1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB 2 /* - 3 * net/sched/act_ct.c Connection Tracking action 4 * 5 * Authors: Paul Blakey <paulb@mellanox.com> 6 * Yossi Kuperman <yossiku@mellanox.com> 7 * Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> 8 */ 9 10 #include <linux/module.h> 11 #include <linux/init.h> 12 #include <linux/kernel.h> 13 #include <linux/skbuff.h> 14 #include <linux/rtnetlink.h> 15 #include <linux/pkt_cls.h> 16 #include <linux/ip.h> 17 #include <linux/ipv6.h> 18 #include <linux/rhashtable.h> 19 #include <net/netlink.h> 20 #include <net/pkt_sched.h> 21 #include <net/pkt_cls.h> 22 #include <net/act_api.h> 23 #include <net/ip.h> 24 #include <net/ipv6_frag.h> 25 #include <uapi/linux/tc_act/tc_ct.h> 26 #include <net/tc_act/tc_ct.h> 27 28 #include <net/netfilter/nf_flow_table.h> 29 #include <net/netfilter/nf_conntrack.h> 30 #include <net/netfilter/nf_conntrack_core.h> 31 #include <net/netfilter/nf_conntrack_zones.h> 32 #include <net/netfilter/nf_conntrack_helper.h> 33 #include <net/netfilter/nf_conntrack_acct.h> 34 #include <net/netfilter/ipv6/nf_defrag_ipv6.h> 35 #include <uapi/linux/netfilter/nf_nat.h> 36 37 static struct workqueue_struct *act_ct_wq; 38 static struct rhashtable zones_ht; 39 static DEFINE_MUTEX(zones_mutex); 40 41 struct tcf_ct_flow_table { 42 struct rhash_head node; /* In zones tables */ 43 44 struct rcu_work rwork; 45 struct nf_flowtable nf_ft; 46 refcount_t ref; 47 u16 zone; 48 49 bool dying; 50 }; 51 52 static const struct rhashtable_params zones_params = { 53 .head_offset = offsetof(struct tcf_ct_flow_table, node), 54 .key_offset = offsetof(struct tcf_ct_flow_table, zone), 55 .key_len = sizeof_field(struct tcf_ct_flow_table, zone), 56 .automatic_shrinking = true, 57 }; 58 59 static struct flow_action_entry * 60 tcf_ct_flow_table_flow_action_get_next(struct flow_action *flow_action) 61 { 62 int i = flow_action->num_entries++; 63 64 return &flow_action->entries[i]; 65 } 66 67 static void tcf_ct_add_mangle_action(struct flow_action *action, 68 enum flow_action_mangle_base htype, 69 u32 offset, 70 u32 mask, 71 u32 val) 72 { 73 struct flow_action_entry *entry; 74 75 entry = tcf_ct_flow_table_flow_action_get_next(action); 76 entry->id = FLOW_ACTION_MANGLE; 77 entry->mangle.htype = htype; 78 entry->mangle.mask = ~mask; 79 entry->mangle.offset = offset; 80 entry->mangle.val = val; 81 } 82 83 /* The following nat helper functions check if the inverted reverse tuple 84 * (target) is different then the current dir tuple - meaning nat for ports 85 * and/or ip is needed, and add the relevant mangle actions. 86 */ 87 static void 88 tcf_ct_flow_table_add_action_nat_ipv4(const struct nf_conntrack_tuple *tuple, 89 struct nf_conntrack_tuple target, 90 struct flow_action *action) 91 { 92 if (memcmp(&target.src.u3, &tuple->src.u3, sizeof(target.src.u3))) 93 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP4, 94 offsetof(struct iphdr, saddr), 95 0xFFFFFFFF, 96 be32_to_cpu(target.src.u3.ip)); 97 if (memcmp(&target.dst.u3, &tuple->dst.u3, sizeof(target.dst.u3))) 98 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP4, 99 offsetof(struct iphdr, daddr), 100 0xFFFFFFFF, 101 be32_to_cpu(target.dst.u3.ip)); 102 } 103 104 static void 105 tcf_ct_add_ipv6_addr_mangle_action(struct flow_action *action, 106 union nf_inet_addr *addr, 107 u32 offset) 108 { 109 int i; 110 111 for (i = 0; i < sizeof(struct in6_addr) / sizeof(u32); i++) 112 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP6, 113 i * sizeof(u32) + offset, 114 0xFFFFFFFF, be32_to_cpu(addr->ip6[i])); 115 } 116 117 static void 118 tcf_ct_flow_table_add_action_nat_ipv6(const struct nf_conntrack_tuple *tuple, 119 struct nf_conntrack_tuple target, 120 struct flow_action *action) 121 { 122 if (memcmp(&target.src.u3, &tuple->src.u3, sizeof(target.src.u3))) 123 tcf_ct_add_ipv6_addr_mangle_action(action, &target.src.u3, 124 offsetof(struct ipv6hdr, 125 saddr)); 126 if (memcmp(&target.dst.u3, &tuple->dst.u3, sizeof(target.dst.u3))) 127 tcf_ct_add_ipv6_addr_mangle_action(action, &target.dst.u3, 128 offsetof(struct ipv6hdr, 129 daddr)); 130 } 131 132 static void 133 tcf_ct_flow_table_add_action_nat_tcp(const struct nf_conntrack_tuple *tuple, 134 struct nf_conntrack_tuple target, 135 struct flow_action *action) 136 { 137 __be16 target_src = target.src.u.tcp.port; 138 __be16 target_dst = target.dst.u.tcp.port; 139 140 if (target_src != tuple->src.u.tcp.port) 141 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_TCP, 142 offsetof(struct tcphdr, source), 143 0xFFFF, be16_to_cpu(target_src)); 144 if (target_dst != tuple->dst.u.tcp.port) 145 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_TCP, 146 offsetof(struct tcphdr, dest), 147 0xFFFF, be16_to_cpu(target_dst)); 148 } 149 150 static void 151 tcf_ct_flow_table_add_action_nat_udp(const struct nf_conntrack_tuple *tuple, 152 struct nf_conntrack_tuple target, 153 struct flow_action *action) 154 { 155 __be16 target_src = target.src.u.udp.port; 156 __be16 target_dst = target.dst.u.udp.port; 157 158 if (target_src != tuple->src.u.udp.port) 159 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_UDP, 160 offsetof(struct udphdr, source), 161 0xFFFF, be16_to_cpu(target_src)); 162 if (target_dst != tuple->dst.u.udp.port) 163 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_UDP, 164 offsetof(struct udphdr, dest), 165 0xFFFF, be16_to_cpu(target_dst)); 166 } 167 168 static void tcf_ct_flow_table_add_action_meta(struct nf_conn *ct, 169 enum ip_conntrack_dir dir, 170 struct flow_action *action) 171 { 172 struct nf_conn_labels *ct_labels; 173 struct flow_action_entry *entry; 174 enum ip_conntrack_info ctinfo; 175 u32 *act_ct_labels; 176 177 entry = tcf_ct_flow_table_flow_action_get_next(action); 178 entry->id = FLOW_ACTION_CT_METADATA; 179 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 180 entry->ct_metadata.mark = ct->mark; 181 #endif 182 ctinfo = dir == IP_CT_DIR_ORIGINAL ? IP_CT_ESTABLISHED : 183 IP_CT_ESTABLISHED_REPLY; 184 /* aligns with the CT reference on the SKB nf_ct_set */ 185 entry->ct_metadata.cookie = (unsigned long)ct | ctinfo; 186 entry->ct_metadata.orig_dir = dir == IP_CT_DIR_ORIGINAL; 187 188 act_ct_labels = entry->ct_metadata.labels; 189 ct_labels = nf_ct_labels_find(ct); 190 if (ct_labels) 191 memcpy(act_ct_labels, ct_labels->bits, NF_CT_LABELS_MAX_SIZE); 192 else 193 memset(act_ct_labels, 0, NF_CT_LABELS_MAX_SIZE); 194 } 195 196 static int tcf_ct_flow_table_add_action_nat(struct net *net, 197 struct nf_conn *ct, 198 enum ip_conntrack_dir dir, 199 struct flow_action *action) 200 { 201 const struct nf_conntrack_tuple *tuple = &ct->tuplehash[dir].tuple; 202 struct nf_conntrack_tuple target; 203 204 if (!(ct->status & IPS_NAT_MASK)) 205 return 0; 206 207 nf_ct_invert_tuple(&target, &ct->tuplehash[!dir].tuple); 208 209 switch (tuple->src.l3num) { 210 case NFPROTO_IPV4: 211 tcf_ct_flow_table_add_action_nat_ipv4(tuple, target, 212 action); 213 break; 214 case NFPROTO_IPV6: 215 tcf_ct_flow_table_add_action_nat_ipv6(tuple, target, 216 action); 217 break; 218 default: 219 return -EOPNOTSUPP; 220 } 221 222 switch (nf_ct_protonum(ct)) { 223 case IPPROTO_TCP: 224 tcf_ct_flow_table_add_action_nat_tcp(tuple, target, action); 225 break; 226 case IPPROTO_UDP: 227 tcf_ct_flow_table_add_action_nat_udp(tuple, target, action); 228 break; 229 default: 230 return -EOPNOTSUPP; 231 } 232 233 return 0; 234 } 235 236 static int tcf_ct_flow_table_fill_actions(struct net *net, 237 const struct flow_offload *flow, 238 enum flow_offload_tuple_dir tdir, 239 struct nf_flow_rule *flow_rule) 240 { 241 struct flow_action *action = &flow_rule->rule->action; 242 int num_entries = action->num_entries; 243 struct nf_conn *ct = flow->ct; 244 enum ip_conntrack_dir dir; 245 int i, err; 246 247 switch (tdir) { 248 case FLOW_OFFLOAD_DIR_ORIGINAL: 249 dir = IP_CT_DIR_ORIGINAL; 250 break; 251 case FLOW_OFFLOAD_DIR_REPLY: 252 dir = IP_CT_DIR_REPLY; 253 break; 254 default: 255 return -EOPNOTSUPP; 256 } 257 258 err = tcf_ct_flow_table_add_action_nat(net, ct, dir, action); 259 if (err) 260 goto err_nat; 261 262 tcf_ct_flow_table_add_action_meta(ct, dir, action); 263 return 0; 264 265 err_nat: 266 /* Clear filled actions */ 267 for (i = num_entries; i < action->num_entries; i++) 268 memset(&action->entries[i], 0, sizeof(action->entries[i])); 269 action->num_entries = num_entries; 270 271 return err; 272 } 273 274 static struct nf_flowtable_type flowtable_ct = { 275 .action = tcf_ct_flow_table_fill_actions, 276 .owner = THIS_MODULE, 277 }; 278 279 static int tcf_ct_flow_table_get(struct tcf_ct_params *params) 280 { 281 struct tcf_ct_flow_table *ct_ft; 282 int err = -ENOMEM; 283 284 mutex_lock(&zones_mutex); 285 ct_ft = rhashtable_lookup_fast(&zones_ht, ¶ms->zone, zones_params); 286 if (ct_ft && refcount_inc_not_zero(&ct_ft->ref)) 287 goto out_unlock; 288 289 ct_ft = kzalloc(sizeof(*ct_ft), GFP_KERNEL); 290 if (!ct_ft) 291 goto err_alloc; 292 refcount_set(&ct_ft->ref, 1); 293 294 ct_ft->zone = params->zone; 295 err = rhashtable_insert_fast(&zones_ht, &ct_ft->node, zones_params); 296 if (err) 297 goto err_insert; 298 299 ct_ft->nf_ft.type = &flowtable_ct; 300 ct_ft->nf_ft.flags |= NF_FLOWTABLE_HW_OFFLOAD | 301 NF_FLOWTABLE_COUNTER; 302 err = nf_flow_table_init(&ct_ft->nf_ft); 303 if (err) 304 goto err_init; 305 306 __module_get(THIS_MODULE); 307 out_unlock: 308 params->ct_ft = ct_ft; 309 params->nf_ft = &ct_ft->nf_ft; 310 mutex_unlock(&zones_mutex); 311 312 return 0; 313 314 err_init: 315 rhashtable_remove_fast(&zones_ht, &ct_ft->node, zones_params); 316 err_insert: 317 kfree(ct_ft); 318 err_alloc: 319 mutex_unlock(&zones_mutex); 320 return err; 321 } 322 323 static void tcf_ct_flow_table_cleanup_work(struct work_struct *work) 324 { 325 struct flow_block_cb *block_cb, *tmp_cb; 326 struct tcf_ct_flow_table *ct_ft; 327 struct flow_block *block; 328 329 ct_ft = container_of(to_rcu_work(work), struct tcf_ct_flow_table, 330 rwork); 331 nf_flow_table_free(&ct_ft->nf_ft); 332 333 /* Remove any remaining callbacks before cleanup */ 334 block = &ct_ft->nf_ft.flow_block; 335 down_write(&ct_ft->nf_ft.flow_block_lock); 336 list_for_each_entry_safe(block_cb, tmp_cb, &block->cb_list, list) { 337 list_del(&block_cb->list); 338 flow_block_cb_free(block_cb); 339 } 340 up_write(&ct_ft->nf_ft.flow_block_lock); 341 kfree(ct_ft); 342 343 module_put(THIS_MODULE); 344 } 345 346 static void tcf_ct_flow_table_put(struct tcf_ct_params *params) 347 { 348 struct tcf_ct_flow_table *ct_ft = params->ct_ft; 349 350 if (refcount_dec_and_test(¶ms->ct_ft->ref)) { 351 rhashtable_remove_fast(&zones_ht, &ct_ft->node, zones_params); 352 INIT_RCU_WORK(&ct_ft->rwork, tcf_ct_flow_table_cleanup_work); 353 queue_rcu_work(act_ct_wq, &ct_ft->rwork); 354 } 355 } 356 357 static void tcf_ct_flow_table_add(struct tcf_ct_flow_table *ct_ft, 358 struct nf_conn *ct, 359 bool tcp) 360 { 361 struct flow_offload *entry; 362 int err; 363 364 if (test_and_set_bit(IPS_OFFLOAD_BIT, &ct->status)) 365 return; 366 367 entry = flow_offload_alloc(ct); 368 if (!entry) { 369 WARN_ON_ONCE(1); 370 goto err_alloc; 371 } 372 373 if (tcp) { 374 ct->proto.tcp.seen[0].flags |= IP_CT_TCP_FLAG_BE_LIBERAL; 375 ct->proto.tcp.seen[1].flags |= IP_CT_TCP_FLAG_BE_LIBERAL; 376 } 377 378 err = flow_offload_add(&ct_ft->nf_ft, entry); 379 if (err) 380 goto err_add; 381 382 return; 383 384 err_add: 385 flow_offload_free(entry); 386 err_alloc: 387 clear_bit(IPS_OFFLOAD_BIT, &ct->status); 388 } 389 390 static void tcf_ct_flow_table_process_conn(struct tcf_ct_flow_table *ct_ft, 391 struct nf_conn *ct, 392 enum ip_conntrack_info ctinfo) 393 { 394 bool tcp = false; 395 396 if (ctinfo != IP_CT_ESTABLISHED && ctinfo != IP_CT_ESTABLISHED_REPLY) 397 return; 398 399 switch (nf_ct_protonum(ct)) { 400 case IPPROTO_TCP: 401 tcp = true; 402 if (ct->proto.tcp.state != TCP_CONNTRACK_ESTABLISHED) 403 return; 404 break; 405 case IPPROTO_UDP: 406 break; 407 default: 408 return; 409 } 410 411 if (nf_ct_ext_exist(ct, NF_CT_EXT_HELPER) || 412 ct->status & IPS_SEQ_ADJUST) 413 return; 414 415 tcf_ct_flow_table_add(ct_ft, ct, tcp); 416 } 417 418 static bool 419 tcf_ct_flow_table_fill_tuple_ipv4(struct sk_buff *skb, 420 struct flow_offload_tuple *tuple, 421 struct tcphdr **tcph) 422 { 423 struct flow_ports *ports; 424 unsigned int thoff; 425 struct iphdr *iph; 426 427 if (!pskb_network_may_pull(skb, sizeof(*iph))) 428 return false; 429 430 iph = ip_hdr(skb); 431 thoff = iph->ihl * 4; 432 433 if (ip_is_fragment(iph) || 434 unlikely(thoff != sizeof(struct iphdr))) 435 return false; 436 437 if (iph->protocol != IPPROTO_TCP && 438 iph->protocol != IPPROTO_UDP) 439 return false; 440 441 if (iph->ttl <= 1) 442 return false; 443 444 if (!pskb_network_may_pull(skb, iph->protocol == IPPROTO_TCP ? 445 thoff + sizeof(struct tcphdr) : 446 thoff + sizeof(*ports))) 447 return false; 448 449 iph = ip_hdr(skb); 450 if (iph->protocol == IPPROTO_TCP) 451 *tcph = (void *)(skb_network_header(skb) + thoff); 452 453 ports = (struct flow_ports *)(skb_network_header(skb) + thoff); 454 tuple->src_v4.s_addr = iph->saddr; 455 tuple->dst_v4.s_addr = iph->daddr; 456 tuple->src_port = ports->source; 457 tuple->dst_port = ports->dest; 458 tuple->l3proto = AF_INET; 459 tuple->l4proto = iph->protocol; 460 461 return true; 462 } 463 464 static bool 465 tcf_ct_flow_table_fill_tuple_ipv6(struct sk_buff *skb, 466 struct flow_offload_tuple *tuple, 467 struct tcphdr **tcph) 468 { 469 struct flow_ports *ports; 470 struct ipv6hdr *ip6h; 471 unsigned int thoff; 472 473 if (!pskb_network_may_pull(skb, sizeof(*ip6h))) 474 return false; 475 476 ip6h = ipv6_hdr(skb); 477 478 if (ip6h->nexthdr != IPPROTO_TCP && 479 ip6h->nexthdr != IPPROTO_UDP) 480 return false; 481 482 if (ip6h->hop_limit <= 1) 483 return false; 484 485 thoff = sizeof(*ip6h); 486 if (!pskb_network_may_pull(skb, ip6h->nexthdr == IPPROTO_TCP ? 487 thoff + sizeof(struct tcphdr) : 488 thoff + sizeof(*ports))) 489 return false; 490 491 ip6h = ipv6_hdr(skb); 492 if (ip6h->nexthdr == IPPROTO_TCP) 493 *tcph = (void *)(skb_network_header(skb) + thoff); 494 495 ports = (struct flow_ports *)(skb_network_header(skb) + thoff); 496 tuple->src_v6 = ip6h->saddr; 497 tuple->dst_v6 = ip6h->daddr; 498 tuple->src_port = ports->source; 499 tuple->dst_port = ports->dest; 500 tuple->l3proto = AF_INET6; 501 tuple->l4proto = ip6h->nexthdr; 502 503 return true; 504 } 505 506 static bool tcf_ct_flow_table_lookup(struct tcf_ct_params *p, 507 struct sk_buff *skb, 508 u8 family) 509 { 510 struct nf_flowtable *nf_ft = &p->ct_ft->nf_ft; 511 struct flow_offload_tuple_rhash *tuplehash; 512 struct flow_offload_tuple tuple = {}; 513 enum ip_conntrack_info ctinfo; 514 struct tcphdr *tcph = NULL; 515 struct flow_offload *flow; 516 struct nf_conn *ct; 517 u8 dir; 518 519 /* Previously seen or loopback */ 520 ct = nf_ct_get(skb, &ctinfo); 521 if ((ct && !nf_ct_is_template(ct)) || ctinfo == IP_CT_UNTRACKED) 522 return false; 523 524 switch (family) { 525 case NFPROTO_IPV4: 526 if (!tcf_ct_flow_table_fill_tuple_ipv4(skb, &tuple, &tcph)) 527 return false; 528 break; 529 case NFPROTO_IPV6: 530 if (!tcf_ct_flow_table_fill_tuple_ipv6(skb, &tuple, &tcph)) 531 return false; 532 break; 533 default: 534 return false; 535 } 536 537 tuplehash = flow_offload_lookup(nf_ft, &tuple); 538 if (!tuplehash) 539 return false; 540 541 dir = tuplehash->tuple.dir; 542 flow = container_of(tuplehash, struct flow_offload, tuplehash[dir]); 543 ct = flow->ct; 544 545 if (tcph && (unlikely(tcph->fin || tcph->rst))) { 546 flow_offload_teardown(flow); 547 return false; 548 } 549 550 ctinfo = dir == FLOW_OFFLOAD_DIR_ORIGINAL ? IP_CT_ESTABLISHED : 551 IP_CT_ESTABLISHED_REPLY; 552 553 flow_offload_refresh(nf_ft, flow); 554 nf_conntrack_get(&ct->ct_general); 555 nf_ct_set(skb, ct, ctinfo); 556 if (nf_ft->flags & NF_FLOWTABLE_COUNTER) 557 nf_ct_acct_update(ct, dir, skb->len); 558 559 return true; 560 } 561 562 static int tcf_ct_flow_tables_init(void) 563 { 564 return rhashtable_init(&zones_ht, &zones_params); 565 } 566 567 static void tcf_ct_flow_tables_uninit(void) 568 { 569 rhashtable_destroy(&zones_ht); 570 } 571 572 static struct tc_action_ops act_ct_ops; 573 static unsigned int ct_net_id; 574 575 struct tc_ct_action_net { 576 struct tc_action_net tn; /* Must be first */ 577 bool labels; 578 }; 579 580 /* Determine whether skb->_nfct is equal to the result of conntrack lookup. */ 581 static bool tcf_ct_skb_nfct_cached(struct net *net, struct sk_buff *skb, 582 u16 zone_id, bool force) 583 { 584 enum ip_conntrack_info ctinfo; 585 struct nf_conn *ct; 586 587 ct = nf_ct_get(skb, &ctinfo); 588 if (!ct) 589 return false; 590 if (!net_eq(net, read_pnet(&ct->ct_net))) 591 return false; 592 if (nf_ct_zone(ct)->id != zone_id) 593 return false; 594 595 /* Force conntrack entry direction. */ 596 if (force && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) { 597 if (nf_ct_is_confirmed(ct)) 598 nf_ct_kill(ct); 599 600 nf_conntrack_put(&ct->ct_general); 601 nf_ct_set(skb, NULL, IP_CT_UNTRACKED); 602 603 return false; 604 } 605 606 return true; 607 } 608 609 /* Trim the skb to the length specified by the IP/IPv6 header, 610 * removing any trailing lower-layer padding. This prepares the skb 611 * for higher-layer processing that assumes skb->len excludes padding 612 * (such as nf_ip_checksum). The caller needs to pull the skb to the 613 * network header, and ensure ip_hdr/ipv6_hdr points to valid data. 614 */ 615 static int tcf_ct_skb_network_trim(struct sk_buff *skb, int family) 616 { 617 unsigned int len; 618 int err; 619 620 switch (family) { 621 case NFPROTO_IPV4: 622 len = ntohs(ip_hdr(skb)->tot_len); 623 break; 624 case NFPROTO_IPV6: 625 len = sizeof(struct ipv6hdr) 626 + ntohs(ipv6_hdr(skb)->payload_len); 627 break; 628 default: 629 len = skb->len; 630 } 631 632 err = pskb_trim_rcsum(skb, len); 633 634 return err; 635 } 636 637 static u8 tcf_ct_skb_nf_family(struct sk_buff *skb) 638 { 639 u8 family = NFPROTO_UNSPEC; 640 641 switch (skb_protocol(skb, true)) { 642 case htons(ETH_P_IP): 643 family = NFPROTO_IPV4; 644 break; 645 case htons(ETH_P_IPV6): 646 family = NFPROTO_IPV6; 647 break; 648 default: 649 break; 650 } 651 652 return family; 653 } 654 655 static int tcf_ct_ipv4_is_fragment(struct sk_buff *skb, bool *frag) 656 { 657 unsigned int len; 658 659 len = skb_network_offset(skb) + sizeof(struct iphdr); 660 if (unlikely(skb->len < len)) 661 return -EINVAL; 662 if (unlikely(!pskb_may_pull(skb, len))) 663 return -ENOMEM; 664 665 *frag = ip_is_fragment(ip_hdr(skb)); 666 return 0; 667 } 668 669 static int tcf_ct_ipv6_is_fragment(struct sk_buff *skb, bool *frag) 670 { 671 unsigned int flags = 0, len, payload_ofs = 0; 672 unsigned short frag_off; 673 int nexthdr; 674 675 len = skb_network_offset(skb) + sizeof(struct ipv6hdr); 676 if (unlikely(skb->len < len)) 677 return -EINVAL; 678 if (unlikely(!pskb_may_pull(skb, len))) 679 return -ENOMEM; 680 681 nexthdr = ipv6_find_hdr(skb, &payload_ofs, -1, &frag_off, &flags); 682 if (unlikely(nexthdr < 0)) 683 return -EPROTO; 684 685 *frag = flags & IP6_FH_F_FRAG; 686 return 0; 687 } 688 689 static int tcf_ct_handle_fragments(struct net *net, struct sk_buff *skb, 690 u8 family, u16 zone, bool *defrag) 691 { 692 enum ip_conntrack_info ctinfo; 693 struct qdisc_skb_cb cb; 694 struct nf_conn *ct; 695 int err = 0; 696 bool frag; 697 698 /* Previously seen (loopback)? Ignore. */ 699 ct = nf_ct_get(skb, &ctinfo); 700 if ((ct && !nf_ct_is_template(ct)) || ctinfo == IP_CT_UNTRACKED) 701 return 0; 702 703 if (family == NFPROTO_IPV4) 704 err = tcf_ct_ipv4_is_fragment(skb, &frag); 705 else 706 err = tcf_ct_ipv6_is_fragment(skb, &frag); 707 if (err || !frag) 708 return err; 709 710 skb_get(skb); 711 cb = *qdisc_skb_cb(skb); 712 713 if (family == NFPROTO_IPV4) { 714 enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone; 715 716 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm)); 717 local_bh_disable(); 718 err = ip_defrag(net, skb, user); 719 local_bh_enable(); 720 if (err && err != -EINPROGRESS) 721 return err; 722 723 if (!err) { 724 *defrag = true; 725 cb.mru = IPCB(skb)->frag_max_size; 726 } 727 } else { /* NFPROTO_IPV6 */ 728 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6) 729 enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone; 730 731 memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm)); 732 err = nf_ct_frag6_gather(net, skb, user); 733 if (err && err != -EINPROGRESS) 734 goto out_free; 735 736 if (!err) { 737 *defrag = true; 738 cb.mru = IP6CB(skb)->frag_max_size; 739 } 740 #else 741 err = -EOPNOTSUPP; 742 goto out_free; 743 #endif 744 } 745 746 if (err != -EINPROGRESS) 747 *qdisc_skb_cb(skb) = cb; 748 skb_clear_hash(skb); 749 skb->ignore_df = 1; 750 return err; 751 752 out_free: 753 kfree_skb(skb); 754 return err; 755 } 756 757 static void tcf_ct_params_free(struct rcu_head *head) 758 { 759 struct tcf_ct_params *params = container_of(head, 760 struct tcf_ct_params, rcu); 761 762 tcf_ct_flow_table_put(params); 763 764 if (params->tmpl) 765 nf_conntrack_put(¶ms->tmpl->ct_general); 766 kfree(params); 767 } 768 769 #if IS_ENABLED(CONFIG_NF_NAT) 770 /* Modelled after nf_nat_ipv[46]_fn(). 771 * range is only used for new, uninitialized NAT state. 772 * Returns either NF_ACCEPT or NF_DROP. 773 */ 774 static int ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct, 775 enum ip_conntrack_info ctinfo, 776 const struct nf_nat_range2 *range, 777 enum nf_nat_manip_type maniptype) 778 { 779 __be16 proto = skb_protocol(skb, true); 780 int hooknum, err = NF_ACCEPT; 781 782 /* See HOOK2MANIP(). */ 783 if (maniptype == NF_NAT_MANIP_SRC) 784 hooknum = NF_INET_LOCAL_IN; /* Source NAT */ 785 else 786 hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */ 787 788 switch (ctinfo) { 789 case IP_CT_RELATED: 790 case IP_CT_RELATED_REPLY: 791 if (proto == htons(ETH_P_IP) && 792 ip_hdr(skb)->protocol == IPPROTO_ICMP) { 793 if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo, 794 hooknum)) 795 err = NF_DROP; 796 goto out; 797 } else if (IS_ENABLED(CONFIG_IPV6) && proto == htons(ETH_P_IPV6)) { 798 __be16 frag_off; 799 u8 nexthdr = ipv6_hdr(skb)->nexthdr; 800 int hdrlen = ipv6_skip_exthdr(skb, 801 sizeof(struct ipv6hdr), 802 &nexthdr, &frag_off); 803 804 if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) { 805 if (!nf_nat_icmpv6_reply_translation(skb, ct, 806 ctinfo, 807 hooknum, 808 hdrlen)) 809 err = NF_DROP; 810 goto out; 811 } 812 } 813 /* Non-ICMP, fall thru to initialize if needed. */ 814 fallthrough; 815 case IP_CT_NEW: 816 /* Seen it before? This can happen for loopback, retrans, 817 * or local packets. 818 */ 819 if (!nf_nat_initialized(ct, maniptype)) { 820 /* Initialize according to the NAT action. */ 821 err = (range && range->flags & NF_NAT_RANGE_MAP_IPS) 822 /* Action is set up to establish a new 823 * mapping. 824 */ 825 ? nf_nat_setup_info(ct, range, maniptype) 826 : nf_nat_alloc_null_binding(ct, hooknum); 827 if (err != NF_ACCEPT) 828 goto out; 829 } 830 break; 831 832 case IP_CT_ESTABLISHED: 833 case IP_CT_ESTABLISHED_REPLY: 834 break; 835 836 default: 837 err = NF_DROP; 838 goto out; 839 } 840 841 err = nf_nat_packet(ct, ctinfo, hooknum, skb); 842 out: 843 return err; 844 } 845 #endif /* CONFIG_NF_NAT */ 846 847 static void tcf_ct_act_set_mark(struct nf_conn *ct, u32 mark, u32 mask) 848 { 849 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 850 u32 new_mark; 851 852 if (!mask) 853 return; 854 855 new_mark = mark | (ct->mark & ~(mask)); 856 if (ct->mark != new_mark) { 857 ct->mark = new_mark; 858 if (nf_ct_is_confirmed(ct)) 859 nf_conntrack_event_cache(IPCT_MARK, ct); 860 } 861 #endif 862 } 863 864 static void tcf_ct_act_set_labels(struct nf_conn *ct, 865 u32 *labels, 866 u32 *labels_m) 867 { 868 #if IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) 869 size_t labels_sz = sizeof_field(struct tcf_ct_params, labels); 870 871 if (!memchr_inv(labels_m, 0, labels_sz)) 872 return; 873 874 nf_connlabels_replace(ct, labels, labels_m, 4); 875 #endif 876 } 877 878 static int tcf_ct_act_nat(struct sk_buff *skb, 879 struct nf_conn *ct, 880 enum ip_conntrack_info ctinfo, 881 int ct_action, 882 struct nf_nat_range2 *range, 883 bool commit) 884 { 885 #if IS_ENABLED(CONFIG_NF_NAT) 886 int err; 887 enum nf_nat_manip_type maniptype; 888 889 if (!(ct_action & TCA_CT_ACT_NAT)) 890 return NF_ACCEPT; 891 892 /* Add NAT extension if not confirmed yet. */ 893 if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct)) 894 return NF_DROP; /* Can't NAT. */ 895 896 if (ctinfo != IP_CT_NEW && (ct->status & IPS_NAT_MASK) && 897 (ctinfo != IP_CT_RELATED || commit)) { 898 /* NAT an established or related connection like before. */ 899 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY) 900 /* This is the REPLY direction for a connection 901 * for which NAT was applied in the forward 902 * direction. Do the reverse NAT. 903 */ 904 maniptype = ct->status & IPS_SRC_NAT 905 ? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC; 906 else 907 maniptype = ct->status & IPS_SRC_NAT 908 ? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST; 909 } else if (ct_action & TCA_CT_ACT_NAT_SRC) { 910 maniptype = NF_NAT_MANIP_SRC; 911 } else if (ct_action & TCA_CT_ACT_NAT_DST) { 912 maniptype = NF_NAT_MANIP_DST; 913 } else { 914 return NF_ACCEPT; 915 } 916 917 err = ct_nat_execute(skb, ct, ctinfo, range, maniptype); 918 if (err == NF_ACCEPT && ct->status & IPS_DST_NAT) { 919 if (ct->status & IPS_SRC_NAT) { 920 if (maniptype == NF_NAT_MANIP_SRC) 921 maniptype = NF_NAT_MANIP_DST; 922 else 923 maniptype = NF_NAT_MANIP_SRC; 924 925 err = ct_nat_execute(skb, ct, ctinfo, range, 926 maniptype); 927 } else if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL) { 928 err = ct_nat_execute(skb, ct, ctinfo, NULL, 929 NF_NAT_MANIP_SRC); 930 } 931 } 932 return err; 933 #else 934 return NF_ACCEPT; 935 #endif 936 } 937 938 static int tcf_ct_act(struct sk_buff *skb, const struct tc_action *a, 939 struct tcf_result *res) 940 { 941 struct net *net = dev_net(skb->dev); 942 bool cached, commit, clear, force; 943 enum ip_conntrack_info ctinfo; 944 struct tcf_ct *c = to_ct(a); 945 struct nf_conn *tmpl = NULL; 946 struct nf_hook_state state; 947 int nh_ofs, err, retval; 948 struct tcf_ct_params *p; 949 bool skip_add = false; 950 bool defrag = false; 951 struct nf_conn *ct; 952 u8 family; 953 954 p = rcu_dereference_bh(c->params); 955 956 retval = READ_ONCE(c->tcf_action); 957 commit = p->ct_action & TCA_CT_ACT_COMMIT; 958 clear = p->ct_action & TCA_CT_ACT_CLEAR; 959 force = p->ct_action & TCA_CT_ACT_FORCE; 960 tmpl = p->tmpl; 961 962 tcf_lastuse_update(&c->tcf_tm); 963 964 if (clear) { 965 qdisc_skb_cb(skb)->post_ct = false; 966 ct = nf_ct_get(skb, &ctinfo); 967 if (ct) { 968 nf_conntrack_put(&ct->ct_general); 969 nf_ct_set(skb, NULL, IP_CT_UNTRACKED); 970 } 971 972 goto out_clear; 973 } 974 975 family = tcf_ct_skb_nf_family(skb); 976 if (family == NFPROTO_UNSPEC) 977 goto drop; 978 979 /* The conntrack module expects to be working at L3. 980 * We also try to pull the IPv4/6 header to linear area 981 */ 982 nh_ofs = skb_network_offset(skb); 983 skb_pull_rcsum(skb, nh_ofs); 984 err = tcf_ct_handle_fragments(net, skb, family, p->zone, &defrag); 985 if (err == -EINPROGRESS) { 986 retval = TC_ACT_STOLEN; 987 goto out_clear; 988 } 989 if (err) 990 goto drop; 991 992 err = tcf_ct_skb_network_trim(skb, family); 993 if (err) 994 goto drop; 995 996 /* If we are recirculating packets to match on ct fields and 997 * committing with a separate ct action, then we don't need to 998 * actually run the packet through conntrack twice unless it's for a 999 * different zone. 1000 */ 1001 cached = tcf_ct_skb_nfct_cached(net, skb, p->zone, force); 1002 if (!cached) { 1003 if (tcf_ct_flow_table_lookup(p, skb, family)) { 1004 skip_add = true; 1005 goto do_nat; 1006 } 1007 1008 /* Associate skb with specified zone. */ 1009 if (tmpl) { 1010 nf_conntrack_put(skb_nfct(skb)); 1011 nf_conntrack_get(&tmpl->ct_general); 1012 nf_ct_set(skb, tmpl, IP_CT_NEW); 1013 } 1014 1015 state.hook = NF_INET_PRE_ROUTING; 1016 state.net = net; 1017 state.pf = family; 1018 err = nf_conntrack_in(skb, &state); 1019 if (err != NF_ACCEPT) 1020 goto out_push; 1021 } 1022 1023 do_nat: 1024 ct = nf_ct_get(skb, &ctinfo); 1025 if (!ct) 1026 goto out_push; 1027 nf_ct_deliver_cached_events(ct); 1028 1029 err = tcf_ct_act_nat(skb, ct, ctinfo, p->ct_action, &p->range, commit); 1030 if (err != NF_ACCEPT) 1031 goto drop; 1032 1033 if (commit) { 1034 tcf_ct_act_set_mark(ct, p->mark, p->mark_mask); 1035 tcf_ct_act_set_labels(ct, p->labels, p->labels_mask); 1036 1037 /* This will take care of sending queued events 1038 * even if the connection is already confirmed. 1039 */ 1040 if (nf_conntrack_confirm(skb) != NF_ACCEPT) 1041 goto drop; 1042 } 1043 1044 if (!skip_add) 1045 tcf_ct_flow_table_process_conn(p->ct_ft, ct, ctinfo); 1046 1047 out_push: 1048 skb_push_rcsum(skb, nh_ofs); 1049 1050 qdisc_skb_cb(skb)->post_ct = true; 1051 out_clear: 1052 tcf_action_update_bstats(&c->common, skb); 1053 if (defrag) 1054 qdisc_skb_cb(skb)->pkt_len = skb->len; 1055 return retval; 1056 1057 drop: 1058 tcf_action_inc_drop_qstats(&c->common); 1059 return TC_ACT_SHOT; 1060 } 1061 1062 static const struct nla_policy ct_policy[TCA_CT_MAX + 1] = { 1063 [TCA_CT_ACTION] = { .type = NLA_U16 }, 1064 [TCA_CT_PARMS] = NLA_POLICY_EXACT_LEN(sizeof(struct tc_ct)), 1065 [TCA_CT_ZONE] = { .type = NLA_U16 }, 1066 [TCA_CT_MARK] = { .type = NLA_U32 }, 1067 [TCA_CT_MARK_MASK] = { .type = NLA_U32 }, 1068 [TCA_CT_LABELS] = { .type = NLA_BINARY, 1069 .len = 128 / BITS_PER_BYTE }, 1070 [TCA_CT_LABELS_MASK] = { .type = NLA_BINARY, 1071 .len = 128 / BITS_PER_BYTE }, 1072 [TCA_CT_NAT_IPV4_MIN] = { .type = NLA_U32 }, 1073 [TCA_CT_NAT_IPV4_MAX] = { .type = NLA_U32 }, 1074 [TCA_CT_NAT_IPV6_MIN] = NLA_POLICY_EXACT_LEN(sizeof(struct in6_addr)), 1075 [TCA_CT_NAT_IPV6_MAX] = NLA_POLICY_EXACT_LEN(sizeof(struct in6_addr)), 1076 [TCA_CT_NAT_PORT_MIN] = { .type = NLA_U16 }, 1077 [TCA_CT_NAT_PORT_MAX] = { .type = NLA_U16 }, 1078 }; 1079 1080 static int tcf_ct_fill_params_nat(struct tcf_ct_params *p, 1081 struct tc_ct *parm, 1082 struct nlattr **tb, 1083 struct netlink_ext_ack *extack) 1084 { 1085 struct nf_nat_range2 *range; 1086 1087 if (!(p->ct_action & TCA_CT_ACT_NAT)) 1088 return 0; 1089 1090 if (!IS_ENABLED(CONFIG_NF_NAT)) { 1091 NL_SET_ERR_MSG_MOD(extack, "Netfilter nat isn't enabled in kernel"); 1092 return -EOPNOTSUPP; 1093 } 1094 1095 if (!(p->ct_action & (TCA_CT_ACT_NAT_SRC | TCA_CT_ACT_NAT_DST))) 1096 return 0; 1097 1098 if ((p->ct_action & TCA_CT_ACT_NAT_SRC) && 1099 (p->ct_action & TCA_CT_ACT_NAT_DST)) { 1100 NL_SET_ERR_MSG_MOD(extack, "dnat and snat can't be enabled at the same time"); 1101 return -EOPNOTSUPP; 1102 } 1103 1104 range = &p->range; 1105 if (tb[TCA_CT_NAT_IPV4_MIN]) { 1106 struct nlattr *max_attr = tb[TCA_CT_NAT_IPV4_MAX]; 1107 1108 p->ipv4_range = true; 1109 range->flags |= NF_NAT_RANGE_MAP_IPS; 1110 range->min_addr.ip = 1111 nla_get_in_addr(tb[TCA_CT_NAT_IPV4_MIN]); 1112 1113 range->max_addr.ip = max_attr ? 1114 nla_get_in_addr(max_attr) : 1115 range->min_addr.ip; 1116 } else if (tb[TCA_CT_NAT_IPV6_MIN]) { 1117 struct nlattr *max_attr = tb[TCA_CT_NAT_IPV6_MAX]; 1118 1119 p->ipv4_range = false; 1120 range->flags |= NF_NAT_RANGE_MAP_IPS; 1121 range->min_addr.in6 = 1122 nla_get_in6_addr(tb[TCA_CT_NAT_IPV6_MIN]); 1123 1124 range->max_addr.in6 = max_attr ? 1125 nla_get_in6_addr(max_attr) : 1126 range->min_addr.in6; 1127 } 1128 1129 if (tb[TCA_CT_NAT_PORT_MIN]) { 1130 range->flags |= NF_NAT_RANGE_PROTO_SPECIFIED; 1131 range->min_proto.all = nla_get_be16(tb[TCA_CT_NAT_PORT_MIN]); 1132 1133 range->max_proto.all = tb[TCA_CT_NAT_PORT_MAX] ? 1134 nla_get_be16(tb[TCA_CT_NAT_PORT_MAX]) : 1135 range->min_proto.all; 1136 } 1137 1138 return 0; 1139 } 1140 1141 static void tcf_ct_set_key_val(struct nlattr **tb, 1142 void *val, int val_type, 1143 void *mask, int mask_type, 1144 int len) 1145 { 1146 if (!tb[val_type]) 1147 return; 1148 nla_memcpy(val, tb[val_type], len); 1149 1150 if (!mask) 1151 return; 1152 1153 if (mask_type == TCA_CT_UNSPEC || !tb[mask_type]) 1154 memset(mask, 0xff, len); 1155 else 1156 nla_memcpy(mask, tb[mask_type], len); 1157 } 1158 1159 static int tcf_ct_fill_params(struct net *net, 1160 struct tcf_ct_params *p, 1161 struct tc_ct *parm, 1162 struct nlattr **tb, 1163 struct netlink_ext_ack *extack) 1164 { 1165 struct tc_ct_action_net *tn = net_generic(net, ct_net_id); 1166 struct nf_conntrack_zone zone; 1167 struct nf_conn *tmpl; 1168 int err; 1169 1170 p->zone = NF_CT_DEFAULT_ZONE_ID; 1171 1172 tcf_ct_set_key_val(tb, 1173 &p->ct_action, TCA_CT_ACTION, 1174 NULL, TCA_CT_UNSPEC, 1175 sizeof(p->ct_action)); 1176 1177 if (p->ct_action & TCA_CT_ACT_CLEAR) 1178 return 0; 1179 1180 err = tcf_ct_fill_params_nat(p, parm, tb, extack); 1181 if (err) 1182 return err; 1183 1184 if (tb[TCA_CT_MARK]) { 1185 if (!IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)) { 1186 NL_SET_ERR_MSG_MOD(extack, "Conntrack mark isn't enabled."); 1187 return -EOPNOTSUPP; 1188 } 1189 tcf_ct_set_key_val(tb, 1190 &p->mark, TCA_CT_MARK, 1191 &p->mark_mask, TCA_CT_MARK_MASK, 1192 sizeof(p->mark)); 1193 } 1194 1195 if (tb[TCA_CT_LABELS]) { 1196 if (!IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS)) { 1197 NL_SET_ERR_MSG_MOD(extack, "Conntrack labels isn't enabled."); 1198 return -EOPNOTSUPP; 1199 } 1200 1201 if (!tn->labels) { 1202 NL_SET_ERR_MSG_MOD(extack, "Failed to set connlabel length"); 1203 return -EOPNOTSUPP; 1204 } 1205 tcf_ct_set_key_val(tb, 1206 p->labels, TCA_CT_LABELS, 1207 p->labels_mask, TCA_CT_LABELS_MASK, 1208 sizeof(p->labels)); 1209 } 1210 1211 if (tb[TCA_CT_ZONE]) { 1212 if (!IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES)) { 1213 NL_SET_ERR_MSG_MOD(extack, "Conntrack zones isn't enabled."); 1214 return -EOPNOTSUPP; 1215 } 1216 1217 tcf_ct_set_key_val(tb, 1218 &p->zone, TCA_CT_ZONE, 1219 NULL, TCA_CT_UNSPEC, 1220 sizeof(p->zone)); 1221 } 1222 1223 nf_ct_zone_init(&zone, p->zone, NF_CT_DEFAULT_ZONE_DIR, 0); 1224 tmpl = nf_ct_tmpl_alloc(net, &zone, GFP_KERNEL); 1225 if (!tmpl) { 1226 NL_SET_ERR_MSG_MOD(extack, "Failed to allocate conntrack template"); 1227 return -ENOMEM; 1228 } 1229 __set_bit(IPS_CONFIRMED_BIT, &tmpl->status); 1230 nf_conntrack_get(&tmpl->ct_general); 1231 p->tmpl = tmpl; 1232 1233 return 0; 1234 } 1235 1236 static int tcf_ct_init(struct net *net, struct nlattr *nla, 1237 struct nlattr *est, struct tc_action **a, 1238 struct tcf_proto *tp, u32 flags, 1239 struct netlink_ext_ack *extack) 1240 { 1241 struct tc_action_net *tn = net_generic(net, ct_net_id); 1242 bool bind = flags & TCA_ACT_FLAGS_BIND; 1243 struct tcf_ct_params *params = NULL; 1244 struct nlattr *tb[TCA_CT_MAX + 1]; 1245 struct tcf_chain *goto_ch = NULL; 1246 struct tc_ct *parm; 1247 struct tcf_ct *c; 1248 int err, res = 0; 1249 u32 index; 1250 1251 if (!nla) { 1252 NL_SET_ERR_MSG_MOD(extack, "Ct requires attributes to be passed"); 1253 return -EINVAL; 1254 } 1255 1256 err = nla_parse_nested(tb, TCA_CT_MAX, nla, ct_policy, extack); 1257 if (err < 0) 1258 return err; 1259 1260 if (!tb[TCA_CT_PARMS]) { 1261 NL_SET_ERR_MSG_MOD(extack, "Missing required ct parameters"); 1262 return -EINVAL; 1263 } 1264 parm = nla_data(tb[TCA_CT_PARMS]); 1265 index = parm->index; 1266 err = tcf_idr_check_alloc(tn, &index, a, bind); 1267 if (err < 0) 1268 return err; 1269 1270 if (!err) { 1271 err = tcf_idr_create_from_flags(tn, index, est, a, 1272 &act_ct_ops, bind, flags); 1273 if (err) { 1274 tcf_idr_cleanup(tn, index); 1275 return err; 1276 } 1277 res = ACT_P_CREATED; 1278 } else { 1279 if (bind) 1280 return 0; 1281 1282 if (!(flags & TCA_ACT_FLAGS_REPLACE)) { 1283 tcf_idr_release(*a, bind); 1284 return -EEXIST; 1285 } 1286 } 1287 err = tcf_action_check_ctrlact(parm->action, tp, &goto_ch, extack); 1288 if (err < 0) 1289 goto cleanup; 1290 1291 c = to_ct(*a); 1292 1293 params = kzalloc(sizeof(*params), GFP_KERNEL); 1294 if (unlikely(!params)) { 1295 err = -ENOMEM; 1296 goto cleanup; 1297 } 1298 1299 err = tcf_ct_fill_params(net, params, parm, tb, extack); 1300 if (err) 1301 goto cleanup; 1302 1303 err = tcf_ct_flow_table_get(params); 1304 if (err) 1305 goto cleanup; 1306 1307 spin_lock_bh(&c->tcf_lock); 1308 goto_ch = tcf_action_set_ctrlact(*a, parm->action, goto_ch); 1309 params = rcu_replace_pointer(c->params, params, 1310 lockdep_is_held(&c->tcf_lock)); 1311 spin_unlock_bh(&c->tcf_lock); 1312 1313 if (goto_ch) 1314 tcf_chain_put_by_act(goto_ch); 1315 if (params) 1316 call_rcu(¶ms->rcu, tcf_ct_params_free); 1317 1318 return res; 1319 1320 cleanup: 1321 if (goto_ch) 1322 tcf_chain_put_by_act(goto_ch); 1323 kfree(params); 1324 tcf_idr_release(*a, bind); 1325 return err; 1326 } 1327 1328 static void tcf_ct_cleanup(struct tc_action *a) 1329 { 1330 struct tcf_ct_params *params; 1331 struct tcf_ct *c = to_ct(a); 1332 1333 params = rcu_dereference_protected(c->params, 1); 1334 if (params) 1335 call_rcu(¶ms->rcu, tcf_ct_params_free); 1336 } 1337 1338 static int tcf_ct_dump_key_val(struct sk_buff *skb, 1339 void *val, int val_type, 1340 void *mask, int mask_type, 1341 int len) 1342 { 1343 int err; 1344 1345 if (mask && !memchr_inv(mask, 0, len)) 1346 return 0; 1347 1348 err = nla_put(skb, val_type, len, val); 1349 if (err) 1350 return err; 1351 1352 if (mask_type != TCA_CT_UNSPEC) { 1353 err = nla_put(skb, mask_type, len, mask); 1354 if (err) 1355 return err; 1356 } 1357 1358 return 0; 1359 } 1360 1361 static int tcf_ct_dump_nat(struct sk_buff *skb, struct tcf_ct_params *p) 1362 { 1363 struct nf_nat_range2 *range = &p->range; 1364 1365 if (!(p->ct_action & TCA_CT_ACT_NAT)) 1366 return 0; 1367 1368 if (!(p->ct_action & (TCA_CT_ACT_NAT_SRC | TCA_CT_ACT_NAT_DST))) 1369 return 0; 1370 1371 if (range->flags & NF_NAT_RANGE_MAP_IPS) { 1372 if (p->ipv4_range) { 1373 if (nla_put_in_addr(skb, TCA_CT_NAT_IPV4_MIN, 1374 range->min_addr.ip)) 1375 return -1; 1376 if (nla_put_in_addr(skb, TCA_CT_NAT_IPV4_MAX, 1377 range->max_addr.ip)) 1378 return -1; 1379 } else { 1380 if (nla_put_in6_addr(skb, TCA_CT_NAT_IPV6_MIN, 1381 &range->min_addr.in6)) 1382 return -1; 1383 if (nla_put_in6_addr(skb, TCA_CT_NAT_IPV6_MAX, 1384 &range->max_addr.in6)) 1385 return -1; 1386 } 1387 } 1388 1389 if (range->flags & NF_NAT_RANGE_PROTO_SPECIFIED) { 1390 if (nla_put_be16(skb, TCA_CT_NAT_PORT_MIN, 1391 range->min_proto.all)) 1392 return -1; 1393 if (nla_put_be16(skb, TCA_CT_NAT_PORT_MAX, 1394 range->max_proto.all)) 1395 return -1; 1396 } 1397 1398 return 0; 1399 } 1400 1401 static inline int tcf_ct_dump(struct sk_buff *skb, struct tc_action *a, 1402 int bind, int ref) 1403 { 1404 unsigned char *b = skb_tail_pointer(skb); 1405 struct tcf_ct *c = to_ct(a); 1406 struct tcf_ct_params *p; 1407 1408 struct tc_ct opt = { 1409 .index = c->tcf_index, 1410 .refcnt = refcount_read(&c->tcf_refcnt) - ref, 1411 .bindcnt = atomic_read(&c->tcf_bindcnt) - bind, 1412 }; 1413 struct tcf_t t; 1414 1415 spin_lock_bh(&c->tcf_lock); 1416 p = rcu_dereference_protected(c->params, 1417 lockdep_is_held(&c->tcf_lock)); 1418 opt.action = c->tcf_action; 1419 1420 if (tcf_ct_dump_key_val(skb, 1421 &p->ct_action, TCA_CT_ACTION, 1422 NULL, TCA_CT_UNSPEC, 1423 sizeof(p->ct_action))) 1424 goto nla_put_failure; 1425 1426 if (p->ct_action & TCA_CT_ACT_CLEAR) 1427 goto skip_dump; 1428 1429 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && 1430 tcf_ct_dump_key_val(skb, 1431 &p->mark, TCA_CT_MARK, 1432 &p->mark_mask, TCA_CT_MARK_MASK, 1433 sizeof(p->mark))) 1434 goto nla_put_failure; 1435 1436 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 1437 tcf_ct_dump_key_val(skb, 1438 p->labels, TCA_CT_LABELS, 1439 p->labels_mask, TCA_CT_LABELS_MASK, 1440 sizeof(p->labels))) 1441 goto nla_put_failure; 1442 1443 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 1444 tcf_ct_dump_key_val(skb, 1445 &p->zone, TCA_CT_ZONE, 1446 NULL, TCA_CT_UNSPEC, 1447 sizeof(p->zone))) 1448 goto nla_put_failure; 1449 1450 if (tcf_ct_dump_nat(skb, p)) 1451 goto nla_put_failure; 1452 1453 skip_dump: 1454 if (nla_put(skb, TCA_CT_PARMS, sizeof(opt), &opt)) 1455 goto nla_put_failure; 1456 1457 tcf_tm_dump(&t, &c->tcf_tm); 1458 if (nla_put_64bit(skb, TCA_CT_TM, sizeof(t), &t, TCA_CT_PAD)) 1459 goto nla_put_failure; 1460 spin_unlock_bh(&c->tcf_lock); 1461 1462 return skb->len; 1463 nla_put_failure: 1464 spin_unlock_bh(&c->tcf_lock); 1465 nlmsg_trim(skb, b); 1466 return -1; 1467 } 1468 1469 static int tcf_ct_walker(struct net *net, struct sk_buff *skb, 1470 struct netlink_callback *cb, int type, 1471 const struct tc_action_ops *ops, 1472 struct netlink_ext_ack *extack) 1473 { 1474 struct tc_action_net *tn = net_generic(net, ct_net_id); 1475 1476 return tcf_generic_walker(tn, skb, cb, type, ops, extack); 1477 } 1478 1479 static int tcf_ct_search(struct net *net, struct tc_action **a, u32 index) 1480 { 1481 struct tc_action_net *tn = net_generic(net, ct_net_id); 1482 1483 return tcf_idr_search(tn, a, index); 1484 } 1485 1486 static void tcf_stats_update(struct tc_action *a, u64 bytes, u64 packets, 1487 u64 drops, u64 lastuse, bool hw) 1488 { 1489 struct tcf_ct *c = to_ct(a); 1490 1491 tcf_action_update_stats(a, bytes, packets, drops, hw); 1492 c->tcf_tm.lastuse = max_t(u64, c->tcf_tm.lastuse, lastuse); 1493 } 1494 1495 static struct tc_action_ops act_ct_ops = { 1496 .kind = "ct", 1497 .id = TCA_ID_CT, 1498 .owner = THIS_MODULE, 1499 .act = tcf_ct_act, 1500 .dump = tcf_ct_dump, 1501 .init = tcf_ct_init, 1502 .cleanup = tcf_ct_cleanup, 1503 .walk = tcf_ct_walker, 1504 .lookup = tcf_ct_search, 1505 .stats_update = tcf_stats_update, 1506 .size = sizeof(struct tcf_ct), 1507 }; 1508 1509 static __net_init int ct_init_net(struct net *net) 1510 { 1511 unsigned int n_bits = sizeof_field(struct tcf_ct_params, labels) * 8; 1512 struct tc_ct_action_net *tn = net_generic(net, ct_net_id); 1513 1514 if (nf_connlabels_get(net, n_bits - 1)) { 1515 tn->labels = false; 1516 pr_err("act_ct: Failed to set connlabels length"); 1517 } else { 1518 tn->labels = true; 1519 } 1520 1521 return tc_action_net_init(net, &tn->tn, &act_ct_ops); 1522 } 1523 1524 static void __net_exit ct_exit_net(struct list_head *net_list) 1525 { 1526 struct net *net; 1527 1528 rtnl_lock(); 1529 list_for_each_entry(net, net_list, exit_list) { 1530 struct tc_ct_action_net *tn = net_generic(net, ct_net_id); 1531 1532 if (tn->labels) 1533 nf_connlabels_put(net); 1534 } 1535 rtnl_unlock(); 1536 1537 tc_action_net_exit(net_list, ct_net_id); 1538 } 1539 1540 static struct pernet_operations ct_net_ops = { 1541 .init = ct_init_net, 1542 .exit_batch = ct_exit_net, 1543 .id = &ct_net_id, 1544 .size = sizeof(struct tc_ct_action_net), 1545 }; 1546 1547 static int __init ct_init_module(void) 1548 { 1549 int err; 1550 1551 act_ct_wq = alloc_ordered_workqueue("act_ct_workqueue", 0); 1552 if (!act_ct_wq) 1553 return -ENOMEM; 1554 1555 err = tcf_ct_flow_tables_init(); 1556 if (err) 1557 goto err_tbl_init; 1558 1559 err = tcf_register_action(&act_ct_ops, &ct_net_ops); 1560 if (err) 1561 goto err_register; 1562 1563 static_branch_inc(&tcf_frag_xmit_count); 1564 1565 return 0; 1566 1567 err_register: 1568 tcf_ct_flow_tables_uninit(); 1569 err_tbl_init: 1570 destroy_workqueue(act_ct_wq); 1571 return err; 1572 } 1573 1574 static void __exit ct_cleanup_module(void) 1575 { 1576 static_branch_dec(&tcf_frag_xmit_count); 1577 tcf_unregister_action(&act_ct_ops, &ct_net_ops); 1578 tcf_ct_flow_tables_uninit(); 1579 destroy_workqueue(act_ct_wq); 1580 } 1581 1582 module_init(ct_init_module); 1583 module_exit(ct_cleanup_module); 1584 MODULE_AUTHOR("Paul Blakey <paulb@mellanox.com>"); 1585 MODULE_AUTHOR("Yossi Kuperman <yossiku@mellanox.com>"); 1586 MODULE_AUTHOR("Marcelo Ricardo Leitner <marcelo.leitner@gmail.com>"); 1587 MODULE_DESCRIPTION("Connection tracking action"); 1588 MODULE_LICENSE("GPL v2"); 1589