIDIRECTIONAL, &flow->flags); 645 else if (test_bit(NF_FLOW_HW_ESTABLISHED, &flow->flags)) 646 /* If flow_table flow has already been updated to the 647 * established state, then don't refresh. 648 */ 649 return false; 650 } 651 652 if (tcph && (unlikely(tcph->fin || tcph->rst))) { 653 flow_offload_teardown(flow); 654 return false; 655 } 656 657 if (dir == FLOW_OFFLOAD_DIR_ORIGINAL) 658 ctinfo = test_bit(IPS_SEEN_REPLY_BIT, &ct->status) ? 659 IP_CT_ESTABLISHED : IP_CT_NEW; 660 else 661 ctinfo = IP_CT_ESTABLISHED_REPLY; 662 663 flow_offload_refresh(nf_ft, flow); 664 nf_conntrack_get(&ct->ct_general); 665 nf_ct_set(skb, ct, ctinfo); 666 if (nf_ft->flags & NF_FLOWTABLE_COUNTER) 667 nf_ct_acct_update(ct, dir, skb->len); 668 669 return true; 670 } 671 672 static int tcf_ct_flow_tables_init(void) 673 { 674 return rhashtable_init(&zones_ht, &zones_params); 675 } 676 677 static void tcf_ct_flow_tables_uninit(void) 678 { 679 rhashtable_destroy(&zones_ht); 680 } 681 682 static struct tc_action_ops act_ct_ops; 683 684 struct tc_ct_action_net { 685 struct tc_action_net tn; /* Must be first */ 686 bool labels; 687 }; 688 689 /* Determine whether skb->_nfct is equal to the result of conntrack lookup. */ 690 static bool tcf_ct_skb_nfct_cached(struct net *net, struct sk_buff *skb, 691 struct tcf_ct_params *p) 692 { 693 enum ip_conntrack_info ctinfo; 694 struct nf_conn *ct; 695 696 ct = nf_ct_get(skb, &ctinfo); 697 if (!ct) 698 return false; 699 if (!net_eq(net, read_pnet(&ct->ct_net))) 700 goto drop_ct; 701 if (nf_ct_zone(ct)->id != p->zone) 702 goto drop_ct; 703 if (p->helper) { 704 struct nf_conn_help *help; 705 706 help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER); 707 if (help && rcu_access_pointer(help->helper) != p->helper) 708 goto drop_ct; 709 } 710 711 /* Force conntrack entry direction. */ 712 if ((p->ct_action & TCA_CT_ACT_FORCE) && 713 CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) { 714 if (nf_ct_is_confirmed(ct)) 715 nf_ct_kill(ct); 716 717 goto drop_ct; 718 } 719 720 return true; 721 722 drop_ct: 723 nf_ct_put(ct); 724 nf_ct_set(skb, NULL, IP_CT_UNTRACKED); 725 726 return false; 727 } 728 729 static u8 tcf_ct_skb_nf_family(struct sk_buff *skb) 730 { 731 u8 family = NFPROTO_UNSPEC; 732 733 switch (skb_protocol(skb, true)) { 734 case htons(ETH_P_IP): 735 family = NFPROTO_IPV4; 736 break; 737 case htons(ETH_P_IPV6): 738 family = NFPROTO_IPV6; 739 break; 740 default: 741 break; 742 } 743 744 return family; 745 } 746 747 static int tcf_ct_ipv4_is_fragment(struct sk_buff *skb, bool *frag) 748 { 749 unsigned int len; 750 751 len = skb_network_offset(skb) + sizeof(struct iphdr); 752 if (unlikely(skb->len < len)) 753 return -EINVAL; 754 if (unlikely(!pskb_may_pull(skb, len))) 755 return -ENOMEM; 756 757 *frag = ip_is_fragment(ip_hdr(skb)); 758 return 0; 759 } 760 761 static int tcf_ct_ipv6_is_fragment(struct sk_buff *skb, bool *frag) 762 { 763 unsigned int flags = 0, len, payload_ofs = 0; 764 unsigned short frag_off; 765 int nexthdr; 766 767 len = skb_network_offset(skb) + sizeof(struct ipv6hdr); 768 if (unlikely(skb->len < len)) 769 return -EINVAL; 770 if (unlikely(!pskb_may_pull(skb, len))) 771 return -ENOMEM; 772 773 nexthdr = ipv6_find_hdr(skb, &payload_ofs, -1, &frag_off, &flags); 774 if (unlikely(nexthdr < 0)) 775 return -EPROTO; 776 777 *frag = flags & IP6_FH_F_FRAG; 778 return 0; 779 } 780 781 static int tcf_ct_handle_fragments(struct net *net, struct sk_buff *skb, 782 u8 family, u16 zone, bool *defrag) 783 { 784 enum ip_conntrack_info ctinfo; 785 struct nf_conn *ct; 786 int err = 0; 787 bool frag; 788 u8 proto; 789 u16 mru; 790 791 /* Previously seen (loopback)? Ignore. */ 792 ct = nf_ct_get(skb, &ctinfo); 793 if ((ct && !nf_ct_is_template(ct)) || ctinfo == IP_CT_UNTRACKED) 794 return 0; 795 796 if (family == NFPROTO_IPV4) 797 err = tcf_ct_ipv4_is_fragment(skb, &frag); 798 else 799 err = tcf_ct_ipv6_is_fragment(skb, &frag); 800 if (err || !frag) 801 return err; 802 803 skb_get(skb); 804 err = nf_ct_handle_fragments(net, skb, zone, family, &proto, &mru); 805 if (err) 806 return err; 807 808 *defrag = true; 809 tc_skb_cb(skb)->mru = mru; 810 811 return 0; 812 } 813 814 static void tcf_ct_params_free(struct tcf_ct_params *params) 815 { 816 if (params->helper) { 817 #if IS_ENABLED(CONFIG_NF_NAT) 818 if (params->ct_action & TCA_CT_ACT_NAT) 819 nf_nat_helper_put(params->helper); 820 #endif 821 nf_conntrack_helper_put(params->helper); 822 } 823 if (params->ct_ft) 824 tcf_ct_flow_table_put(params->ct_ft); 825 if (params->tmpl) 826 nf_ct_put(params->tmpl); 827 kfree(params); 828 } 829 830 static void tcf_ct_params_free_rcu(struct rcu_head *head) 831 { 832 struct tcf_ct_params *params; 833 834 params = container_of(head, struct tcf_ct_params, rcu); 835 tcf_ct_params_free(params); 836 } 837 838 static void tcf_ct_act_set_mark(struct nf_conn *ct, u32 mark, u32 mask) 839 { 840 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 841 u32 new_mark; 842 843 if (!mask) 844 return; 845 846 new_mark = mark | (READ_ONCE(ct->mark) & ~(mask)); 847 if (READ_ONCE(ct->mark) != new_mark) { 848 WRITE_ONCE(ct->mark, new_mark); 849 if (nf_ct_is_confirmed(ct)) 850 nf_conntrack_event_cache(IPCT_MARK, ct); 851 } 852 #endif 853 } 854 855 static void tcf_ct_act_set_labels(struct nf_conn *ct, 856 u32 *labels, 857 u32 *labels_m) 858 { 859 #if IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) 860 size_t labels_sz = sizeof_field(struct tcf_ct_params, labels); 861 862 if (!memchr_inv(labels_m, 0, labels_sz)) 863 return; 864 865 nf_connlabels_replace(ct, labels, labels_m, 4); 866 #endif 867 } 868 869 static int tcf_ct_act_nat(struct sk_buff *skb, 870 struct nf_conn *ct, 871 enum ip_conntrack_info ctinfo, 872 int ct_action, 873 struct nf_nat_range2 *range, 874 bool commit) 875 { 876 #if IS_ENABLED(CONFIG_NF_NAT) 877 int err, action = 0; 878 879 if (!(ct_action & TCA_CT_ACT_NAT)) 880 return NF_ACCEPT; 881 if (ct_action & TCA_CT_ACT_NAT_SRC) 882 action |= BIT(NF_NAT_MANIP_SRC); 883 if (ct_action & TCA_CT_ACT_NAT_DST) 884 action |= BIT(NF_NAT_MANIP_DST); 885 886 err = nf_ct_nat(skb, ct, ctinfo, &action, range, commit); 887 888 if (action & BIT(NF_NAT_MANIP_SRC)) 889 tc_skb_cb(skb)->post_ct_snat = 1; 890 if (action & BIT(NF_NAT_MANIP_DST)) 891 tc_skb_cb(skb)->post_ct_dnat = 1; 892 893 return err; 894 #else 895 return NF_ACCEPT; 896 #endif 897 } 898 899 TC_INDIRECT_SCOPE int tcf_ct_act(struct sk_buff *skb, const struct tc_action *a, 900 struct tcf_result *res) 901 { 902 struct net *net = dev_net(skb->dev); 903 enum ip_conntrack_info ctinfo; 904 struct tcf_ct *c = to_ct(a); 905 struct nf_conn *tmpl = NULL; 906 struct nf_hook_state state; 907 bool cached, commit, clear; 908 int nh_ofs, err, retval; 909 struct tcf_ct_params *p; 910 bool add_helper = false; 911 bool skip_add = false; 912 bool defrag = false; 913 struct nf_conn *ct; 914 u8 family; 915 916 p = rcu_dereference_bh(c->params); 917 918 retval = READ_ONCE(c->tcf_action); 919 commit = p->ct_action & TCA_CT_ACT_COMMIT; 920 clear = p->ct_action & TCA_CT_ACT_CLEAR; 921 tmpl = p->tmpl; 922 923 tcf_lastuse_update(&c->tcf_tm); 924 tcf_action_update_bstats(&c->common, skb); 925 926 if (clear) { 927 tc_skb_cb(skb)->post_ct = false; 928 ct = nf_ct_get(skb, &ctinfo); 929 if (ct) { 930 nf_ct_put(ct); 931 nf_ct_set(skb, NULL, IP_CT_UNTRACKED); 932 } 933 934 goto out_clear; 935 } 936 937 family = tcf_ct_skb_nf_family(skb); 938 if (family == NFPROTO_UNSPEC) 939 goto drop; 940 941 /* The conntrack module expects to be working at L3. 942 * We also try to pull the IPv4/6 header to linear area 943 */ 944 nh_ofs = skb_network_offset(skb); 945 skb_pull_rcsum(skb, nh_ofs); 946 err = tcf_ct_handle_fragments(net, skb, family, p->zone, &defrag); 947 if (err == -EINPROGRESS) { 948 retval = TC_ACT_STOLEN; 949 goto out_clear; 950 } 951 if (err) 952 goto drop; 953 954 err = nf_ct_skb_network_trim(skb, family); 955 if (err) 956 goto drop; 957 958 /* If we are recirculating packets to match on ct fields and 959 * committing with a separate ct action, then we don't need to 960 * actually run the packet through conntrack twice unless it's for a 961 * different zone. 962 */ 963 cached = tcf_ct_skb_nfct_cached(net, skb, p); 964 if (!cached) { 965 if (tcf_ct_flow_table_lookup(p, skb, family)) { 966 skip_add = true; 967 goto do_nat; 968 } 969 970 /* Associate skb with specified zone. */ 971 if (tmpl) { 972 nf_conntrack_put(skb_nfct(skb)); 973 nf_conntrack_get(&tmpl->ct_general); 974 nf_ct_set(skb, tmpl, IP_CT_NEW); 975 } 976 977 state.hook = NF_INET_PRE_ROUTING; 978 state.net = net; 979 state.pf = family; 980 err = nf_conntrack_in(skb, &state); 981 if (err != NF_ACCEPT) 982 goto out_push; 983 } 984 985 do_nat: 986 ct = nf_ct_get(skb, &ctinfo); 987 if (!ct) 988 goto out_push; 989 nf_ct_deliver_cached_events(ct); 990 nf_conn_act_ct_ext_fill(skb, ct, ctinfo); 991 992 err = tcf_ct_act_nat(skb, ct, ctinfo, p->ct_action, &p->range, commit); 993 if (err != NF_ACCEPT) 994 goto drop; 995 996 if (!nf_ct_is_confirmed(ct) && commit && p->helper && !nfct_help(ct)) { 997 err = __nf_ct_try_assign_helper(ct, p->tmpl, GFP_ATOMIC); 998 if (err) 999 goto drop; 1000 add_helper = true; 1001 if (p->ct_action & TCA_CT_ACT_NAT && !nfct_seqadj(ct)) { 1002 if (!nfct_seqadj_ext_add(ct)) 1003 goto drop; 1004 } 1005 } 1006 1007 if (nf_ct_is_confirmed(ct) ? ((!cached && !skip_add) || add_helper) : commit) { 1008 if (nf_ct_helper(skb, ct, ctinfo, family) != NF_ACCEPT) 1009 goto drop; 1010 } 1011 1012 if (commit) { 1013 tcf_ct_act_set_mark(ct, p->mark, p->mark_mask); 1014 tcf_ct_act_set_labels(ct, p->labels, p->labels_mask); 1015 1016 if (!nf_ct_is_confirmed(ct)) 1017 nf_conn_act_ct_ext_add(ct); 1018 1019 /* This will take care of sending queued events 1020 * even if the connection is already confirmed. 1021 */ 1022 if (nf_conntrack_confirm(skb) != NF_ACCEPT) 1023 goto drop; 1024 } 1025 1026 if (!skip_add) 1027 tcf_ct_flow_table_process_conn(p->ct_ft, ct, ctinfo); 1028 1029 out_push: 1030 skb_push_rcsum(skb, nh_ofs); 1031 1032 tc_skb_cb(skb)->post_ct = true; 1033 tc_skb_cb(skb)->zone = p->zone; 1034 out_clear: 1035 if (defrag) 1036 qdisc_skb_cb(skb)->pkt_len = skb->len; 1037 return retval; 1038 1039 drop: 1040 tcf_action_inc_drop_qstats(&c->common); 1041 return TC_ACT_SHOT; 1042 } 1043 1044 static const struct nla_policy ct_policy[TCA_CT_MAX + 1] = { 1045 [TCA_CT_ACTION] = { .type = NLA_U16 }, 1046 [TCA_CT_PARMS] = NLA_POLICY_EXACT_LEN(sizeof(struct tc_ct)), 1047 [TCA_CT_ZONE] = { .type = NLA_U16 }, 1048 [TCA_CT_MARK] = { .type = NLA_U32 }, 1049 [TCA_CT_MARK_MASK] = { .type = NLA_U32 }, 1050 [TCA_CT_LABELS] = { .type = NLA_BINARY, 1051 .len = 128 / BITS_PER_BYTE }, 1052 [TCA_CT_LABELS_MASK] = { .type = NLA_BINARY, 1053 .len = 128 / BITS_PER_BYTE }, 1054 [TCA_CT_NAT_IPV4_MIN] = { .type = NLA_U32 }, 1055 [TCA_CT_NAT_IPV4_MAX] = { .type = NLA_U32 }, 1056 [TCA_CT_NAT_IPV6_MIN] = NLA_POLICY_EXACT_LEN(sizeof(struct in6_addr)), 1057 [TCA_CT_NAT_IPV6_MAX] = NLA_POLICY_EXACT_LEN(sizeof(struct in6_addr)), 1058 [TCA_CT_NAT_PORT_MIN] = { .type = NLA_U16 }, 1059 [TCA_CT_NAT_PORT_MAX] = { .type = NLA_U16 }, 1060 [TCA_CT_HELPER_NAME] = { .type = NLA_STRING, .len = NF_CT_HELPER_NAME_LEN }, 1061 [TCA_CT_HELPER_FAMILY] = { .type = NLA_U8 }, 1062 [TCA_CT_HELPER_PROTO] = { .type = NLA_U8 }, 1063 }; 1064 1065 static int tcf_ct_fill_params_nat(struct tcf_ct_params *p, 1066 struct tc_ct *parm, 1067 struct nlattr **tb, 1068 struct netlink_ext_ack *extack) 1069 { 1070 struct nf_nat_range2 *range; 1071 1072 if (!(p->ct_action & TCA_CT_ACT_NAT)) 1073 return 0; 1074 1075 if (!IS_ENABLED(CONFIG_NF_NAT)) { 1076 NL_SET_ERR_MSG_MOD(extack, "Netfilter nat isn't enabled in kernel"); 1077 return -EOPNOTSUPP; 1078 } 1079 1080 if (!(p->ct_action & (TCA_CT_ACT_NAT_SRC | TCA_CT_ACT_NAT_DST))) 1081 return 0; 1082 1083 if ((p->ct_action & TCA_CT_ACT_NAT_SRC) && 1084 (p->ct_action & TCA_CT_ACT_NAT_DST)) { 1085 NL_SET_ERR_MSG_MOD(extack, "dnat and snat can't be enabled at the same time"); 1086 return -EOPNOTSUPP; 1087 } 1088 1089 range = &p->range; 1090 if (tb[TCA_CT_NAT_IPV4_MIN]) { 1091 struct nlattr *max_attr = tb[TCA_CT_NAT_IPV4_MAX]; 1092 1093 p->ipv4_range = true; 1094 range->flags |= NF_NAT_RANGE_MAP_IPS; 1095 range->min_addr.ip = 1096 nla_get_in_addr(tb[TCA_CT_NAT_IPV4_MIN]); 1097 1098 range->max_addr.ip = max_attr ? 1099 nla_get_in_addr(max_attr) : 1100 range->min_addr.ip; 1101 } else if (tb[TCA_CT_NAT_IPV6_MIN]) { 1102 struct nlattr *max_attr = tb[TCA_CT_NAT_IPV6_MAX]; 1103 1104 p->ipv4_range = false; 1105 range->flags |= NF_NAT_RANGE_MAP_IPS; 1106 range->min_addr.in6 = 1107 nla_get_in6_addr(tb[TCA_CT_NAT_IPV6_MIN]); 1108 1109 range->max_addr.in6 = max_attr ? 1110 nla_get_in6_addr(max_attr) : 1111 range->min_addr.in6; 1112 } 1113 1114 if (tb[TCA_CT_NAT_PORT_MIN]) { 1115 range->flags |= NF_NAT_RANGE_PROTO_SPECIFIED; 1116 range->min_proto.all = nla_get_be16(tb[TCA_CT_NAT_PORT_MIN]); 1117 1118 range->max_proto.all = tb[TCA_CT_NAT_PORT_MAX] ? 1119 nla_get_be16(tb[TCA_CT_NAT_PORT_MAX]) : 1120 range->min_proto.all; 1121 } 1122 1123 return 0; 1124 } 1125 1126 static void tcf_ct_set_key_val(struct nlattr **tb, 1127 void *val, int val_type, 1128 void *mask, int mask_type, 1129 int len) 1130 { 1131 if (!tb[val_type]) 1132 return; 1133 nla_memcpy(val, tb[val_type], len); 1134 1135 if (!mask) 1136 return; 1137 1138 if (mask_type == TCA_CT_UNSPEC || !tb[mask_type]) 1139 memset(mask, 0xff, len); 1140 else 1141 nla_memcpy(mask, tb[mask_type], len); 1142 } 1143 1144 static int tcf_ct_fill_params(struct net *net, 1145 struct tcf_ct_params *p, 1146 struct tc_ct *parm, 1147 struct nlattr **tb, 1148 struct netlink_ext_ack *extack) 1149 { 1150 struct tc_ct_action_net *tn = net_generic(net, act_ct_ops.net_id); 1151 struct nf_conntrack_zone zone; 1152 int err, family, proto, len; 1153 struct nf_conn *tmpl; 1154 char *name; 1155 1156 p->zone = NF_CT_DEFAULT_ZONE_ID; 1157 1158 tcf_ct_set_key_val(tb, 1159 &p->ct_action, TCA_CT_ACTION, 1160 NULL, TCA_CT_UNSPEC, 1161 sizeof(p->ct_action)); 1162 1163 if (p->ct_action & TCA_CT_ACT_CLEAR) 1164 return 0; 1165 1166 err = tcf_ct_fill_params_nat(p, parm, tb, extack); 1167 if (err) 1168 return err; 1169 1170 if (tb[TCA_CT_MARK]) { 1171 if (!IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)) { 1172 NL_SET_ERR_MSG_MOD(extack, "Conntrack mark isn't enabled."); 1173 return -EOPNOTSUPP; 1174 } 1175 tcf_ct_set_key_val(tb, 1176 &p->mark, TCA_CT_MARK, 1177 &p->mark_mask, TCA_CT_MARK_MASK, 1178 sizeof(p->mark)); 1179 } 1180 1181 if (tb[TCA_CT_LABELS]) { 1182 if (!IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS)) { 1183 NL_SET_ERR_MSG_MOD(extack, "Conntrack labels isn't enabled."); 1184 return -EOPNOTSUPP; 1185 } 1186 1187 if (!tn->labels) { 1188 NL_SET_ERR_MSG_MOD(extack, "Failed to set connlabel length"); 1189 return -EOPNOTSUPP; 1190 } 1191 tcf_ct_set_key_val(tb, 1192 p->labels, TCA_CT_LABELS, 1193 p->labels_mask, TCA_CT_LABELS_MASK, 1194 sizeof(p->labels)); 1195 } 1196 1197 if (tb[TCA_CT_ZONE]) { 1198 if (!IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES)) { 1199 NL_SET_ERR_MSG_MOD(extack, "Conntrack zones isn't enabled."); 1200 return -EOPNOTSUPP; 1201 } 1202 1203 tcf_ct_set_key_val(tb, 1204 &p->zone, TCA_CT_ZONE, 1205 NULL, TCA_CT_UNSPEC, 1206 sizeof(p->zone)); 1207 } 1208 1209 nf_ct_zone_init(&zone, p->zone, NF_CT_DEFAULT_ZONE_DIR, 0); 1210 tmpl = nf_ct_tmpl_alloc(net, &zone, GFP_KERNEL); 1211 if (!tmpl) { 1212 NL_SET_ERR_MSG_MOD(extack, "Failed to allocate conntrack template"); 1213 return -ENOMEM; 1214 } 1215 p->tmpl = tmpl; 1216 if (tb[TCA_CT_HELPER_NAME]) { 1217 name = nla_data(tb[TCA_CT_HELPER_NAME]); 1218 len = nla_len(tb[TCA_CT_HELPER_NAME]); 1219 if (len > 16 || name[len - 1] != '\0') { 1220 NL_SET_ERR_MSG_MOD(extack, "Failed to parse helper name."); 1221 err = -EINVAL; 1222 goto err; 1223 } 1224 family = tb[TCA_CT_HELPER_FAMILY] ? nla_get_u8(tb[TCA_CT_HELPER_FAMILY]) : AF_INET; 1225 proto = tb[TCA_CT_HELPER_PROTO] ? nla_get_u8(tb[TCA_CT_HELPER_PROTO]) : IPPROTO_TCP; 1226 err = nf_ct_add_helper(tmpl, name, family, proto, 1227 p->ct_action & TCA_CT_ACT_NAT, &p->helper); 1228 if (err) { 1229 NL_SET_ERR_MSG_MOD(extack, "Failed to add helper"); 1230 goto err; 1231 } 1232 } 1233 1234 __set_bit(IPS_CONFIRMED_BIT, &tmpl->status); 1235 return 0; 1236 err: 1237 nf_ct_put(p->tmpl); 1238 p->tmpl = NULL; 1239 return err; 1240 } 1241 1242 static int tcf_ct_init(struct net *net, struct nlattr *nla, 1243 struct nlattr *est, struct tc_action **a, 1244 struct tcf_proto *tp, u32 flags, 1245 struct netlink_ext_ack *extack) 1246 { 1247 struct tc_action_net *tn = net_generic(net, act_ct_ops.net_id); 1248 bool bind = flags & TCA_ACT_FLAGS_BIND; 1249 struct tcf_ct_params *params = NULL; 1250 struct nlattr *tb[TCA_CT_MAX + 1]; 1251 struct tcf_chain *goto_ch = NULL; 1252 struct tc_ct *parm; 1253 struct tcf_ct *c; 1254 int err, res = 0; 1255 u32 index; 1256 1257 if (!nla) { 1258 NL_SET_ERR_MSG_MOD(extack, "Ct requires attributes to be passed"); 1259 return -EINVAL; 1260 } 1261 1262 err = nla_parse_nested(tb, TCA_CT_MAX, nla, ct_policy, extack); 1263 if (err < 0) 1264 return err; 1265 1266 if (!tb[TCA_CT_PARMS]) { 1267 NL_SET_ERR_MSG_MOD(extack, "Missing required ct parameters"); 1268 return -EINVAL; 1269 } 1270 parm = nla_data(tb[TCA_CT_PARMS]); 1271 index = parm->index; 1272 err = tcf_idr_check_alloc(tn, &index, a, bind); 1273 if (err < 0) 1274 return err; 1275 1276 if (!err) { 1277 err = tcf_idr_create_from_flags(tn, index, est, a, 1278 &act_ct_ops, bind, flags); 1279 if (err) { 1280 tcf_idr_cleanup(tn, index); 1281 return err; 1282 } 1283 res = ACT_P_CREATED; 1284 } else { 1285 if (bind) 1286 return 0; 1287 1288 if (!(flags & TCA_ACT_FLAGS_REPLACE)) { 1289 tcf_idr_release(*a, bind); 1290 return -EEXIST; 1291 } 1292 } 1293 err = tcf_action_check_ctrlact(parm->action, tp, &goto_ch, extack); 1294 if (err < 0) 1295 goto cleanup; 1296 1297 c = to_ct(*a); 1298 1299 params = kzalloc(sizeof(*params), GFP_KERNEL); 1300 if (unlikely(!params)) { 1301 err = -ENOMEM; 1302 goto cleanup; 1303 } 1304 1305 err = tcf_ct_fill_params(net, params, parm, tb, extack); 1306 if (err) 1307 goto cleanup; 1308 1309 err = tcf_ct_flow_table_get(net, params); 1310 if (err) 1311 goto cleanup; 1312 1313 spin_lock_bh(&c->tcf_lock); 1314 goto_ch = tcf_action_set_ctrlact(*a, parm->action, goto_ch); 1315 params = rcu_replace_pointer(c->params, params, 1316 lockdep_is_held(&c->tcf_lock)); 1317 spin_unlock_bh(&c->tcf_lock); 1318 1319 if (goto_ch) 1320 tcf_chain_put_by_act(goto_ch); 1321 if (params) 1322 call_rcu(¶ms->rcu, tcf_ct_params_free_rcu); 1323 1324 return res; 1325 1326 cleanup: 1327 if (goto_ch) 1328 tcf_chain_put_by_act(goto_ch); 1329 if (params) 1330 tcf_ct_params_free(params); 1331 tcf_idr_release(*a, bind); 1332 return err; 1333 } 1334 1335 static void tcf_ct_cleanup(struct tc_action *a) 1336 { 1337 struct tcf_ct_params *params; 1338 struct tcf_ct *c = to_ct(a); 1339 1340 params = rcu_dereference_protected(c->params, 1); 1341 if (params) 1342 call_rcu(¶ms->rcu, tcf_ct_params_free_rcu); 1343 } 1344 1345 static int tcf_ct_dump_key_val(struct sk_buff *skb, 1346 void *val, int val_type, 1347 void *mask, int mask_type, 1348 int len) 1349 { 1350 int err; 1351 1352 if (mask && !memchr_inv(mask, 0, len)) 1353 return 0; 1354 1355 err = nla_put(skb, val_type, len, val); 1356 if (err) 1357 return err; 1358 1359 if (mask_type != TCA_CT_UNSPEC) { 1360 err = nla_put(skb, mask_type, len, mask); 1361 if (err) 1362 return err; 1363 } 1364 1365 return 0; 1366 } 1367 1368 static int tcf_ct_dump_nat(struct sk_buff *skb, struct tcf_ct_params *p) 1369 { 1370 struct nf_nat_range2 *range = &p->range; 1371 1372 if (!(p->ct_action & TCA_CT_ACT_NAT)) 1373 return 0; 1374 1375 if (!(p->ct_action & (TCA_CT_ACT_NAT_SRC | TCA_CT_ACT_NAT_DST))) 1376 return 0; 1377 1378 if (range->flags & NF_NAT_RANGE_MAP_IPS) { 1379 if (p->ipv4_range) { 1380 if (nla_put_in_addr(skb, TCA_CT_NAT_IPV4_MIN, 1381 range->min_addr.ip)) 1382 return -1; 1383 if (nla_put_in_addr(skb, TCA_CT_NAT_IPV4_MAX, 1384 range->max_addr.ip)) 1385 return -1; 1386 } else { 1387 if (nla_put_in6_addr(skb, TCA_CT_NAT_IPV6_MIN, 1388 &range->min_addr.in6)) 1389 return -1; 1390 if (nla_put_in6_addr(skb, TCA_CT_NAT_IPV6_MAX, 1391 &range->max_addr.in6)) 1392 return -1; 1393 } 1394 } 1395 1396 if (range->flags & NF_NAT_RANGE_PROTO_SPECIFIED) { 1397 if (nla_put_be16(skb, TCA_CT_NAT_PORT_MIN, 1398 range->min_proto.all)) 1399 return -1; 1400 if (nla_put_be16(skb, TCA_CT_NAT_PORT_MAX, 1401 range->max_proto.all)) 1402 return -1; 1403 } 1404 1405 return 0; 1406 } 1407 1408 static int tcf_ct_dump_helper(struct sk_buff *skb, struct nf_conntrack_helper *helper) 1409 { 1410 if (!helper) 1411 return 0; 1412 1413 if (nla_put_string(skb, TCA_CT_HELPER_NAME, helper->name) || 1414 nla_put_u8(skb, TCA_CT_HELPER_FAMILY, helper->tuple.src.l3num) || 1415 nla_put_u8(skb, TCA_CT_HELPER_PROTO, helper->tuple.dst.protonum)) 1416 return -1; 1417 1418 return 0; 1419 } 1420 1421 static inline int tcf_ct_dump(struct sk_buff *skb, struct tc_action *a, 1422 int bind, int ref) 1423 { 1424 unsigned char *b = skb_tail_pointer(skb); 1425 struct tcf_ct *c = to_ct(a); 1426 struct tcf_ct_params *p; 1427 1428 struct tc_ct opt = { 1429 .index = c->tcf_index, 1430 .refcnt = refcount_read(&c->tcf_refcnt) - ref, 1431 .bindcnt = atomic_read(&c->tcf_bindcnt) - bind, 1432 }; 1433 struct tcf_t t; 1434 1435 spin_lock_bh(&c->tcf_lock); 1436 p = rcu_dereference_protected(c->params, 1437 lockdep_is_held(&c->tcf_lock)); 1438 opt.action = c->tcf_action; 1439 1440 if (tcf_ct_dump_key_val(skb, 1441 &p->ct_action, TCA_CT_ACTION, 1442 NULL, TCA_CT_UNSPEC, 1443 sizeof(p->ct_action))) 1444 goto nla_put_failure; 1445 1446 if (p->ct_action & TCA_CT_ACT_CLEAR) 1447 goto skip_dump; 1448 1449 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && 1450 tcf_ct_dump_key_val(skb, 1451 &p->mark, TCA_CT_MARK, 1452 &p->mark_mask, TCA_CT_MARK_MASK, 1453 sizeof(p->mark))) 1454 goto nla_put_failure; 1455 1456 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 1457 tcf_ct_dump_key_val(skb, 1458 p->labels, TCA_CT_LABELS, 1459 p->labels_mask, TCA_CT_LABELS_MASK, 1460 sizeof(p->labels))) 1461 goto nla_put_failure; 1462 1463 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 1464 tcf_ct_dump_key_val(skb, 1465 &p->zone, TCA_CT_ZONE, 1466 NULL, TCA_CT_UNSPEC, 1467 sizeof(p->zone))) 1468 goto nla_put_failure; 1469 1470 if (tcf_ct_dump_nat(skb, p)) 1471 goto nla_put_failure; 1472 1473 if (tcf_ct_dump_helper(skb, p->helper)) 1474 goto nla_put_failure; 1475 1476 skip_dump: 1477 if (nla_put(skb, TCA_CT_PARMS, sizeof(opt), &opt)) 1478 goto nla_put_failure; 1479 1480 tcf_tm_dump(&t, &c->tcf_tm); 1481 if (nla_put_64bit(skb, TCA_CT_TM, sizeof(t), &t, TCA_CT_PAD)) 1482 goto nla_put_failure; 1483 spin_unlock_bh(&c->tcf_lock); 1484 1485 return skb->len; 1486 nla_put_failure: 1487 spin_unlock_bh(&c->tcf_lock); 1488 nlmsg_trim(skb, b); 1489 return -1; 1490 } 1491 1492 static void tcf_stats_update(struct tc_action *a, u64 bytes, u64 packets, 1493 u64 drops, u64 lastuse, bool hw) 1494 { 1495 struct tcf_ct *c = to_ct(a); 1496 1497 tcf_action_update_stats(a, bytes, packets, drops, hw); 1498 c->tcf_tm.lastuse = max_t(u64, c->tcf_tm.lastuse, lastuse); 1499 } 1500 1501 static int tcf_ct_offload_act_setup(struct tc_action *act, void *entry_data, 1502 u32 *index_inc, bool bind, 1503 struct netlink_ext_ack *extack) 1504 { 1505 if (bind) { 1506 struct flow_action_entry *entry = entry_data; 1507 1508 entry->id = FLOW_ACTION_CT; 1509 entry->ct.action = tcf_ct_action(act); 1510 entry->ct.zone = tcf_ct_zone(act); 1511 entry->ct.flow_table = tcf_ct_ft(act); 1512 *index_inc = 1; 1513 } else { 1514 struct flow_offload_action *fl_action = entry_data; 1515 1516 fl_action->id = FLOW_ACTION_CT; 1517 } 1518 1519 return 0; 1520 } 1521 1522 static struct tc_action_ops act_ct_ops = { 1523 .kind = "ct", 1524 .id = TCA_ID_CT, 1525 .owner = THIS_MODULE, 1526 .act = tcf_ct_act, 1527 .dump = tcf_ct_dump, 1528 .init = tcf_ct_init, 1529 .cleanup = tcf_ct_cleanup, 1530 .stats_update = tcf_stats_update, 1531 .offload_act_setup = tcf_ct_offload_act_setup, 1532 .size = sizeof(struct tcf_ct), 1533 }; 1534 1535 static __net_init int ct_init_net(struct net *net) 1536 { 1537 unsigned int n_bits = sizeof_field(struct tcf_ct_params, labels) * 8; 1538 struct tc_ct_action_net *tn = net_generic(net, act_ct_ops.net_id); 1539 1540 if (nf_connlabels_get(net, n_bits - 1)) { 1541 tn->labels = false; 1542 pr_err("act_ct: Failed to set connlabels length"); 1543 } else { 1544 tn->labels = true; 1545 } 1546 1547 return tc_action_net_init(net, &tn->tn, &act_ct_ops); 1548 } 1549 1550 static void __net_exit ct_exit_net(struct list_head *net_list) 1551 { 1552 struct net *net; 1553 1554 rtnl_lock(); 1555 list_for_each_entry(net, net_list, exit_list) { 1556 struct tc_ct_action_net *tn = net_generic(net, act_ct_ops.net_id); 1557 1558 if (tn->labels) 1559 nf_connlabels_put(net); 1560 } 1561 rtnl_unlock(); 1562 1563 tc_action_net_exit(net_list, act_ct_ops.net_id); 1564 } 1565 1566 static struct pernet_operations ct_net_ops = { 1567 .init = ct_init_net, 1568 .exit_batch = ct_exit_net, 1569 .id = &act_ct_ops.net_id, 1570 .size = sizeof(struct tc_ct_action_net), 1571 }; 1572 1573 static int __init ct_init_module(void) 1574 { 1575 int err; 1576 1577 act_ct_wq = alloc_ordered_workqueue("act_ct_workqueue", 0); 1578 if (!act_ct_wq) 1579 return -ENOMEM; 1580 1581 err = tcf_ct_flow_tables_init(); 1582 if (err) 1583 goto err_tbl_init; 1584 1585 err = tcf_register_action(&act_ct_ops, &ct_net_ops); 1586 if (err) 1587 goto err_register; 1588 1589 static_branch_inc(&tcf_frag_xmit_count); 1590 1591 return 0; 1592 1593 err_register: 1594 tcf_ct_flow_tables_uninit(); 1595 err_tbl_init: 1596 destroy_workqueue(act_ct_wq); 1597 return err; 1598 } 1599 1600 static void __exit ct_cleanup_module(void) 1601 { 1602 static_branch_dec(&tcf_frag_xmit_count); 1603 tcf_unregister_action(&act_ct_ops, &ct_net_ops); 1604 tcf_ct_flow_tables_uninit(); 1605 destroy_workqueue(act_ct_wq); 1606 } 1607 1608 module_init(ct_init_module); 1609 module_exit(ct_cleanup_module); 1610 MODULE_AUTHOR("Paul Blakey <paulb@mellanox.com>"); 1611 MODULE_AUTHOR("Yossi Kuperman <yossiku@mellanox.com>"); 1612 MODULE_AUTHOR("Marcelo Ricardo Leitner <marcelo.leitner@gmail.com>"); 1613 MODULE_DESCRIPTION("Connection tracking action"); 1614 MODULE_LICENSE("GPL v2"); 1615