xref: /openbmc/linux/net/sched/act_ct.c (revision 50fc8d92)
1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB
2 /* -
3  * net/sched/act_ct.c  Connection Tracking action
4  *
5  * Authors:   Paul Blakey <paulb@mellanox.com>
6  *            Yossi Kuperman <yossiku@mellanox.com>
7  *            Marcelo Ricardo Leitner <marcelo.leitner@gmail.com>
8  */
9 
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/skbuff.h>
14 #include <linux/rtnetlink.h>
15 #include <linux/pkt_cls.h>
16 #include <linux/ip.h>
17 #include <linux/ipv6.h>
18 #include <linux/rhashtable.h>
19 #include <net/netlink.h>
20 #include <net/pkt_sched.h>
21 #include <net/pkt_cls.h>
22 #include <net/act_api.h>
23 #include <net/ip.h>
24 #include <net/ipv6_frag.h>
25 #include <uapi/linux/tc_act/tc_ct.h>
26 #include <net/tc_act/tc_ct.h>
27 
28 #include <net/netfilter/nf_flow_table.h>
29 #include <net/netfilter/nf_conntrack.h>
30 #include <net/netfilter/nf_conntrack_core.h>
31 #include <net/netfilter/nf_conntrack_zones.h>
32 #include <net/netfilter/nf_conntrack_helper.h>
33 #include <net/netfilter/nf_conntrack_acct.h>
34 #include <net/netfilter/ipv6/nf_defrag_ipv6.h>
35 #include <uapi/linux/netfilter/nf_nat.h>
36 
37 static struct workqueue_struct *act_ct_wq;
38 static struct rhashtable zones_ht;
39 static DEFINE_MUTEX(zones_mutex);
40 
41 struct tcf_ct_flow_table {
42 	struct rhash_head node; /* In zones tables */
43 
44 	struct rcu_work rwork;
45 	struct nf_flowtable nf_ft;
46 	refcount_t ref;
47 	u16 zone;
48 
49 	bool dying;
50 };
51 
52 static const struct rhashtable_params zones_params = {
53 	.head_offset = offsetof(struct tcf_ct_flow_table, node),
54 	.key_offset = offsetof(struct tcf_ct_flow_table, zone),
55 	.key_len = sizeof_field(struct tcf_ct_flow_table, zone),
56 	.automatic_shrinking = true,
57 };
58 
59 static struct flow_action_entry *
60 tcf_ct_flow_table_flow_action_get_next(struct flow_action *flow_action)
61 {
62 	int i = flow_action->num_entries++;
63 
64 	return &flow_action->entries[i];
65 }
66 
67 static void tcf_ct_add_mangle_action(struct flow_action *action,
68 				     enum flow_action_mangle_base htype,
69 				     u32 offset,
70 				     u32 mask,
71 				     u32 val)
72 {
73 	struct flow_action_entry *entry;
74 
75 	entry = tcf_ct_flow_table_flow_action_get_next(action);
76 	entry->id = FLOW_ACTION_MANGLE;
77 	entry->mangle.htype = htype;
78 	entry->mangle.mask = ~mask;
79 	entry->mangle.offset = offset;
80 	entry->mangle.val = val;
81 }
82 
83 /* The following nat helper functions check if the inverted reverse tuple
84  * (target) is different then the current dir tuple - meaning nat for ports
85  * and/or ip is needed, and add the relevant mangle actions.
86  */
87 static void
88 tcf_ct_flow_table_add_action_nat_ipv4(const struct nf_conntrack_tuple *tuple,
89 				      struct nf_conntrack_tuple target,
90 				      struct flow_action *action)
91 {
92 	if (memcmp(&target.src.u3, &tuple->src.u3, sizeof(target.src.u3)))
93 		tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP4,
94 					 offsetof(struct iphdr, saddr),
95 					 0xFFFFFFFF,
96 					 be32_to_cpu(target.src.u3.ip));
97 	if (memcmp(&target.dst.u3, &tuple->dst.u3, sizeof(target.dst.u3)))
98 		tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP4,
99 					 offsetof(struct iphdr, daddr),
100 					 0xFFFFFFFF,
101 					 be32_to_cpu(target.dst.u3.ip));
102 }
103 
104 static void
105 tcf_ct_add_ipv6_addr_mangle_action(struct flow_action *action,
106 				   union nf_inet_addr *addr,
107 				   u32 offset)
108 {
109 	int i;
110 
111 	for (i = 0; i < sizeof(struct in6_addr) / sizeof(u32); i++)
112 		tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP6,
113 					 i * sizeof(u32) + offset,
114 					 0xFFFFFFFF, be32_to_cpu(addr->ip6[i]));
115 }
116 
117 static void
118 tcf_ct_flow_table_add_action_nat_ipv6(const struct nf_conntrack_tuple *tuple,
119 				      struct nf_conntrack_tuple target,
120 				      struct flow_action *action)
121 {
122 	if (memcmp(&target.src.u3, &tuple->src.u3, sizeof(target.src.u3)))
123 		tcf_ct_add_ipv6_addr_mangle_action(action, &target.src.u3,
124 						   offsetof(struct ipv6hdr,
125 							    saddr));
126 	if (memcmp(&target.dst.u3, &tuple->dst.u3, sizeof(target.dst.u3)))
127 		tcf_ct_add_ipv6_addr_mangle_action(action, &target.dst.u3,
128 						   offsetof(struct ipv6hdr,
129 							    daddr));
130 }
131 
132 static void
133 tcf_ct_flow_table_add_action_nat_tcp(const struct nf_conntrack_tuple *tuple,
134 				     struct nf_conntrack_tuple target,
135 				     struct flow_action *action)
136 {
137 	__be16 target_src = target.src.u.tcp.port;
138 	__be16 target_dst = target.dst.u.tcp.port;
139 
140 	if (target_src != tuple->src.u.tcp.port)
141 		tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_TCP,
142 					 offsetof(struct tcphdr, source),
143 					 0xFFFF, be16_to_cpu(target_src));
144 	if (target_dst != tuple->dst.u.tcp.port)
145 		tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_TCP,
146 					 offsetof(struct tcphdr, dest),
147 					 0xFFFF, be16_to_cpu(target_dst));
148 }
149 
150 static void
151 tcf_ct_flow_table_add_action_nat_udp(const struct nf_conntrack_tuple *tuple,
152 				     struct nf_conntrack_tuple target,
153 				     struct flow_action *action)
154 {
155 	__be16 target_src = target.src.u.udp.port;
156 	__be16 target_dst = target.dst.u.udp.port;
157 
158 	if (target_src != tuple->src.u.udp.port)
159 		tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_UDP,
160 					 offsetof(struct udphdr, source),
161 					 0xFFFF, be16_to_cpu(target_src));
162 	if (target_dst != tuple->dst.u.udp.port)
163 		tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_UDP,
164 					 offsetof(struct udphdr, dest),
165 					 0xFFFF, be16_to_cpu(target_dst));
166 }
167 
168 static void tcf_ct_flow_table_add_action_meta(struct nf_conn *ct,
169 					      enum ip_conntrack_dir dir,
170 					      struct flow_action *action)
171 {
172 	struct nf_conn_labels *ct_labels;
173 	struct flow_action_entry *entry;
174 	enum ip_conntrack_info ctinfo;
175 	u32 *act_ct_labels;
176 
177 	entry = tcf_ct_flow_table_flow_action_get_next(action);
178 	entry->id = FLOW_ACTION_CT_METADATA;
179 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
180 	entry->ct_metadata.mark = ct->mark;
181 #endif
182 	ctinfo = dir == IP_CT_DIR_ORIGINAL ? IP_CT_ESTABLISHED :
183 					     IP_CT_ESTABLISHED_REPLY;
184 	/* aligns with the CT reference on the SKB nf_ct_set */
185 	entry->ct_metadata.cookie = (unsigned long)ct | ctinfo;
186 
187 	act_ct_labels = entry->ct_metadata.labels;
188 	ct_labels = nf_ct_labels_find(ct);
189 	if (ct_labels)
190 		memcpy(act_ct_labels, ct_labels->bits, NF_CT_LABELS_MAX_SIZE);
191 	else
192 		memset(act_ct_labels, 0, NF_CT_LABELS_MAX_SIZE);
193 }
194 
195 static int tcf_ct_flow_table_add_action_nat(struct net *net,
196 					    struct nf_conn *ct,
197 					    enum ip_conntrack_dir dir,
198 					    struct flow_action *action)
199 {
200 	const struct nf_conntrack_tuple *tuple = &ct->tuplehash[dir].tuple;
201 	struct nf_conntrack_tuple target;
202 
203 	if (!(ct->status & IPS_NAT_MASK))
204 		return 0;
205 
206 	nf_ct_invert_tuple(&target, &ct->tuplehash[!dir].tuple);
207 
208 	switch (tuple->src.l3num) {
209 	case NFPROTO_IPV4:
210 		tcf_ct_flow_table_add_action_nat_ipv4(tuple, target,
211 						      action);
212 		break;
213 	case NFPROTO_IPV6:
214 		tcf_ct_flow_table_add_action_nat_ipv6(tuple, target,
215 						      action);
216 		break;
217 	default:
218 		return -EOPNOTSUPP;
219 	}
220 
221 	switch (nf_ct_protonum(ct)) {
222 	case IPPROTO_TCP:
223 		tcf_ct_flow_table_add_action_nat_tcp(tuple, target, action);
224 		break;
225 	case IPPROTO_UDP:
226 		tcf_ct_flow_table_add_action_nat_udp(tuple, target, action);
227 		break;
228 	default:
229 		return -EOPNOTSUPP;
230 	}
231 
232 	return 0;
233 }
234 
235 static int tcf_ct_flow_table_fill_actions(struct net *net,
236 					  const struct flow_offload *flow,
237 					  enum flow_offload_tuple_dir tdir,
238 					  struct nf_flow_rule *flow_rule)
239 {
240 	struct flow_action *action = &flow_rule->rule->action;
241 	int num_entries = action->num_entries;
242 	struct nf_conn *ct = flow->ct;
243 	enum ip_conntrack_dir dir;
244 	int i, err;
245 
246 	switch (tdir) {
247 	case FLOW_OFFLOAD_DIR_ORIGINAL:
248 		dir = IP_CT_DIR_ORIGINAL;
249 		break;
250 	case FLOW_OFFLOAD_DIR_REPLY:
251 		dir = IP_CT_DIR_REPLY;
252 		break;
253 	default:
254 		return -EOPNOTSUPP;
255 	}
256 
257 	err = tcf_ct_flow_table_add_action_nat(net, ct, dir, action);
258 	if (err)
259 		goto err_nat;
260 
261 	tcf_ct_flow_table_add_action_meta(ct, dir, action);
262 	return 0;
263 
264 err_nat:
265 	/* Clear filled actions */
266 	for (i = num_entries; i < action->num_entries; i++)
267 		memset(&action->entries[i], 0, sizeof(action->entries[i]));
268 	action->num_entries = num_entries;
269 
270 	return err;
271 }
272 
273 static struct nf_flowtable_type flowtable_ct = {
274 	.action		= tcf_ct_flow_table_fill_actions,
275 	.owner		= THIS_MODULE,
276 };
277 
278 static int tcf_ct_flow_table_get(struct tcf_ct_params *params)
279 {
280 	struct tcf_ct_flow_table *ct_ft;
281 	int err = -ENOMEM;
282 
283 	mutex_lock(&zones_mutex);
284 	ct_ft = rhashtable_lookup_fast(&zones_ht, &params->zone, zones_params);
285 	if (ct_ft && refcount_inc_not_zero(&ct_ft->ref))
286 		goto out_unlock;
287 
288 	ct_ft = kzalloc(sizeof(*ct_ft), GFP_KERNEL);
289 	if (!ct_ft)
290 		goto err_alloc;
291 	refcount_set(&ct_ft->ref, 1);
292 
293 	ct_ft->zone = params->zone;
294 	err = rhashtable_insert_fast(&zones_ht, &ct_ft->node, zones_params);
295 	if (err)
296 		goto err_insert;
297 
298 	ct_ft->nf_ft.type = &flowtable_ct;
299 	ct_ft->nf_ft.flags |= NF_FLOWTABLE_HW_OFFLOAD |
300 			      NF_FLOWTABLE_COUNTER;
301 	err = nf_flow_table_init(&ct_ft->nf_ft);
302 	if (err)
303 		goto err_init;
304 
305 	__module_get(THIS_MODULE);
306 out_unlock:
307 	params->ct_ft = ct_ft;
308 	params->nf_ft = &ct_ft->nf_ft;
309 	mutex_unlock(&zones_mutex);
310 
311 	return 0;
312 
313 err_init:
314 	rhashtable_remove_fast(&zones_ht, &ct_ft->node, zones_params);
315 err_insert:
316 	kfree(ct_ft);
317 err_alloc:
318 	mutex_unlock(&zones_mutex);
319 	return err;
320 }
321 
322 static void tcf_ct_flow_table_cleanup_work(struct work_struct *work)
323 {
324 	struct tcf_ct_flow_table *ct_ft;
325 
326 	ct_ft = container_of(to_rcu_work(work), struct tcf_ct_flow_table,
327 			     rwork);
328 	nf_flow_table_free(&ct_ft->nf_ft);
329 	kfree(ct_ft);
330 
331 	module_put(THIS_MODULE);
332 }
333 
334 static void tcf_ct_flow_table_put(struct tcf_ct_params *params)
335 {
336 	struct tcf_ct_flow_table *ct_ft = params->ct_ft;
337 
338 	if (refcount_dec_and_test(&params->ct_ft->ref)) {
339 		rhashtable_remove_fast(&zones_ht, &ct_ft->node, zones_params);
340 		INIT_RCU_WORK(&ct_ft->rwork, tcf_ct_flow_table_cleanup_work);
341 		queue_rcu_work(act_ct_wq, &ct_ft->rwork);
342 	}
343 }
344 
345 static void tcf_ct_flow_table_add(struct tcf_ct_flow_table *ct_ft,
346 				  struct nf_conn *ct,
347 				  bool tcp)
348 {
349 	struct flow_offload *entry;
350 	int err;
351 
352 	if (test_and_set_bit(IPS_OFFLOAD_BIT, &ct->status))
353 		return;
354 
355 	entry = flow_offload_alloc(ct);
356 	if (!entry) {
357 		WARN_ON_ONCE(1);
358 		goto err_alloc;
359 	}
360 
361 	if (tcp) {
362 		ct->proto.tcp.seen[0].flags |= IP_CT_TCP_FLAG_BE_LIBERAL;
363 		ct->proto.tcp.seen[1].flags |= IP_CT_TCP_FLAG_BE_LIBERAL;
364 	}
365 
366 	err = flow_offload_add(&ct_ft->nf_ft, entry);
367 	if (err)
368 		goto err_add;
369 
370 	return;
371 
372 err_add:
373 	flow_offload_free(entry);
374 err_alloc:
375 	clear_bit(IPS_OFFLOAD_BIT, &ct->status);
376 }
377 
378 static void tcf_ct_flow_table_process_conn(struct tcf_ct_flow_table *ct_ft,
379 					   struct nf_conn *ct,
380 					   enum ip_conntrack_info ctinfo)
381 {
382 	bool tcp = false;
383 
384 	if (ctinfo != IP_CT_ESTABLISHED && ctinfo != IP_CT_ESTABLISHED_REPLY)
385 		return;
386 
387 	switch (nf_ct_protonum(ct)) {
388 	case IPPROTO_TCP:
389 		tcp = true;
390 		if (ct->proto.tcp.state != TCP_CONNTRACK_ESTABLISHED)
391 			return;
392 		break;
393 	case IPPROTO_UDP:
394 		break;
395 	default:
396 		return;
397 	}
398 
399 	if (nf_ct_ext_exist(ct, NF_CT_EXT_HELPER) ||
400 	    ct->status & IPS_SEQ_ADJUST)
401 		return;
402 
403 	tcf_ct_flow_table_add(ct_ft, ct, tcp);
404 }
405 
406 static bool
407 tcf_ct_flow_table_fill_tuple_ipv4(struct sk_buff *skb,
408 				  struct flow_offload_tuple *tuple,
409 				  struct tcphdr **tcph)
410 {
411 	struct flow_ports *ports;
412 	unsigned int thoff;
413 	struct iphdr *iph;
414 
415 	if (!pskb_network_may_pull(skb, sizeof(*iph)))
416 		return false;
417 
418 	iph = ip_hdr(skb);
419 	thoff = iph->ihl * 4;
420 
421 	if (ip_is_fragment(iph) ||
422 	    unlikely(thoff != sizeof(struct iphdr)))
423 		return false;
424 
425 	if (iph->protocol != IPPROTO_TCP &&
426 	    iph->protocol != IPPROTO_UDP)
427 		return false;
428 
429 	if (iph->ttl <= 1)
430 		return false;
431 
432 	if (!pskb_network_may_pull(skb, iph->protocol == IPPROTO_TCP ?
433 					thoff + sizeof(struct tcphdr) :
434 					thoff + sizeof(*ports)))
435 		return false;
436 
437 	iph = ip_hdr(skb);
438 	if (iph->protocol == IPPROTO_TCP)
439 		*tcph = (void *)(skb_network_header(skb) + thoff);
440 
441 	ports = (struct flow_ports *)(skb_network_header(skb) + thoff);
442 	tuple->src_v4.s_addr = iph->saddr;
443 	tuple->dst_v4.s_addr = iph->daddr;
444 	tuple->src_port = ports->source;
445 	tuple->dst_port = ports->dest;
446 	tuple->l3proto = AF_INET;
447 	tuple->l4proto = iph->protocol;
448 
449 	return true;
450 }
451 
452 static bool
453 tcf_ct_flow_table_fill_tuple_ipv6(struct sk_buff *skb,
454 				  struct flow_offload_tuple *tuple,
455 				  struct tcphdr **tcph)
456 {
457 	struct flow_ports *ports;
458 	struct ipv6hdr *ip6h;
459 	unsigned int thoff;
460 
461 	if (!pskb_network_may_pull(skb, sizeof(*ip6h)))
462 		return false;
463 
464 	ip6h = ipv6_hdr(skb);
465 
466 	if (ip6h->nexthdr != IPPROTO_TCP &&
467 	    ip6h->nexthdr != IPPROTO_UDP)
468 		return false;
469 
470 	if (ip6h->hop_limit <= 1)
471 		return false;
472 
473 	thoff = sizeof(*ip6h);
474 	if (!pskb_network_may_pull(skb, ip6h->nexthdr == IPPROTO_TCP ?
475 					thoff + sizeof(struct tcphdr) :
476 					thoff + sizeof(*ports)))
477 		return false;
478 
479 	ip6h = ipv6_hdr(skb);
480 	if (ip6h->nexthdr == IPPROTO_TCP)
481 		*tcph = (void *)(skb_network_header(skb) + thoff);
482 
483 	ports = (struct flow_ports *)(skb_network_header(skb) + thoff);
484 	tuple->src_v6 = ip6h->saddr;
485 	tuple->dst_v6 = ip6h->daddr;
486 	tuple->src_port = ports->source;
487 	tuple->dst_port = ports->dest;
488 	tuple->l3proto = AF_INET6;
489 	tuple->l4proto = ip6h->nexthdr;
490 
491 	return true;
492 }
493 
494 static bool tcf_ct_flow_table_lookup(struct tcf_ct_params *p,
495 				     struct sk_buff *skb,
496 				     u8 family)
497 {
498 	struct nf_flowtable *nf_ft = &p->ct_ft->nf_ft;
499 	struct flow_offload_tuple_rhash *tuplehash;
500 	struct flow_offload_tuple tuple = {};
501 	enum ip_conntrack_info ctinfo;
502 	struct tcphdr *tcph = NULL;
503 	struct flow_offload *flow;
504 	struct nf_conn *ct;
505 	u8 dir;
506 
507 	/* Previously seen or loopback */
508 	ct = nf_ct_get(skb, &ctinfo);
509 	if ((ct && !nf_ct_is_template(ct)) || ctinfo == IP_CT_UNTRACKED)
510 		return false;
511 
512 	switch (family) {
513 	case NFPROTO_IPV4:
514 		if (!tcf_ct_flow_table_fill_tuple_ipv4(skb, &tuple, &tcph))
515 			return false;
516 		break;
517 	case NFPROTO_IPV6:
518 		if (!tcf_ct_flow_table_fill_tuple_ipv6(skb, &tuple, &tcph))
519 			return false;
520 		break;
521 	default:
522 		return false;
523 	}
524 
525 	tuplehash = flow_offload_lookup(nf_ft, &tuple);
526 	if (!tuplehash)
527 		return false;
528 
529 	dir = tuplehash->tuple.dir;
530 	flow = container_of(tuplehash, struct flow_offload, tuplehash[dir]);
531 	ct = flow->ct;
532 
533 	if (tcph && (unlikely(tcph->fin || tcph->rst))) {
534 		flow_offload_teardown(flow);
535 		return false;
536 	}
537 
538 	ctinfo = dir == FLOW_OFFLOAD_DIR_ORIGINAL ? IP_CT_ESTABLISHED :
539 						    IP_CT_ESTABLISHED_REPLY;
540 
541 	flow_offload_refresh(nf_ft, flow);
542 	nf_conntrack_get(&ct->ct_general);
543 	nf_ct_set(skb, ct, ctinfo);
544 	if (nf_ft->flags & NF_FLOWTABLE_COUNTER)
545 		nf_ct_acct_update(ct, dir, skb->len);
546 
547 	return true;
548 }
549 
550 static int tcf_ct_flow_tables_init(void)
551 {
552 	return rhashtable_init(&zones_ht, &zones_params);
553 }
554 
555 static void tcf_ct_flow_tables_uninit(void)
556 {
557 	rhashtable_destroy(&zones_ht);
558 }
559 
560 static struct tc_action_ops act_ct_ops;
561 static unsigned int ct_net_id;
562 
563 struct tc_ct_action_net {
564 	struct tc_action_net tn; /* Must be first */
565 	bool labels;
566 };
567 
568 /* Determine whether skb->_nfct is equal to the result of conntrack lookup. */
569 static bool tcf_ct_skb_nfct_cached(struct net *net, struct sk_buff *skb,
570 				   u16 zone_id, bool force)
571 {
572 	enum ip_conntrack_info ctinfo;
573 	struct nf_conn *ct;
574 
575 	ct = nf_ct_get(skb, &ctinfo);
576 	if (!ct)
577 		return false;
578 	if (!net_eq(net, read_pnet(&ct->ct_net)))
579 		return false;
580 	if (nf_ct_zone(ct)->id != zone_id)
581 		return false;
582 
583 	/* Force conntrack entry direction. */
584 	if (force && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) {
585 		if (nf_ct_is_confirmed(ct))
586 			nf_ct_kill(ct);
587 
588 		nf_conntrack_put(&ct->ct_general);
589 		nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
590 
591 		return false;
592 	}
593 
594 	return true;
595 }
596 
597 /* Trim the skb to the length specified by the IP/IPv6 header,
598  * removing any trailing lower-layer padding. This prepares the skb
599  * for higher-layer processing that assumes skb->len excludes padding
600  * (such as nf_ip_checksum). The caller needs to pull the skb to the
601  * network header, and ensure ip_hdr/ipv6_hdr points to valid data.
602  */
603 static int tcf_ct_skb_network_trim(struct sk_buff *skb, int family)
604 {
605 	unsigned int len;
606 	int err;
607 
608 	switch (family) {
609 	case NFPROTO_IPV4:
610 		len = ntohs(ip_hdr(skb)->tot_len);
611 		break;
612 	case NFPROTO_IPV6:
613 		len = sizeof(struct ipv6hdr)
614 			+ ntohs(ipv6_hdr(skb)->payload_len);
615 		break;
616 	default:
617 		len = skb->len;
618 	}
619 
620 	err = pskb_trim_rcsum(skb, len);
621 
622 	return err;
623 }
624 
625 static u8 tcf_ct_skb_nf_family(struct sk_buff *skb)
626 {
627 	u8 family = NFPROTO_UNSPEC;
628 
629 	switch (skb_protocol(skb, true)) {
630 	case htons(ETH_P_IP):
631 		family = NFPROTO_IPV4;
632 		break;
633 	case htons(ETH_P_IPV6):
634 		family = NFPROTO_IPV6;
635 		break;
636 	default:
637 		break;
638 	}
639 
640 	return family;
641 }
642 
643 static int tcf_ct_ipv4_is_fragment(struct sk_buff *skb, bool *frag)
644 {
645 	unsigned int len;
646 
647 	len =  skb_network_offset(skb) + sizeof(struct iphdr);
648 	if (unlikely(skb->len < len))
649 		return -EINVAL;
650 	if (unlikely(!pskb_may_pull(skb, len)))
651 		return -ENOMEM;
652 
653 	*frag = ip_is_fragment(ip_hdr(skb));
654 	return 0;
655 }
656 
657 static int tcf_ct_ipv6_is_fragment(struct sk_buff *skb, bool *frag)
658 {
659 	unsigned int flags = 0, len, payload_ofs = 0;
660 	unsigned short frag_off;
661 	int nexthdr;
662 
663 	len =  skb_network_offset(skb) + sizeof(struct ipv6hdr);
664 	if (unlikely(skb->len < len))
665 		return -EINVAL;
666 	if (unlikely(!pskb_may_pull(skb, len)))
667 		return -ENOMEM;
668 
669 	nexthdr = ipv6_find_hdr(skb, &payload_ofs, -1, &frag_off, &flags);
670 	if (unlikely(nexthdr < 0))
671 		return -EPROTO;
672 
673 	*frag = flags & IP6_FH_F_FRAG;
674 	return 0;
675 }
676 
677 static int tcf_ct_handle_fragments(struct net *net, struct sk_buff *skb,
678 				   u8 family, u16 zone, bool *defrag)
679 {
680 	enum ip_conntrack_info ctinfo;
681 	struct qdisc_skb_cb cb;
682 	struct nf_conn *ct;
683 	int err = 0;
684 	bool frag;
685 
686 	/* Previously seen (loopback)? Ignore. */
687 	ct = nf_ct_get(skb, &ctinfo);
688 	if ((ct && !nf_ct_is_template(ct)) || ctinfo == IP_CT_UNTRACKED)
689 		return 0;
690 
691 	if (family == NFPROTO_IPV4)
692 		err = tcf_ct_ipv4_is_fragment(skb, &frag);
693 	else
694 		err = tcf_ct_ipv6_is_fragment(skb, &frag);
695 	if (err || !frag)
696 		return err;
697 
698 	skb_get(skb);
699 	cb = *qdisc_skb_cb(skb);
700 
701 	if (family == NFPROTO_IPV4) {
702 		enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone;
703 
704 		memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
705 		local_bh_disable();
706 		err = ip_defrag(net, skb, user);
707 		local_bh_enable();
708 		if (err && err != -EINPROGRESS)
709 			return err;
710 
711 		if (!err) {
712 			*defrag = true;
713 			cb.mru = IPCB(skb)->frag_max_size;
714 		}
715 	} else { /* NFPROTO_IPV6 */
716 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6)
717 		enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone;
718 
719 		memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm));
720 		err = nf_ct_frag6_gather(net, skb, user);
721 		if (err && err != -EINPROGRESS)
722 			goto out_free;
723 
724 		if (!err) {
725 			*defrag = true;
726 			cb.mru = IP6CB(skb)->frag_max_size;
727 		}
728 #else
729 		err = -EOPNOTSUPP;
730 		goto out_free;
731 #endif
732 	}
733 
734 	*qdisc_skb_cb(skb) = cb;
735 	skb_clear_hash(skb);
736 	skb->ignore_df = 1;
737 	return err;
738 
739 out_free:
740 	kfree_skb(skb);
741 	return err;
742 }
743 
744 static void tcf_ct_params_free(struct rcu_head *head)
745 {
746 	struct tcf_ct_params *params = container_of(head,
747 						    struct tcf_ct_params, rcu);
748 
749 	tcf_ct_flow_table_put(params);
750 
751 	if (params->tmpl)
752 		nf_conntrack_put(&params->tmpl->ct_general);
753 	kfree(params);
754 }
755 
756 #if IS_ENABLED(CONFIG_NF_NAT)
757 /* Modelled after nf_nat_ipv[46]_fn().
758  * range is only used for new, uninitialized NAT state.
759  * Returns either NF_ACCEPT or NF_DROP.
760  */
761 static int ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct,
762 			  enum ip_conntrack_info ctinfo,
763 			  const struct nf_nat_range2 *range,
764 			  enum nf_nat_manip_type maniptype)
765 {
766 	__be16 proto = skb_protocol(skb, true);
767 	int hooknum, err = NF_ACCEPT;
768 
769 	/* See HOOK2MANIP(). */
770 	if (maniptype == NF_NAT_MANIP_SRC)
771 		hooknum = NF_INET_LOCAL_IN; /* Source NAT */
772 	else
773 		hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */
774 
775 	switch (ctinfo) {
776 	case IP_CT_RELATED:
777 	case IP_CT_RELATED_REPLY:
778 		if (proto == htons(ETH_P_IP) &&
779 		    ip_hdr(skb)->protocol == IPPROTO_ICMP) {
780 			if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo,
781 							   hooknum))
782 				err = NF_DROP;
783 			goto out;
784 		} else if (IS_ENABLED(CONFIG_IPV6) && proto == htons(ETH_P_IPV6)) {
785 			__be16 frag_off;
786 			u8 nexthdr = ipv6_hdr(skb)->nexthdr;
787 			int hdrlen = ipv6_skip_exthdr(skb,
788 						      sizeof(struct ipv6hdr),
789 						      &nexthdr, &frag_off);
790 
791 			if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) {
792 				if (!nf_nat_icmpv6_reply_translation(skb, ct,
793 								     ctinfo,
794 								     hooknum,
795 								     hdrlen))
796 					err = NF_DROP;
797 				goto out;
798 			}
799 		}
800 		/* Non-ICMP, fall thru to initialize if needed. */
801 		fallthrough;
802 	case IP_CT_NEW:
803 		/* Seen it before?  This can happen for loopback, retrans,
804 		 * or local packets.
805 		 */
806 		if (!nf_nat_initialized(ct, maniptype)) {
807 			/* Initialize according to the NAT action. */
808 			err = (range && range->flags & NF_NAT_RANGE_MAP_IPS)
809 				/* Action is set up to establish a new
810 				 * mapping.
811 				 */
812 				? nf_nat_setup_info(ct, range, maniptype)
813 				: nf_nat_alloc_null_binding(ct, hooknum);
814 			if (err != NF_ACCEPT)
815 				goto out;
816 		}
817 		break;
818 
819 	case IP_CT_ESTABLISHED:
820 	case IP_CT_ESTABLISHED_REPLY:
821 		break;
822 
823 	default:
824 		err = NF_DROP;
825 		goto out;
826 	}
827 
828 	err = nf_nat_packet(ct, ctinfo, hooknum, skb);
829 out:
830 	return err;
831 }
832 #endif /* CONFIG_NF_NAT */
833 
834 static void tcf_ct_act_set_mark(struct nf_conn *ct, u32 mark, u32 mask)
835 {
836 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
837 	u32 new_mark;
838 
839 	if (!mask)
840 		return;
841 
842 	new_mark = mark | (ct->mark & ~(mask));
843 	if (ct->mark != new_mark) {
844 		ct->mark = new_mark;
845 		if (nf_ct_is_confirmed(ct))
846 			nf_conntrack_event_cache(IPCT_MARK, ct);
847 	}
848 #endif
849 }
850 
851 static void tcf_ct_act_set_labels(struct nf_conn *ct,
852 				  u32 *labels,
853 				  u32 *labels_m)
854 {
855 #if IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS)
856 	size_t labels_sz = sizeof_field(struct tcf_ct_params, labels);
857 
858 	if (!memchr_inv(labels_m, 0, labels_sz))
859 		return;
860 
861 	nf_connlabels_replace(ct, labels, labels_m, 4);
862 #endif
863 }
864 
865 static int tcf_ct_act_nat(struct sk_buff *skb,
866 			  struct nf_conn *ct,
867 			  enum ip_conntrack_info ctinfo,
868 			  int ct_action,
869 			  struct nf_nat_range2 *range,
870 			  bool commit)
871 {
872 #if IS_ENABLED(CONFIG_NF_NAT)
873 	int err;
874 	enum nf_nat_manip_type maniptype;
875 
876 	if (!(ct_action & TCA_CT_ACT_NAT))
877 		return NF_ACCEPT;
878 
879 	/* Add NAT extension if not confirmed yet. */
880 	if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct))
881 		return NF_DROP;   /* Can't NAT. */
882 
883 	if (ctinfo != IP_CT_NEW && (ct->status & IPS_NAT_MASK) &&
884 	    (ctinfo != IP_CT_RELATED || commit)) {
885 		/* NAT an established or related connection like before. */
886 		if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY)
887 			/* This is the REPLY direction for a connection
888 			 * for which NAT was applied in the forward
889 			 * direction.  Do the reverse NAT.
890 			 */
891 			maniptype = ct->status & IPS_SRC_NAT
892 				? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC;
893 		else
894 			maniptype = ct->status & IPS_SRC_NAT
895 				? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST;
896 	} else if (ct_action & TCA_CT_ACT_NAT_SRC) {
897 		maniptype = NF_NAT_MANIP_SRC;
898 	} else if (ct_action & TCA_CT_ACT_NAT_DST) {
899 		maniptype = NF_NAT_MANIP_DST;
900 	} else {
901 		return NF_ACCEPT;
902 	}
903 
904 	err = ct_nat_execute(skb, ct, ctinfo, range, maniptype);
905 	if (err == NF_ACCEPT &&
906 	    ct->status & IPS_SRC_NAT && ct->status & IPS_DST_NAT) {
907 		if (maniptype == NF_NAT_MANIP_SRC)
908 			maniptype = NF_NAT_MANIP_DST;
909 		else
910 			maniptype = NF_NAT_MANIP_SRC;
911 
912 		err = ct_nat_execute(skb, ct, ctinfo, range, maniptype);
913 	}
914 	return err;
915 #else
916 	return NF_ACCEPT;
917 #endif
918 }
919 
920 static int tcf_ct_act(struct sk_buff *skb, const struct tc_action *a,
921 		      struct tcf_result *res)
922 {
923 	struct net *net = dev_net(skb->dev);
924 	bool cached, commit, clear, force;
925 	enum ip_conntrack_info ctinfo;
926 	struct tcf_ct *c = to_ct(a);
927 	struct nf_conn *tmpl = NULL;
928 	struct nf_hook_state state;
929 	int nh_ofs, err, retval;
930 	struct tcf_ct_params *p;
931 	bool skip_add = false;
932 	bool defrag = false;
933 	struct nf_conn *ct;
934 	u8 family;
935 
936 	p = rcu_dereference_bh(c->params);
937 
938 	retval = READ_ONCE(c->tcf_action);
939 	commit = p->ct_action & TCA_CT_ACT_COMMIT;
940 	clear = p->ct_action & TCA_CT_ACT_CLEAR;
941 	force = p->ct_action & TCA_CT_ACT_FORCE;
942 	tmpl = p->tmpl;
943 
944 	tcf_lastuse_update(&c->tcf_tm);
945 
946 	if (clear) {
947 		ct = nf_ct_get(skb, &ctinfo);
948 		if (ct) {
949 			nf_conntrack_put(&ct->ct_general);
950 			nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
951 		}
952 
953 		goto out;
954 	}
955 
956 	family = tcf_ct_skb_nf_family(skb);
957 	if (family == NFPROTO_UNSPEC)
958 		goto drop;
959 
960 	/* The conntrack module expects to be working at L3.
961 	 * We also try to pull the IPv4/6 header to linear area
962 	 */
963 	nh_ofs = skb_network_offset(skb);
964 	skb_pull_rcsum(skb, nh_ofs);
965 	err = tcf_ct_handle_fragments(net, skb, family, p->zone, &defrag);
966 	if (err == -EINPROGRESS) {
967 		retval = TC_ACT_STOLEN;
968 		goto out;
969 	}
970 	if (err)
971 		goto drop;
972 
973 	err = tcf_ct_skb_network_trim(skb, family);
974 	if (err)
975 		goto drop;
976 
977 	/* If we are recirculating packets to match on ct fields and
978 	 * committing with a separate ct action, then we don't need to
979 	 * actually run the packet through conntrack twice unless it's for a
980 	 * different zone.
981 	 */
982 	cached = tcf_ct_skb_nfct_cached(net, skb, p->zone, force);
983 	if (!cached) {
984 		if (!commit && tcf_ct_flow_table_lookup(p, skb, family)) {
985 			skip_add = true;
986 			goto do_nat;
987 		}
988 
989 		/* Associate skb with specified zone. */
990 		if (tmpl) {
991 			ct = nf_ct_get(skb, &ctinfo);
992 			if (skb_nfct(skb))
993 				nf_conntrack_put(skb_nfct(skb));
994 			nf_conntrack_get(&tmpl->ct_general);
995 			nf_ct_set(skb, tmpl, IP_CT_NEW);
996 		}
997 
998 		state.hook = NF_INET_PRE_ROUTING;
999 		state.net = net;
1000 		state.pf = family;
1001 		err = nf_conntrack_in(skb, &state);
1002 		if (err != NF_ACCEPT)
1003 			goto out_push;
1004 	}
1005 
1006 do_nat:
1007 	ct = nf_ct_get(skb, &ctinfo);
1008 	if (!ct)
1009 		goto out_push;
1010 	nf_ct_deliver_cached_events(ct);
1011 
1012 	err = tcf_ct_act_nat(skb, ct, ctinfo, p->ct_action, &p->range, commit);
1013 	if (err != NF_ACCEPT)
1014 		goto drop;
1015 
1016 	if (commit) {
1017 		tcf_ct_act_set_mark(ct, p->mark, p->mark_mask);
1018 		tcf_ct_act_set_labels(ct, p->labels, p->labels_mask);
1019 
1020 		/* This will take care of sending queued events
1021 		 * even if the connection is already confirmed.
1022 		 */
1023 		nf_conntrack_confirm(skb);
1024 	} else if (!skip_add) {
1025 		tcf_ct_flow_table_process_conn(p->ct_ft, ct, ctinfo);
1026 	}
1027 
1028 out_push:
1029 	skb_push_rcsum(skb, nh_ofs);
1030 
1031 out:
1032 	tcf_action_update_bstats(&c->common, skb);
1033 	if (defrag)
1034 		qdisc_skb_cb(skb)->pkt_len = skb->len;
1035 	return retval;
1036 
1037 drop:
1038 	tcf_action_inc_drop_qstats(&c->common);
1039 	return TC_ACT_SHOT;
1040 }
1041 
1042 static const struct nla_policy ct_policy[TCA_CT_MAX + 1] = {
1043 	[TCA_CT_ACTION] = { .type = NLA_U16 },
1044 	[TCA_CT_PARMS] = NLA_POLICY_EXACT_LEN(sizeof(struct tc_ct)),
1045 	[TCA_CT_ZONE] = { .type = NLA_U16 },
1046 	[TCA_CT_MARK] = { .type = NLA_U32 },
1047 	[TCA_CT_MARK_MASK] = { .type = NLA_U32 },
1048 	[TCA_CT_LABELS] = { .type = NLA_BINARY,
1049 			    .len = 128 / BITS_PER_BYTE },
1050 	[TCA_CT_LABELS_MASK] = { .type = NLA_BINARY,
1051 				 .len = 128 / BITS_PER_BYTE },
1052 	[TCA_CT_NAT_IPV4_MIN] = { .type = NLA_U32 },
1053 	[TCA_CT_NAT_IPV4_MAX] = { .type = NLA_U32 },
1054 	[TCA_CT_NAT_IPV6_MIN] = NLA_POLICY_EXACT_LEN(sizeof(struct in6_addr)),
1055 	[TCA_CT_NAT_IPV6_MAX] = NLA_POLICY_EXACT_LEN(sizeof(struct in6_addr)),
1056 	[TCA_CT_NAT_PORT_MIN] = { .type = NLA_U16 },
1057 	[TCA_CT_NAT_PORT_MAX] = { .type = NLA_U16 },
1058 };
1059 
1060 static int tcf_ct_fill_params_nat(struct tcf_ct_params *p,
1061 				  struct tc_ct *parm,
1062 				  struct nlattr **tb,
1063 				  struct netlink_ext_ack *extack)
1064 {
1065 	struct nf_nat_range2 *range;
1066 
1067 	if (!(p->ct_action & TCA_CT_ACT_NAT))
1068 		return 0;
1069 
1070 	if (!IS_ENABLED(CONFIG_NF_NAT)) {
1071 		NL_SET_ERR_MSG_MOD(extack, "Netfilter nat isn't enabled in kernel");
1072 		return -EOPNOTSUPP;
1073 	}
1074 
1075 	if (!(p->ct_action & (TCA_CT_ACT_NAT_SRC | TCA_CT_ACT_NAT_DST)))
1076 		return 0;
1077 
1078 	if ((p->ct_action & TCA_CT_ACT_NAT_SRC) &&
1079 	    (p->ct_action & TCA_CT_ACT_NAT_DST)) {
1080 		NL_SET_ERR_MSG_MOD(extack, "dnat and snat can't be enabled at the same time");
1081 		return -EOPNOTSUPP;
1082 	}
1083 
1084 	range = &p->range;
1085 	if (tb[TCA_CT_NAT_IPV4_MIN]) {
1086 		struct nlattr *max_attr = tb[TCA_CT_NAT_IPV4_MAX];
1087 
1088 		p->ipv4_range = true;
1089 		range->flags |= NF_NAT_RANGE_MAP_IPS;
1090 		range->min_addr.ip =
1091 			nla_get_in_addr(tb[TCA_CT_NAT_IPV4_MIN]);
1092 
1093 		range->max_addr.ip = max_attr ?
1094 				     nla_get_in_addr(max_attr) :
1095 				     range->min_addr.ip;
1096 	} else if (tb[TCA_CT_NAT_IPV6_MIN]) {
1097 		struct nlattr *max_attr = tb[TCA_CT_NAT_IPV6_MAX];
1098 
1099 		p->ipv4_range = false;
1100 		range->flags |= NF_NAT_RANGE_MAP_IPS;
1101 		range->min_addr.in6 =
1102 			nla_get_in6_addr(tb[TCA_CT_NAT_IPV6_MIN]);
1103 
1104 		range->max_addr.in6 = max_attr ?
1105 				      nla_get_in6_addr(max_attr) :
1106 				      range->min_addr.in6;
1107 	}
1108 
1109 	if (tb[TCA_CT_NAT_PORT_MIN]) {
1110 		range->flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1111 		range->min_proto.all = nla_get_be16(tb[TCA_CT_NAT_PORT_MIN]);
1112 
1113 		range->max_proto.all = tb[TCA_CT_NAT_PORT_MAX] ?
1114 				       nla_get_be16(tb[TCA_CT_NAT_PORT_MAX]) :
1115 				       range->min_proto.all;
1116 	}
1117 
1118 	return 0;
1119 }
1120 
1121 static void tcf_ct_set_key_val(struct nlattr **tb,
1122 			       void *val, int val_type,
1123 			       void *mask, int mask_type,
1124 			       int len)
1125 {
1126 	if (!tb[val_type])
1127 		return;
1128 	nla_memcpy(val, tb[val_type], len);
1129 
1130 	if (!mask)
1131 		return;
1132 
1133 	if (mask_type == TCA_CT_UNSPEC || !tb[mask_type])
1134 		memset(mask, 0xff, len);
1135 	else
1136 		nla_memcpy(mask, tb[mask_type], len);
1137 }
1138 
1139 static int tcf_ct_fill_params(struct net *net,
1140 			      struct tcf_ct_params *p,
1141 			      struct tc_ct *parm,
1142 			      struct nlattr **tb,
1143 			      struct netlink_ext_ack *extack)
1144 {
1145 	struct tc_ct_action_net *tn = net_generic(net, ct_net_id);
1146 	struct nf_conntrack_zone zone;
1147 	struct nf_conn *tmpl;
1148 	int err;
1149 
1150 	p->zone = NF_CT_DEFAULT_ZONE_ID;
1151 
1152 	tcf_ct_set_key_val(tb,
1153 			   &p->ct_action, TCA_CT_ACTION,
1154 			   NULL, TCA_CT_UNSPEC,
1155 			   sizeof(p->ct_action));
1156 
1157 	if (p->ct_action & TCA_CT_ACT_CLEAR)
1158 		return 0;
1159 
1160 	err = tcf_ct_fill_params_nat(p, parm, tb, extack);
1161 	if (err)
1162 		return err;
1163 
1164 	if (tb[TCA_CT_MARK]) {
1165 		if (!IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)) {
1166 			NL_SET_ERR_MSG_MOD(extack, "Conntrack mark isn't enabled.");
1167 			return -EOPNOTSUPP;
1168 		}
1169 		tcf_ct_set_key_val(tb,
1170 				   &p->mark, TCA_CT_MARK,
1171 				   &p->mark_mask, TCA_CT_MARK_MASK,
1172 				   sizeof(p->mark));
1173 	}
1174 
1175 	if (tb[TCA_CT_LABELS]) {
1176 		if (!IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS)) {
1177 			NL_SET_ERR_MSG_MOD(extack, "Conntrack labels isn't enabled.");
1178 			return -EOPNOTSUPP;
1179 		}
1180 
1181 		if (!tn->labels) {
1182 			NL_SET_ERR_MSG_MOD(extack, "Failed to set connlabel length");
1183 			return -EOPNOTSUPP;
1184 		}
1185 		tcf_ct_set_key_val(tb,
1186 				   p->labels, TCA_CT_LABELS,
1187 				   p->labels_mask, TCA_CT_LABELS_MASK,
1188 				   sizeof(p->labels));
1189 	}
1190 
1191 	if (tb[TCA_CT_ZONE]) {
1192 		if (!IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES)) {
1193 			NL_SET_ERR_MSG_MOD(extack, "Conntrack zones isn't enabled.");
1194 			return -EOPNOTSUPP;
1195 		}
1196 
1197 		tcf_ct_set_key_val(tb,
1198 				   &p->zone, TCA_CT_ZONE,
1199 				   NULL, TCA_CT_UNSPEC,
1200 				   sizeof(p->zone));
1201 	}
1202 
1203 	if (p->zone == NF_CT_DEFAULT_ZONE_ID)
1204 		return 0;
1205 
1206 	nf_ct_zone_init(&zone, p->zone, NF_CT_DEFAULT_ZONE_DIR, 0);
1207 	tmpl = nf_ct_tmpl_alloc(net, &zone, GFP_KERNEL);
1208 	if (!tmpl) {
1209 		NL_SET_ERR_MSG_MOD(extack, "Failed to allocate conntrack template");
1210 		return -ENOMEM;
1211 	}
1212 	__set_bit(IPS_CONFIRMED_BIT, &tmpl->status);
1213 	nf_conntrack_get(&tmpl->ct_general);
1214 	p->tmpl = tmpl;
1215 
1216 	return 0;
1217 }
1218 
1219 static int tcf_ct_init(struct net *net, struct nlattr *nla,
1220 		       struct nlattr *est, struct tc_action **a,
1221 		       int replace, int bind, bool rtnl_held,
1222 		       struct tcf_proto *tp, u32 flags,
1223 		       struct netlink_ext_ack *extack)
1224 {
1225 	struct tc_action_net *tn = net_generic(net, ct_net_id);
1226 	struct tcf_ct_params *params = NULL;
1227 	struct nlattr *tb[TCA_CT_MAX + 1];
1228 	struct tcf_chain *goto_ch = NULL;
1229 	struct tc_ct *parm;
1230 	struct tcf_ct *c;
1231 	int err, res = 0;
1232 	u32 index;
1233 
1234 	if (!nla) {
1235 		NL_SET_ERR_MSG_MOD(extack, "Ct requires attributes to be passed");
1236 		return -EINVAL;
1237 	}
1238 
1239 	err = nla_parse_nested(tb, TCA_CT_MAX, nla, ct_policy, extack);
1240 	if (err < 0)
1241 		return err;
1242 
1243 	if (!tb[TCA_CT_PARMS]) {
1244 		NL_SET_ERR_MSG_MOD(extack, "Missing required ct parameters");
1245 		return -EINVAL;
1246 	}
1247 	parm = nla_data(tb[TCA_CT_PARMS]);
1248 	index = parm->index;
1249 	err = tcf_idr_check_alloc(tn, &index, a, bind);
1250 	if (err < 0)
1251 		return err;
1252 
1253 	if (!err) {
1254 		err = tcf_idr_create_from_flags(tn, index, est, a,
1255 						&act_ct_ops, bind, flags);
1256 		if (err) {
1257 			tcf_idr_cleanup(tn, index);
1258 			return err;
1259 		}
1260 		res = ACT_P_CREATED;
1261 	} else {
1262 		if (bind)
1263 			return 0;
1264 
1265 		if (!replace) {
1266 			tcf_idr_release(*a, bind);
1267 			return -EEXIST;
1268 		}
1269 	}
1270 	err = tcf_action_check_ctrlact(parm->action, tp, &goto_ch, extack);
1271 	if (err < 0)
1272 		goto cleanup;
1273 
1274 	c = to_ct(*a);
1275 
1276 	params = kzalloc(sizeof(*params), GFP_KERNEL);
1277 	if (unlikely(!params)) {
1278 		err = -ENOMEM;
1279 		goto cleanup;
1280 	}
1281 
1282 	err = tcf_ct_fill_params(net, params, parm, tb, extack);
1283 	if (err)
1284 		goto cleanup;
1285 
1286 	err = tcf_ct_flow_table_get(params);
1287 	if (err)
1288 		goto cleanup;
1289 
1290 	spin_lock_bh(&c->tcf_lock);
1291 	goto_ch = tcf_action_set_ctrlact(*a, parm->action, goto_ch);
1292 	params = rcu_replace_pointer(c->params, params,
1293 				     lockdep_is_held(&c->tcf_lock));
1294 	spin_unlock_bh(&c->tcf_lock);
1295 
1296 	if (goto_ch)
1297 		tcf_chain_put_by_act(goto_ch);
1298 	if (params)
1299 		call_rcu(&params->rcu, tcf_ct_params_free);
1300 
1301 	return res;
1302 
1303 cleanup:
1304 	if (goto_ch)
1305 		tcf_chain_put_by_act(goto_ch);
1306 	kfree(params);
1307 	tcf_idr_release(*a, bind);
1308 	return err;
1309 }
1310 
1311 static void tcf_ct_cleanup(struct tc_action *a)
1312 {
1313 	struct tcf_ct_params *params;
1314 	struct tcf_ct *c = to_ct(a);
1315 
1316 	params = rcu_dereference_protected(c->params, 1);
1317 	if (params)
1318 		call_rcu(&params->rcu, tcf_ct_params_free);
1319 }
1320 
1321 static int tcf_ct_dump_key_val(struct sk_buff *skb,
1322 			       void *val, int val_type,
1323 			       void *mask, int mask_type,
1324 			       int len)
1325 {
1326 	int err;
1327 
1328 	if (mask && !memchr_inv(mask, 0, len))
1329 		return 0;
1330 
1331 	err = nla_put(skb, val_type, len, val);
1332 	if (err)
1333 		return err;
1334 
1335 	if (mask_type != TCA_CT_UNSPEC) {
1336 		err = nla_put(skb, mask_type, len, mask);
1337 		if (err)
1338 			return err;
1339 	}
1340 
1341 	return 0;
1342 }
1343 
1344 static int tcf_ct_dump_nat(struct sk_buff *skb, struct tcf_ct_params *p)
1345 {
1346 	struct nf_nat_range2 *range = &p->range;
1347 
1348 	if (!(p->ct_action & TCA_CT_ACT_NAT))
1349 		return 0;
1350 
1351 	if (!(p->ct_action & (TCA_CT_ACT_NAT_SRC | TCA_CT_ACT_NAT_DST)))
1352 		return 0;
1353 
1354 	if (range->flags & NF_NAT_RANGE_MAP_IPS) {
1355 		if (p->ipv4_range) {
1356 			if (nla_put_in_addr(skb, TCA_CT_NAT_IPV4_MIN,
1357 					    range->min_addr.ip))
1358 				return -1;
1359 			if (nla_put_in_addr(skb, TCA_CT_NAT_IPV4_MAX,
1360 					    range->max_addr.ip))
1361 				return -1;
1362 		} else {
1363 			if (nla_put_in6_addr(skb, TCA_CT_NAT_IPV6_MIN,
1364 					     &range->min_addr.in6))
1365 				return -1;
1366 			if (nla_put_in6_addr(skb, TCA_CT_NAT_IPV6_MAX,
1367 					     &range->max_addr.in6))
1368 				return -1;
1369 		}
1370 	}
1371 
1372 	if (range->flags & NF_NAT_RANGE_PROTO_SPECIFIED) {
1373 		if (nla_put_be16(skb, TCA_CT_NAT_PORT_MIN,
1374 				 range->min_proto.all))
1375 			return -1;
1376 		if (nla_put_be16(skb, TCA_CT_NAT_PORT_MAX,
1377 				 range->max_proto.all))
1378 			return -1;
1379 	}
1380 
1381 	return 0;
1382 }
1383 
1384 static inline int tcf_ct_dump(struct sk_buff *skb, struct tc_action *a,
1385 			      int bind, int ref)
1386 {
1387 	unsigned char *b = skb_tail_pointer(skb);
1388 	struct tcf_ct *c = to_ct(a);
1389 	struct tcf_ct_params *p;
1390 
1391 	struct tc_ct opt = {
1392 		.index   = c->tcf_index,
1393 		.refcnt  = refcount_read(&c->tcf_refcnt) - ref,
1394 		.bindcnt = atomic_read(&c->tcf_bindcnt) - bind,
1395 	};
1396 	struct tcf_t t;
1397 
1398 	spin_lock_bh(&c->tcf_lock);
1399 	p = rcu_dereference_protected(c->params,
1400 				      lockdep_is_held(&c->tcf_lock));
1401 	opt.action = c->tcf_action;
1402 
1403 	if (tcf_ct_dump_key_val(skb,
1404 				&p->ct_action, TCA_CT_ACTION,
1405 				NULL, TCA_CT_UNSPEC,
1406 				sizeof(p->ct_action)))
1407 		goto nla_put_failure;
1408 
1409 	if (p->ct_action & TCA_CT_ACT_CLEAR)
1410 		goto skip_dump;
1411 
1412 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
1413 	    tcf_ct_dump_key_val(skb,
1414 				&p->mark, TCA_CT_MARK,
1415 				&p->mark_mask, TCA_CT_MARK_MASK,
1416 				sizeof(p->mark)))
1417 		goto nla_put_failure;
1418 
1419 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1420 	    tcf_ct_dump_key_val(skb,
1421 				p->labels, TCA_CT_LABELS,
1422 				p->labels_mask, TCA_CT_LABELS_MASK,
1423 				sizeof(p->labels)))
1424 		goto nla_put_failure;
1425 
1426 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1427 	    tcf_ct_dump_key_val(skb,
1428 				&p->zone, TCA_CT_ZONE,
1429 				NULL, TCA_CT_UNSPEC,
1430 				sizeof(p->zone)))
1431 		goto nla_put_failure;
1432 
1433 	if (tcf_ct_dump_nat(skb, p))
1434 		goto nla_put_failure;
1435 
1436 skip_dump:
1437 	if (nla_put(skb, TCA_CT_PARMS, sizeof(opt), &opt))
1438 		goto nla_put_failure;
1439 
1440 	tcf_tm_dump(&t, &c->tcf_tm);
1441 	if (nla_put_64bit(skb, TCA_CT_TM, sizeof(t), &t, TCA_CT_PAD))
1442 		goto nla_put_failure;
1443 	spin_unlock_bh(&c->tcf_lock);
1444 
1445 	return skb->len;
1446 nla_put_failure:
1447 	spin_unlock_bh(&c->tcf_lock);
1448 	nlmsg_trim(skb, b);
1449 	return -1;
1450 }
1451 
1452 static int tcf_ct_walker(struct net *net, struct sk_buff *skb,
1453 			 struct netlink_callback *cb, int type,
1454 			 const struct tc_action_ops *ops,
1455 			 struct netlink_ext_ack *extack)
1456 {
1457 	struct tc_action_net *tn = net_generic(net, ct_net_id);
1458 
1459 	return tcf_generic_walker(tn, skb, cb, type, ops, extack);
1460 }
1461 
1462 static int tcf_ct_search(struct net *net, struct tc_action **a, u32 index)
1463 {
1464 	struct tc_action_net *tn = net_generic(net, ct_net_id);
1465 
1466 	return tcf_idr_search(tn, a, index);
1467 }
1468 
1469 static void tcf_stats_update(struct tc_action *a, u64 bytes, u64 packets,
1470 			     u64 drops, u64 lastuse, bool hw)
1471 {
1472 	struct tcf_ct *c = to_ct(a);
1473 
1474 	tcf_action_update_stats(a, bytes, packets, drops, hw);
1475 	c->tcf_tm.lastuse = max_t(u64, c->tcf_tm.lastuse, lastuse);
1476 }
1477 
1478 static struct tc_action_ops act_ct_ops = {
1479 	.kind		=	"ct",
1480 	.id		=	TCA_ID_CT,
1481 	.owner		=	THIS_MODULE,
1482 	.act		=	tcf_ct_act,
1483 	.dump		=	tcf_ct_dump,
1484 	.init		=	tcf_ct_init,
1485 	.cleanup	=	tcf_ct_cleanup,
1486 	.walk		=	tcf_ct_walker,
1487 	.lookup		=	tcf_ct_search,
1488 	.stats_update	=	tcf_stats_update,
1489 	.size		=	sizeof(struct tcf_ct),
1490 };
1491 
1492 static __net_init int ct_init_net(struct net *net)
1493 {
1494 	unsigned int n_bits = sizeof_field(struct tcf_ct_params, labels) * 8;
1495 	struct tc_ct_action_net *tn = net_generic(net, ct_net_id);
1496 
1497 	if (nf_connlabels_get(net, n_bits - 1)) {
1498 		tn->labels = false;
1499 		pr_err("act_ct: Failed to set connlabels length");
1500 	} else {
1501 		tn->labels = true;
1502 	}
1503 
1504 	return tc_action_net_init(net, &tn->tn, &act_ct_ops);
1505 }
1506 
1507 static void __net_exit ct_exit_net(struct list_head *net_list)
1508 {
1509 	struct net *net;
1510 
1511 	rtnl_lock();
1512 	list_for_each_entry(net, net_list, exit_list) {
1513 		struct tc_ct_action_net *tn = net_generic(net, ct_net_id);
1514 
1515 		if (tn->labels)
1516 			nf_connlabels_put(net);
1517 	}
1518 	rtnl_unlock();
1519 
1520 	tc_action_net_exit(net_list, ct_net_id);
1521 }
1522 
1523 static struct pernet_operations ct_net_ops = {
1524 	.init = ct_init_net,
1525 	.exit_batch = ct_exit_net,
1526 	.id   = &ct_net_id,
1527 	.size = sizeof(struct tc_ct_action_net),
1528 };
1529 
1530 static int __init ct_init_module(void)
1531 {
1532 	int err;
1533 
1534 	act_ct_wq = alloc_ordered_workqueue("act_ct_workqueue", 0);
1535 	if (!act_ct_wq)
1536 		return -ENOMEM;
1537 
1538 	err = tcf_ct_flow_tables_init();
1539 	if (err)
1540 		goto err_tbl_init;
1541 
1542 	err = tcf_register_action(&act_ct_ops, &ct_net_ops);
1543 	if (err)
1544 		goto err_register;
1545 
1546 	static_branch_inc(&tcf_frag_xmit_count);
1547 
1548 	return 0;
1549 
1550 err_register:
1551 	tcf_ct_flow_tables_uninit();
1552 err_tbl_init:
1553 	destroy_workqueue(act_ct_wq);
1554 	return err;
1555 }
1556 
1557 static void __exit ct_cleanup_module(void)
1558 {
1559 	static_branch_dec(&tcf_frag_xmit_count);
1560 	tcf_unregister_action(&act_ct_ops, &ct_net_ops);
1561 	tcf_ct_flow_tables_uninit();
1562 	destroy_workqueue(act_ct_wq);
1563 }
1564 
1565 module_init(ct_init_module);
1566 module_exit(ct_cleanup_module);
1567 MODULE_AUTHOR("Paul Blakey <paulb@mellanox.com>");
1568 MODULE_AUTHOR("Yossi Kuperman <yossiku@mellanox.com>");
1569 MODULE_AUTHOR("Marcelo Ricardo Leitner <marcelo.leitner@gmail.com>");
1570 MODULE_DESCRIPTION("Connection tracking action");
1571 MODULE_LICENSE("GPL v2");
1572