xref: /openbmc/linux/net/rxrpc/rxkad.c (revision c79fe9b436690209954f908a41b19e0bf575877a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Kerberos-based RxRPC security
3  *
4  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <crypto/skcipher.h>
11 #include <linux/module.h>
12 #include <linux/net.h>
13 #include <linux/skbuff.h>
14 #include <linux/udp.h>
15 #include <linux/scatterlist.h>
16 #include <linux/ctype.h>
17 #include <linux/slab.h>
18 #include <linux/key-type.h>
19 #include <net/sock.h>
20 #include <net/af_rxrpc.h>
21 #include <keys/rxrpc-type.h>
22 #include "ar-internal.h"
23 
24 #define RXKAD_VERSION			2
25 #define MAXKRB5TICKETLEN		1024
26 #define RXKAD_TKT_TYPE_KERBEROS_V5	256
27 #define ANAME_SZ			40	/* size of authentication name */
28 #define INST_SZ				40	/* size of principal's instance */
29 #define REALM_SZ			40	/* size of principal's auth domain */
30 #define SNAME_SZ			40	/* size of service name */
31 #define RXKAD_ALIGN			8
32 
33 struct rxkad_level1_hdr {
34 	__be32	data_size;	/* true data size (excluding padding) */
35 };
36 
37 struct rxkad_level2_hdr {
38 	__be32	data_size;	/* true data size (excluding padding) */
39 	__be32	checksum;	/* decrypted data checksum */
40 };
41 
42 static int rxkad_prime_packet_security(struct rxrpc_connection *conn,
43 				       struct crypto_sync_skcipher *ci);
44 
45 /*
46  * this holds a pinned cipher so that keventd doesn't get called by the cipher
47  * alloc routine, but since we have it to hand, we use it to decrypt RESPONSE
48  * packets
49  */
50 static struct crypto_sync_skcipher *rxkad_ci;
51 static struct skcipher_request *rxkad_ci_req;
52 static DEFINE_MUTEX(rxkad_ci_mutex);
53 
54 /*
55  * Parse the information from a server key
56  *
57  * The data should be the 8-byte secret key.
58  */
59 static int rxkad_preparse_server_key(struct key_preparsed_payload *prep)
60 {
61 	struct crypto_skcipher *ci;
62 
63 	if (prep->datalen != 8)
64 		return -EINVAL;
65 
66 	memcpy(&prep->payload.data[2], prep->data, 8);
67 
68 	ci = crypto_alloc_skcipher("pcbc(des)", 0, CRYPTO_ALG_ASYNC);
69 	if (IS_ERR(ci)) {
70 		_leave(" = %ld", PTR_ERR(ci));
71 		return PTR_ERR(ci);
72 	}
73 
74 	if (crypto_skcipher_setkey(ci, prep->data, 8) < 0)
75 		BUG();
76 
77 	prep->payload.data[0] = ci;
78 	_leave(" = 0");
79 	return 0;
80 }
81 
82 static void rxkad_free_preparse_server_key(struct key_preparsed_payload *prep)
83 {
84 
85 	if (prep->payload.data[0])
86 		crypto_free_skcipher(prep->payload.data[0]);
87 }
88 
89 static void rxkad_destroy_server_key(struct key *key)
90 {
91 	if (key->payload.data[0]) {
92 		crypto_free_skcipher(key->payload.data[0]);
93 		key->payload.data[0] = NULL;
94 	}
95 }
96 
97 /*
98  * initialise connection security
99  */
100 static int rxkad_init_connection_security(struct rxrpc_connection *conn,
101 					  struct rxrpc_key_token *token)
102 {
103 	struct crypto_sync_skcipher *ci;
104 	int ret;
105 
106 	_enter("{%d},{%x}", conn->debug_id, key_serial(conn->params.key));
107 
108 	conn->security_ix = token->security_index;
109 
110 	ci = crypto_alloc_sync_skcipher("pcbc(fcrypt)", 0, 0);
111 	if (IS_ERR(ci)) {
112 		_debug("no cipher");
113 		ret = PTR_ERR(ci);
114 		goto error;
115 	}
116 
117 	if (crypto_sync_skcipher_setkey(ci, token->kad->session_key,
118 				   sizeof(token->kad->session_key)) < 0)
119 		BUG();
120 
121 	switch (conn->params.security_level) {
122 	case RXRPC_SECURITY_PLAIN:
123 	case RXRPC_SECURITY_AUTH:
124 	case RXRPC_SECURITY_ENCRYPT:
125 		break;
126 	default:
127 		ret = -EKEYREJECTED;
128 		goto error;
129 	}
130 
131 	ret = rxkad_prime_packet_security(conn, ci);
132 	if (ret < 0)
133 		goto error_ci;
134 
135 	conn->rxkad.cipher = ci;
136 	return 0;
137 
138 error_ci:
139 	crypto_free_sync_skcipher(ci);
140 error:
141 	_leave(" = %d", ret);
142 	return ret;
143 }
144 
145 /*
146  * Work out how much data we can put in a packet.
147  */
148 static int rxkad_how_much_data(struct rxrpc_call *call, size_t remain,
149 			       size_t *_buf_size, size_t *_data_size, size_t *_offset)
150 {
151 	size_t shdr, buf_size, chunk;
152 
153 	switch (call->conn->params.security_level) {
154 	default:
155 		buf_size = chunk = min_t(size_t, remain, RXRPC_JUMBO_DATALEN);
156 		shdr = 0;
157 		goto out;
158 	case RXRPC_SECURITY_AUTH:
159 		shdr = sizeof(struct rxkad_level1_hdr);
160 		break;
161 	case RXRPC_SECURITY_ENCRYPT:
162 		shdr = sizeof(struct rxkad_level2_hdr);
163 		break;
164 	}
165 
166 	buf_size = round_down(RXRPC_JUMBO_DATALEN, RXKAD_ALIGN);
167 
168 	chunk = buf_size - shdr;
169 	if (remain < chunk)
170 		buf_size = round_up(shdr + remain, RXKAD_ALIGN);
171 
172 out:
173 	*_buf_size = buf_size;
174 	*_data_size = chunk;
175 	*_offset = shdr;
176 	return 0;
177 }
178 
179 /*
180  * prime the encryption state with the invariant parts of a connection's
181  * description
182  */
183 static int rxkad_prime_packet_security(struct rxrpc_connection *conn,
184 				       struct crypto_sync_skcipher *ci)
185 {
186 	struct skcipher_request *req;
187 	struct rxrpc_key_token *token;
188 	struct scatterlist sg;
189 	struct rxrpc_crypt iv;
190 	__be32 *tmpbuf;
191 	size_t tmpsize = 4 * sizeof(__be32);
192 
193 	_enter("");
194 
195 	if (!conn->params.key)
196 		return 0;
197 
198 	tmpbuf = kmalloc(tmpsize, GFP_KERNEL);
199 	if (!tmpbuf)
200 		return -ENOMEM;
201 
202 	req = skcipher_request_alloc(&ci->base, GFP_NOFS);
203 	if (!req) {
204 		kfree(tmpbuf);
205 		return -ENOMEM;
206 	}
207 
208 	token = conn->params.key->payload.data[0];
209 	memcpy(&iv, token->kad->session_key, sizeof(iv));
210 
211 	tmpbuf[0] = htonl(conn->proto.epoch);
212 	tmpbuf[1] = htonl(conn->proto.cid);
213 	tmpbuf[2] = 0;
214 	tmpbuf[3] = htonl(conn->security_ix);
215 
216 	sg_init_one(&sg, tmpbuf, tmpsize);
217 	skcipher_request_set_sync_tfm(req, ci);
218 	skcipher_request_set_callback(req, 0, NULL, NULL);
219 	skcipher_request_set_crypt(req, &sg, &sg, tmpsize, iv.x);
220 	crypto_skcipher_encrypt(req);
221 	skcipher_request_free(req);
222 
223 	memcpy(&conn->rxkad.csum_iv, tmpbuf + 2, sizeof(conn->rxkad.csum_iv));
224 	kfree(tmpbuf);
225 	_leave(" = 0");
226 	return 0;
227 }
228 
229 /*
230  * Allocate and prepare the crypto request on a call.  For any particular call,
231  * this is called serially for the packets, so no lock should be necessary.
232  */
233 static struct skcipher_request *rxkad_get_call_crypto(struct rxrpc_call *call)
234 {
235 	struct crypto_skcipher *tfm = &call->conn->rxkad.cipher->base;
236 	struct skcipher_request	*cipher_req = call->cipher_req;
237 
238 	if (!cipher_req) {
239 		cipher_req = skcipher_request_alloc(tfm, GFP_NOFS);
240 		if (!cipher_req)
241 			return NULL;
242 		call->cipher_req = cipher_req;
243 	}
244 
245 	return cipher_req;
246 }
247 
248 /*
249  * Clean up the crypto on a call.
250  */
251 static void rxkad_free_call_crypto(struct rxrpc_call *call)
252 {
253 	if (call->cipher_req)
254 		skcipher_request_free(call->cipher_req);
255 	call->cipher_req = NULL;
256 }
257 
258 /*
259  * partially encrypt a packet (level 1 security)
260  */
261 static int rxkad_secure_packet_auth(const struct rxrpc_call *call,
262 				    struct sk_buff *skb, u32 data_size,
263 				    struct skcipher_request *req)
264 {
265 	struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
266 	struct rxkad_level1_hdr hdr;
267 	struct rxrpc_crypt iv;
268 	struct scatterlist sg;
269 	size_t pad;
270 	u16 check;
271 
272 	_enter("");
273 
274 	check = sp->hdr.seq ^ call->call_id;
275 	data_size |= (u32)check << 16;
276 
277 	hdr.data_size = htonl(data_size);
278 	memcpy(skb->head, &hdr, sizeof(hdr));
279 
280 	pad = sizeof(struct rxkad_level1_hdr) + data_size;
281 	pad = RXKAD_ALIGN - pad;
282 	pad &= RXKAD_ALIGN - 1;
283 	if (pad)
284 		skb_put_zero(skb, pad);
285 
286 	/* start the encryption afresh */
287 	memset(&iv, 0, sizeof(iv));
288 
289 	sg_init_one(&sg, skb->head, 8);
290 	skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
291 	skcipher_request_set_callback(req, 0, NULL, NULL);
292 	skcipher_request_set_crypt(req, &sg, &sg, 8, iv.x);
293 	crypto_skcipher_encrypt(req);
294 	skcipher_request_zero(req);
295 
296 	_leave(" = 0");
297 	return 0;
298 }
299 
300 /*
301  * wholly encrypt a packet (level 2 security)
302  */
303 static int rxkad_secure_packet_encrypt(const struct rxrpc_call *call,
304 				       struct sk_buff *skb,
305 				       u32 data_size,
306 				       struct skcipher_request *req)
307 {
308 	const struct rxrpc_key_token *token;
309 	struct rxkad_level2_hdr rxkhdr;
310 	struct rxrpc_skb_priv *sp;
311 	struct rxrpc_crypt iv;
312 	struct scatterlist sg[16];
313 	unsigned int len;
314 	size_t pad;
315 	u16 check;
316 	int err;
317 
318 	sp = rxrpc_skb(skb);
319 
320 	_enter("");
321 
322 	check = sp->hdr.seq ^ call->call_id;
323 
324 	rxkhdr.data_size = htonl(data_size | (u32)check << 16);
325 	rxkhdr.checksum = 0;
326 	memcpy(skb->head, &rxkhdr, sizeof(rxkhdr));
327 
328 	pad = sizeof(struct rxkad_level2_hdr) + data_size;
329 	pad = RXKAD_ALIGN - pad;
330 	pad &= RXKAD_ALIGN - 1;
331 	if (pad)
332 		skb_put_zero(skb, pad);
333 
334 	/* encrypt from the session key */
335 	token = call->conn->params.key->payload.data[0];
336 	memcpy(&iv, token->kad->session_key, sizeof(iv));
337 
338 	sg_init_one(&sg[0], skb->head, sizeof(rxkhdr));
339 	skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
340 	skcipher_request_set_callback(req, 0, NULL, NULL);
341 	skcipher_request_set_crypt(req, &sg[0], &sg[0], sizeof(rxkhdr), iv.x);
342 	crypto_skcipher_encrypt(req);
343 
344 	/* we want to encrypt the skbuff in-place */
345 	err = -EMSGSIZE;
346 	if (skb_shinfo(skb)->nr_frags > 16)
347 		goto out;
348 
349 	len = round_up(data_size, RXKAD_ALIGN);
350 
351 	sg_init_table(sg, ARRAY_SIZE(sg));
352 	err = skb_to_sgvec(skb, sg, 8, len);
353 	if (unlikely(err < 0))
354 		goto out;
355 	skcipher_request_set_crypt(req, sg, sg, len, iv.x);
356 	crypto_skcipher_encrypt(req);
357 
358 	_leave(" = 0");
359 	err = 0;
360 
361 out:
362 	skcipher_request_zero(req);
363 	return err;
364 }
365 
366 /*
367  * checksum an RxRPC packet header
368  */
369 static int rxkad_secure_packet(struct rxrpc_call *call,
370 			       struct sk_buff *skb,
371 			       size_t data_size)
372 {
373 	struct rxrpc_skb_priv *sp;
374 	struct skcipher_request	*req;
375 	struct rxrpc_crypt iv;
376 	struct scatterlist sg;
377 	u32 x, y;
378 	int ret;
379 
380 	sp = rxrpc_skb(skb);
381 
382 	_enter("{%d{%x}},{#%u},%zu,",
383 	       call->debug_id, key_serial(call->conn->params.key),
384 	       sp->hdr.seq, data_size);
385 
386 	if (!call->conn->rxkad.cipher)
387 		return 0;
388 
389 	ret = key_validate(call->conn->params.key);
390 	if (ret < 0)
391 		return ret;
392 
393 	req = rxkad_get_call_crypto(call);
394 	if (!req)
395 		return -ENOMEM;
396 
397 	/* continue encrypting from where we left off */
398 	memcpy(&iv, call->conn->rxkad.csum_iv.x, sizeof(iv));
399 
400 	/* calculate the security checksum */
401 	x = (call->cid & RXRPC_CHANNELMASK) << (32 - RXRPC_CIDSHIFT);
402 	x |= sp->hdr.seq & 0x3fffffff;
403 	call->crypto_buf[0] = htonl(call->call_id);
404 	call->crypto_buf[1] = htonl(x);
405 
406 	sg_init_one(&sg, call->crypto_buf, 8);
407 	skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
408 	skcipher_request_set_callback(req, 0, NULL, NULL);
409 	skcipher_request_set_crypt(req, &sg, &sg, 8, iv.x);
410 	crypto_skcipher_encrypt(req);
411 	skcipher_request_zero(req);
412 
413 	y = ntohl(call->crypto_buf[1]);
414 	y = (y >> 16) & 0xffff;
415 	if (y == 0)
416 		y = 1; /* zero checksums are not permitted */
417 	sp->hdr.cksum = y;
418 
419 	switch (call->conn->params.security_level) {
420 	case RXRPC_SECURITY_PLAIN:
421 		ret = 0;
422 		break;
423 	case RXRPC_SECURITY_AUTH:
424 		ret = rxkad_secure_packet_auth(call, skb, data_size, req);
425 		break;
426 	case RXRPC_SECURITY_ENCRYPT:
427 		ret = rxkad_secure_packet_encrypt(call, skb, data_size, req);
428 		break;
429 	default:
430 		ret = -EPERM;
431 		break;
432 	}
433 
434 	_leave(" = %d [set %hx]", ret, y);
435 	return ret;
436 }
437 
438 /*
439  * decrypt partial encryption on a packet (level 1 security)
440  */
441 static int rxkad_verify_packet_1(struct rxrpc_call *call, struct sk_buff *skb,
442 				 unsigned int offset, unsigned int len,
443 				 rxrpc_seq_t seq,
444 				 struct skcipher_request *req)
445 {
446 	struct rxkad_level1_hdr sechdr;
447 	struct rxrpc_crypt iv;
448 	struct scatterlist sg[16];
449 	bool aborted;
450 	u32 data_size, buf;
451 	u16 check;
452 	int ret;
453 
454 	_enter("");
455 
456 	if (len < 8) {
457 		aborted = rxrpc_abort_eproto(call, skb, "rxkad_1_hdr", "V1H",
458 					   RXKADSEALEDINCON);
459 		goto protocol_error;
460 	}
461 
462 	/* Decrypt the skbuff in-place.  TODO: We really want to decrypt
463 	 * directly into the target buffer.
464 	 */
465 	sg_init_table(sg, ARRAY_SIZE(sg));
466 	ret = skb_to_sgvec(skb, sg, offset, 8);
467 	if (unlikely(ret < 0))
468 		return ret;
469 
470 	/* start the decryption afresh */
471 	memset(&iv, 0, sizeof(iv));
472 
473 	skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
474 	skcipher_request_set_callback(req, 0, NULL, NULL);
475 	skcipher_request_set_crypt(req, sg, sg, 8, iv.x);
476 	crypto_skcipher_decrypt(req);
477 	skcipher_request_zero(req);
478 
479 	/* Extract the decrypted packet length */
480 	if (skb_copy_bits(skb, offset, &sechdr, sizeof(sechdr)) < 0) {
481 		aborted = rxrpc_abort_eproto(call, skb, "rxkad_1_len", "XV1",
482 					     RXKADDATALEN);
483 		goto protocol_error;
484 	}
485 	offset += sizeof(sechdr);
486 	len -= sizeof(sechdr);
487 
488 	buf = ntohl(sechdr.data_size);
489 	data_size = buf & 0xffff;
490 
491 	check = buf >> 16;
492 	check ^= seq ^ call->call_id;
493 	check &= 0xffff;
494 	if (check != 0) {
495 		aborted = rxrpc_abort_eproto(call, skb, "rxkad_1_check", "V1C",
496 					     RXKADSEALEDINCON);
497 		goto protocol_error;
498 	}
499 
500 	if (data_size > len) {
501 		aborted = rxrpc_abort_eproto(call, skb, "rxkad_1_datalen", "V1L",
502 					     RXKADDATALEN);
503 		goto protocol_error;
504 	}
505 
506 	_leave(" = 0 [dlen=%x]", data_size);
507 	return 0;
508 
509 protocol_error:
510 	if (aborted)
511 		rxrpc_send_abort_packet(call);
512 	return -EPROTO;
513 }
514 
515 /*
516  * wholly decrypt a packet (level 2 security)
517  */
518 static int rxkad_verify_packet_2(struct rxrpc_call *call, struct sk_buff *skb,
519 				 unsigned int offset, unsigned int len,
520 				 rxrpc_seq_t seq,
521 				 struct skcipher_request *req)
522 {
523 	const struct rxrpc_key_token *token;
524 	struct rxkad_level2_hdr sechdr;
525 	struct rxrpc_crypt iv;
526 	struct scatterlist _sg[4], *sg;
527 	bool aborted;
528 	u32 data_size, buf;
529 	u16 check;
530 	int nsg, ret;
531 
532 	_enter(",{%d}", skb->len);
533 
534 	if (len < 8) {
535 		aborted = rxrpc_abort_eproto(call, skb, "rxkad_2_hdr", "V2H",
536 					     RXKADSEALEDINCON);
537 		goto protocol_error;
538 	}
539 
540 	/* Decrypt the skbuff in-place.  TODO: We really want to decrypt
541 	 * directly into the target buffer.
542 	 */
543 	sg = _sg;
544 	nsg = skb_shinfo(skb)->nr_frags;
545 	if (nsg <= 4) {
546 		nsg = 4;
547 	} else {
548 		sg = kmalloc_array(nsg, sizeof(*sg), GFP_NOIO);
549 		if (!sg)
550 			goto nomem;
551 	}
552 
553 	sg_init_table(sg, nsg);
554 	ret = skb_to_sgvec(skb, sg, offset, len);
555 	if (unlikely(ret < 0)) {
556 		if (sg != _sg)
557 			kfree(sg);
558 		return ret;
559 	}
560 
561 	/* decrypt from the session key */
562 	token = call->conn->params.key->payload.data[0];
563 	memcpy(&iv, token->kad->session_key, sizeof(iv));
564 
565 	skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
566 	skcipher_request_set_callback(req, 0, NULL, NULL);
567 	skcipher_request_set_crypt(req, sg, sg, len, iv.x);
568 	crypto_skcipher_decrypt(req);
569 	skcipher_request_zero(req);
570 	if (sg != _sg)
571 		kfree(sg);
572 
573 	/* Extract the decrypted packet length */
574 	if (skb_copy_bits(skb, offset, &sechdr, sizeof(sechdr)) < 0) {
575 		aborted = rxrpc_abort_eproto(call, skb, "rxkad_2_len", "XV2",
576 					     RXKADDATALEN);
577 		goto protocol_error;
578 	}
579 	offset += sizeof(sechdr);
580 	len -= sizeof(sechdr);
581 
582 	buf = ntohl(sechdr.data_size);
583 	data_size = buf & 0xffff;
584 
585 	check = buf >> 16;
586 	check ^= seq ^ call->call_id;
587 	check &= 0xffff;
588 	if (check != 0) {
589 		aborted = rxrpc_abort_eproto(call, skb, "rxkad_2_check", "V2C",
590 					     RXKADSEALEDINCON);
591 		goto protocol_error;
592 	}
593 
594 	if (data_size > len) {
595 		aborted = rxrpc_abort_eproto(call, skb, "rxkad_2_datalen", "V2L",
596 					     RXKADDATALEN);
597 		goto protocol_error;
598 	}
599 
600 	_leave(" = 0 [dlen=%x]", data_size);
601 	return 0;
602 
603 protocol_error:
604 	if (aborted)
605 		rxrpc_send_abort_packet(call);
606 	return -EPROTO;
607 
608 nomem:
609 	_leave(" = -ENOMEM");
610 	return -ENOMEM;
611 }
612 
613 /*
614  * Verify the security on a received packet or subpacket (if part of a
615  * jumbo packet).
616  */
617 static int rxkad_verify_packet(struct rxrpc_call *call, struct sk_buff *skb,
618 			       unsigned int offset, unsigned int len,
619 			       rxrpc_seq_t seq, u16 expected_cksum)
620 {
621 	struct skcipher_request	*req;
622 	struct rxrpc_crypt iv;
623 	struct scatterlist sg;
624 	bool aborted;
625 	u16 cksum;
626 	u32 x, y;
627 
628 	_enter("{%d{%x}},{#%u}",
629 	       call->debug_id, key_serial(call->conn->params.key), seq);
630 
631 	if (!call->conn->rxkad.cipher)
632 		return 0;
633 
634 	req = rxkad_get_call_crypto(call);
635 	if (!req)
636 		return -ENOMEM;
637 
638 	/* continue encrypting from where we left off */
639 	memcpy(&iv, call->conn->rxkad.csum_iv.x, sizeof(iv));
640 
641 	/* validate the security checksum */
642 	x = (call->cid & RXRPC_CHANNELMASK) << (32 - RXRPC_CIDSHIFT);
643 	x |= seq & 0x3fffffff;
644 	call->crypto_buf[0] = htonl(call->call_id);
645 	call->crypto_buf[1] = htonl(x);
646 
647 	sg_init_one(&sg, call->crypto_buf, 8);
648 	skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
649 	skcipher_request_set_callback(req, 0, NULL, NULL);
650 	skcipher_request_set_crypt(req, &sg, &sg, 8, iv.x);
651 	crypto_skcipher_encrypt(req);
652 	skcipher_request_zero(req);
653 
654 	y = ntohl(call->crypto_buf[1]);
655 	cksum = (y >> 16) & 0xffff;
656 	if (cksum == 0)
657 		cksum = 1; /* zero checksums are not permitted */
658 
659 	if (cksum != expected_cksum) {
660 		aborted = rxrpc_abort_eproto(call, skb, "rxkad_csum", "VCK",
661 					     RXKADSEALEDINCON);
662 		goto protocol_error;
663 	}
664 
665 	switch (call->conn->params.security_level) {
666 	case RXRPC_SECURITY_PLAIN:
667 		return 0;
668 	case RXRPC_SECURITY_AUTH:
669 		return rxkad_verify_packet_1(call, skb, offset, len, seq, req);
670 	case RXRPC_SECURITY_ENCRYPT:
671 		return rxkad_verify_packet_2(call, skb, offset, len, seq, req);
672 	default:
673 		return -ENOANO;
674 	}
675 
676 protocol_error:
677 	if (aborted)
678 		rxrpc_send_abort_packet(call);
679 	return -EPROTO;
680 }
681 
682 /*
683  * Locate the data contained in a packet that was partially encrypted.
684  */
685 static void rxkad_locate_data_1(struct rxrpc_call *call, struct sk_buff *skb,
686 				unsigned int *_offset, unsigned int *_len)
687 {
688 	struct rxkad_level1_hdr sechdr;
689 
690 	if (skb_copy_bits(skb, *_offset, &sechdr, sizeof(sechdr)) < 0)
691 		BUG();
692 	*_offset += sizeof(sechdr);
693 	*_len = ntohl(sechdr.data_size) & 0xffff;
694 }
695 
696 /*
697  * Locate the data contained in a packet that was completely encrypted.
698  */
699 static void rxkad_locate_data_2(struct rxrpc_call *call, struct sk_buff *skb,
700 				unsigned int *_offset, unsigned int *_len)
701 {
702 	struct rxkad_level2_hdr sechdr;
703 
704 	if (skb_copy_bits(skb, *_offset, &sechdr, sizeof(sechdr)) < 0)
705 		BUG();
706 	*_offset += sizeof(sechdr);
707 	*_len = ntohl(sechdr.data_size) & 0xffff;
708 }
709 
710 /*
711  * Locate the data contained in an already decrypted packet.
712  */
713 static void rxkad_locate_data(struct rxrpc_call *call, struct sk_buff *skb,
714 			      unsigned int *_offset, unsigned int *_len)
715 {
716 	switch (call->conn->params.security_level) {
717 	case RXRPC_SECURITY_AUTH:
718 		rxkad_locate_data_1(call, skb, _offset, _len);
719 		return;
720 	case RXRPC_SECURITY_ENCRYPT:
721 		rxkad_locate_data_2(call, skb, _offset, _len);
722 		return;
723 	default:
724 		return;
725 	}
726 }
727 
728 /*
729  * issue a challenge
730  */
731 static int rxkad_issue_challenge(struct rxrpc_connection *conn)
732 {
733 	struct rxkad_challenge challenge;
734 	struct rxrpc_wire_header whdr;
735 	struct msghdr msg;
736 	struct kvec iov[2];
737 	size_t len;
738 	u32 serial;
739 	int ret;
740 
741 	_enter("{%d}", conn->debug_id);
742 
743 	get_random_bytes(&conn->rxkad.nonce, sizeof(conn->rxkad.nonce));
744 
745 	challenge.version	= htonl(2);
746 	challenge.nonce		= htonl(conn->rxkad.nonce);
747 	challenge.min_level	= htonl(0);
748 	challenge.__padding	= 0;
749 
750 	msg.msg_name	= &conn->params.peer->srx.transport;
751 	msg.msg_namelen	= conn->params.peer->srx.transport_len;
752 	msg.msg_control	= NULL;
753 	msg.msg_controllen = 0;
754 	msg.msg_flags	= 0;
755 
756 	whdr.epoch	= htonl(conn->proto.epoch);
757 	whdr.cid	= htonl(conn->proto.cid);
758 	whdr.callNumber	= 0;
759 	whdr.seq	= 0;
760 	whdr.type	= RXRPC_PACKET_TYPE_CHALLENGE;
761 	whdr.flags	= conn->out_clientflag;
762 	whdr.userStatus	= 0;
763 	whdr.securityIndex = conn->security_ix;
764 	whdr._rsvd	= 0;
765 	whdr.serviceId	= htons(conn->service_id);
766 
767 	iov[0].iov_base	= &whdr;
768 	iov[0].iov_len	= sizeof(whdr);
769 	iov[1].iov_base	= &challenge;
770 	iov[1].iov_len	= sizeof(challenge);
771 
772 	len = iov[0].iov_len + iov[1].iov_len;
773 
774 	serial = atomic_inc_return(&conn->serial);
775 	whdr.serial = htonl(serial);
776 	_proto("Tx CHALLENGE %%%u", serial);
777 
778 	ret = kernel_sendmsg(conn->params.local->socket, &msg, iov, 2, len);
779 	if (ret < 0) {
780 		trace_rxrpc_tx_fail(conn->debug_id, serial, ret,
781 				    rxrpc_tx_point_rxkad_challenge);
782 		return -EAGAIN;
783 	}
784 
785 	conn->params.peer->last_tx_at = ktime_get_seconds();
786 	trace_rxrpc_tx_packet(conn->debug_id, &whdr,
787 			      rxrpc_tx_point_rxkad_challenge);
788 	_leave(" = 0");
789 	return 0;
790 }
791 
792 /*
793  * send a Kerberos security response
794  */
795 static int rxkad_send_response(struct rxrpc_connection *conn,
796 			       struct rxrpc_host_header *hdr,
797 			       struct rxkad_response *resp,
798 			       const struct rxkad_key *s2)
799 {
800 	struct rxrpc_wire_header whdr;
801 	struct msghdr msg;
802 	struct kvec iov[3];
803 	size_t len;
804 	u32 serial;
805 	int ret;
806 
807 	_enter("");
808 
809 	msg.msg_name	= &conn->params.peer->srx.transport;
810 	msg.msg_namelen	= conn->params.peer->srx.transport_len;
811 	msg.msg_control	= NULL;
812 	msg.msg_controllen = 0;
813 	msg.msg_flags	= 0;
814 
815 	memset(&whdr, 0, sizeof(whdr));
816 	whdr.epoch	= htonl(hdr->epoch);
817 	whdr.cid	= htonl(hdr->cid);
818 	whdr.type	= RXRPC_PACKET_TYPE_RESPONSE;
819 	whdr.flags	= conn->out_clientflag;
820 	whdr.securityIndex = hdr->securityIndex;
821 	whdr.serviceId	= htons(hdr->serviceId);
822 
823 	iov[0].iov_base	= &whdr;
824 	iov[0].iov_len	= sizeof(whdr);
825 	iov[1].iov_base	= resp;
826 	iov[1].iov_len	= sizeof(*resp);
827 	iov[2].iov_base	= (void *)s2->ticket;
828 	iov[2].iov_len	= s2->ticket_len;
829 
830 	len = iov[0].iov_len + iov[1].iov_len + iov[2].iov_len;
831 
832 	serial = atomic_inc_return(&conn->serial);
833 	whdr.serial = htonl(serial);
834 	_proto("Tx RESPONSE %%%u", serial);
835 
836 	ret = kernel_sendmsg(conn->params.local->socket, &msg, iov, 3, len);
837 	if (ret < 0) {
838 		trace_rxrpc_tx_fail(conn->debug_id, serial, ret,
839 				    rxrpc_tx_point_rxkad_response);
840 		return -EAGAIN;
841 	}
842 
843 	conn->params.peer->last_tx_at = ktime_get_seconds();
844 	_leave(" = 0");
845 	return 0;
846 }
847 
848 /*
849  * calculate the response checksum
850  */
851 static void rxkad_calc_response_checksum(struct rxkad_response *response)
852 {
853 	u32 csum = 1000003;
854 	int loop;
855 	u8 *p = (u8 *) response;
856 
857 	for (loop = sizeof(*response); loop > 0; loop--)
858 		csum = csum * 0x10204081 + *p++;
859 
860 	response->encrypted.checksum = htonl(csum);
861 }
862 
863 /*
864  * encrypt the response packet
865  */
866 static int rxkad_encrypt_response(struct rxrpc_connection *conn,
867 				  struct rxkad_response *resp,
868 				  const struct rxkad_key *s2)
869 {
870 	struct skcipher_request *req;
871 	struct rxrpc_crypt iv;
872 	struct scatterlist sg[1];
873 
874 	req = skcipher_request_alloc(&conn->rxkad.cipher->base, GFP_NOFS);
875 	if (!req)
876 		return -ENOMEM;
877 
878 	/* continue encrypting from where we left off */
879 	memcpy(&iv, s2->session_key, sizeof(iv));
880 
881 	sg_init_table(sg, 1);
882 	sg_set_buf(sg, &resp->encrypted, sizeof(resp->encrypted));
883 	skcipher_request_set_sync_tfm(req, conn->rxkad.cipher);
884 	skcipher_request_set_callback(req, 0, NULL, NULL);
885 	skcipher_request_set_crypt(req, sg, sg, sizeof(resp->encrypted), iv.x);
886 	crypto_skcipher_encrypt(req);
887 	skcipher_request_free(req);
888 	return 0;
889 }
890 
891 /*
892  * respond to a challenge packet
893  */
894 static int rxkad_respond_to_challenge(struct rxrpc_connection *conn,
895 				      struct sk_buff *skb,
896 				      u32 *_abort_code)
897 {
898 	const struct rxrpc_key_token *token;
899 	struct rxkad_challenge challenge;
900 	struct rxkad_response *resp;
901 	struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
902 	const char *eproto;
903 	u32 version, nonce, min_level, abort_code;
904 	int ret;
905 
906 	_enter("{%d,%x}", conn->debug_id, key_serial(conn->params.key));
907 
908 	eproto = tracepoint_string("chall_no_key");
909 	abort_code = RX_PROTOCOL_ERROR;
910 	if (!conn->params.key)
911 		goto protocol_error;
912 
913 	abort_code = RXKADEXPIRED;
914 	ret = key_validate(conn->params.key);
915 	if (ret < 0)
916 		goto other_error;
917 
918 	eproto = tracepoint_string("chall_short");
919 	abort_code = RXKADPACKETSHORT;
920 	if (skb_copy_bits(skb, sizeof(struct rxrpc_wire_header),
921 			  &challenge, sizeof(challenge)) < 0)
922 		goto protocol_error;
923 
924 	version = ntohl(challenge.version);
925 	nonce = ntohl(challenge.nonce);
926 	min_level = ntohl(challenge.min_level);
927 
928 	_proto("Rx CHALLENGE %%%u { v=%u n=%u ml=%u }",
929 	       sp->hdr.serial, version, nonce, min_level);
930 
931 	eproto = tracepoint_string("chall_ver");
932 	abort_code = RXKADINCONSISTENCY;
933 	if (version != RXKAD_VERSION)
934 		goto protocol_error;
935 
936 	abort_code = RXKADLEVELFAIL;
937 	ret = -EACCES;
938 	if (conn->params.security_level < min_level)
939 		goto other_error;
940 
941 	token = conn->params.key->payload.data[0];
942 
943 	/* build the response packet */
944 	resp = kzalloc(sizeof(struct rxkad_response), GFP_NOFS);
945 	if (!resp)
946 		return -ENOMEM;
947 
948 	resp->version			= htonl(RXKAD_VERSION);
949 	resp->encrypted.epoch		= htonl(conn->proto.epoch);
950 	resp->encrypted.cid		= htonl(conn->proto.cid);
951 	resp->encrypted.securityIndex	= htonl(conn->security_ix);
952 	resp->encrypted.inc_nonce	= htonl(nonce + 1);
953 	resp->encrypted.level		= htonl(conn->params.security_level);
954 	resp->kvno			= htonl(token->kad->kvno);
955 	resp->ticket_len		= htonl(token->kad->ticket_len);
956 	resp->encrypted.call_id[0]	= htonl(conn->channels[0].call_counter);
957 	resp->encrypted.call_id[1]	= htonl(conn->channels[1].call_counter);
958 	resp->encrypted.call_id[2]	= htonl(conn->channels[2].call_counter);
959 	resp->encrypted.call_id[3]	= htonl(conn->channels[3].call_counter);
960 
961 	/* calculate the response checksum and then do the encryption */
962 	rxkad_calc_response_checksum(resp);
963 	ret = rxkad_encrypt_response(conn, resp, token->kad);
964 	if (ret == 0)
965 		ret = rxkad_send_response(conn, &sp->hdr, resp, token->kad);
966 	kfree(resp);
967 	return ret;
968 
969 protocol_error:
970 	trace_rxrpc_rx_eproto(NULL, sp->hdr.serial, eproto);
971 	ret = -EPROTO;
972 other_error:
973 	*_abort_code = abort_code;
974 	return ret;
975 }
976 
977 /*
978  * decrypt the kerberos IV ticket in the response
979  */
980 static int rxkad_decrypt_ticket(struct rxrpc_connection *conn,
981 				struct key *server_key,
982 				struct sk_buff *skb,
983 				void *ticket, size_t ticket_len,
984 				struct rxrpc_crypt *_session_key,
985 				time64_t *_expiry,
986 				u32 *_abort_code)
987 {
988 	struct skcipher_request *req;
989 	struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
990 	struct rxrpc_crypt iv, key;
991 	struct scatterlist sg[1];
992 	struct in_addr addr;
993 	unsigned int life;
994 	const char *eproto;
995 	time64_t issue, now;
996 	bool little_endian;
997 	int ret;
998 	u32 abort_code;
999 	u8 *p, *q, *name, *end;
1000 
1001 	_enter("{%d},{%x}", conn->debug_id, key_serial(server_key));
1002 
1003 	*_expiry = 0;
1004 
1005 	ASSERT(server_key->payload.data[0] != NULL);
1006 	ASSERTCMP((unsigned long) ticket & 7UL, ==, 0);
1007 
1008 	memcpy(&iv, &server_key->payload.data[2], sizeof(iv));
1009 
1010 	ret = -ENOMEM;
1011 	req = skcipher_request_alloc(server_key->payload.data[0], GFP_NOFS);
1012 	if (!req)
1013 		goto temporary_error;
1014 
1015 	sg_init_one(&sg[0], ticket, ticket_len);
1016 	skcipher_request_set_callback(req, 0, NULL, NULL);
1017 	skcipher_request_set_crypt(req, sg, sg, ticket_len, iv.x);
1018 	crypto_skcipher_decrypt(req);
1019 	skcipher_request_free(req);
1020 
1021 	p = ticket;
1022 	end = p + ticket_len;
1023 
1024 #define Z(field)					\
1025 	({						\
1026 		u8 *__str = p;				\
1027 		eproto = tracepoint_string("rxkad_bad_"#field); \
1028 		q = memchr(p, 0, end - p);		\
1029 		if (!q || q - p > (field##_SZ))		\
1030 			goto bad_ticket;		\
1031 		for (; p < q; p++)			\
1032 			if (!isprint(*p))		\
1033 				goto bad_ticket;	\
1034 		p++;					\
1035 		__str;					\
1036 	})
1037 
1038 	/* extract the ticket flags */
1039 	_debug("KIV FLAGS: %x", *p);
1040 	little_endian = *p & 1;
1041 	p++;
1042 
1043 	/* extract the authentication name */
1044 	name = Z(ANAME);
1045 	_debug("KIV ANAME: %s", name);
1046 
1047 	/* extract the principal's instance */
1048 	name = Z(INST);
1049 	_debug("KIV INST : %s", name);
1050 
1051 	/* extract the principal's authentication domain */
1052 	name = Z(REALM);
1053 	_debug("KIV REALM: %s", name);
1054 
1055 	eproto = tracepoint_string("rxkad_bad_len");
1056 	if (end - p < 4 + 8 + 4 + 2)
1057 		goto bad_ticket;
1058 
1059 	/* get the IPv4 address of the entity that requested the ticket */
1060 	memcpy(&addr, p, sizeof(addr));
1061 	p += 4;
1062 	_debug("KIV ADDR : %pI4", &addr);
1063 
1064 	/* get the session key from the ticket */
1065 	memcpy(&key, p, sizeof(key));
1066 	p += 8;
1067 	_debug("KIV KEY  : %08x %08x", ntohl(key.n[0]), ntohl(key.n[1]));
1068 	memcpy(_session_key, &key, sizeof(key));
1069 
1070 	/* get the ticket's lifetime */
1071 	life = *p++ * 5 * 60;
1072 	_debug("KIV LIFE : %u", life);
1073 
1074 	/* get the issue time of the ticket */
1075 	if (little_endian) {
1076 		__le32 stamp;
1077 		memcpy(&stamp, p, 4);
1078 		issue = rxrpc_u32_to_time64(le32_to_cpu(stamp));
1079 	} else {
1080 		__be32 stamp;
1081 		memcpy(&stamp, p, 4);
1082 		issue = rxrpc_u32_to_time64(be32_to_cpu(stamp));
1083 	}
1084 	p += 4;
1085 	now = ktime_get_real_seconds();
1086 	_debug("KIV ISSUE: %llx [%llx]", issue, now);
1087 
1088 	/* check the ticket is in date */
1089 	if (issue > now) {
1090 		abort_code = RXKADNOAUTH;
1091 		ret = -EKEYREJECTED;
1092 		goto other_error;
1093 	}
1094 
1095 	if (issue < now - life) {
1096 		abort_code = RXKADEXPIRED;
1097 		ret = -EKEYEXPIRED;
1098 		goto other_error;
1099 	}
1100 
1101 	*_expiry = issue + life;
1102 
1103 	/* get the service name */
1104 	name = Z(SNAME);
1105 	_debug("KIV SNAME: %s", name);
1106 
1107 	/* get the service instance name */
1108 	name = Z(INST);
1109 	_debug("KIV SINST: %s", name);
1110 	return 0;
1111 
1112 bad_ticket:
1113 	trace_rxrpc_rx_eproto(NULL, sp->hdr.serial, eproto);
1114 	abort_code = RXKADBADTICKET;
1115 	ret = -EPROTO;
1116 other_error:
1117 	*_abort_code = abort_code;
1118 	return ret;
1119 temporary_error:
1120 	return ret;
1121 }
1122 
1123 /*
1124  * decrypt the response packet
1125  */
1126 static void rxkad_decrypt_response(struct rxrpc_connection *conn,
1127 				   struct rxkad_response *resp,
1128 				   const struct rxrpc_crypt *session_key)
1129 {
1130 	struct skcipher_request *req = rxkad_ci_req;
1131 	struct scatterlist sg[1];
1132 	struct rxrpc_crypt iv;
1133 
1134 	_enter(",,%08x%08x",
1135 	       ntohl(session_key->n[0]), ntohl(session_key->n[1]));
1136 
1137 	mutex_lock(&rxkad_ci_mutex);
1138 	if (crypto_sync_skcipher_setkey(rxkad_ci, session_key->x,
1139 					sizeof(*session_key)) < 0)
1140 		BUG();
1141 
1142 	memcpy(&iv, session_key, sizeof(iv));
1143 
1144 	sg_init_table(sg, 1);
1145 	sg_set_buf(sg, &resp->encrypted, sizeof(resp->encrypted));
1146 	skcipher_request_set_sync_tfm(req, rxkad_ci);
1147 	skcipher_request_set_callback(req, 0, NULL, NULL);
1148 	skcipher_request_set_crypt(req, sg, sg, sizeof(resp->encrypted), iv.x);
1149 	crypto_skcipher_decrypt(req);
1150 	skcipher_request_zero(req);
1151 
1152 	mutex_unlock(&rxkad_ci_mutex);
1153 
1154 	_leave("");
1155 }
1156 
1157 /*
1158  * verify a response
1159  */
1160 static int rxkad_verify_response(struct rxrpc_connection *conn,
1161 				 struct sk_buff *skb,
1162 				 u32 *_abort_code)
1163 {
1164 	struct rxkad_response *response;
1165 	struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
1166 	struct rxrpc_crypt session_key;
1167 	struct key *server_key;
1168 	const char *eproto;
1169 	time64_t expiry;
1170 	void *ticket;
1171 	u32 abort_code, version, kvno, ticket_len, level;
1172 	__be32 csum;
1173 	int ret, i;
1174 
1175 	_enter("{%d}", conn->debug_id);
1176 
1177 	server_key = rxrpc_look_up_server_security(conn, skb, 0, 0);
1178 	if (IS_ERR(server_key)) {
1179 		switch (PTR_ERR(server_key)) {
1180 		case -ENOKEY:
1181 			abort_code = RXKADUNKNOWNKEY;
1182 			break;
1183 		case -EKEYEXPIRED:
1184 			abort_code = RXKADEXPIRED;
1185 			break;
1186 		default:
1187 			abort_code = RXKADNOAUTH;
1188 			break;
1189 		}
1190 		trace_rxrpc_abort(0, "SVK",
1191 				  sp->hdr.cid, sp->hdr.callNumber, sp->hdr.seq,
1192 				  abort_code, PTR_ERR(server_key));
1193 		*_abort_code = abort_code;
1194 		return -EPROTO;
1195 	}
1196 
1197 	ret = -ENOMEM;
1198 	response = kzalloc(sizeof(struct rxkad_response), GFP_NOFS);
1199 	if (!response)
1200 		goto temporary_error;
1201 
1202 	eproto = tracepoint_string("rxkad_rsp_short");
1203 	abort_code = RXKADPACKETSHORT;
1204 	if (skb_copy_bits(skb, sizeof(struct rxrpc_wire_header),
1205 			  response, sizeof(*response)) < 0)
1206 		goto protocol_error;
1207 
1208 	version = ntohl(response->version);
1209 	ticket_len = ntohl(response->ticket_len);
1210 	kvno = ntohl(response->kvno);
1211 	_proto("Rx RESPONSE %%%u { v=%u kv=%u tl=%u }",
1212 	       sp->hdr.serial, version, kvno, ticket_len);
1213 
1214 	eproto = tracepoint_string("rxkad_rsp_ver");
1215 	abort_code = RXKADINCONSISTENCY;
1216 	if (version != RXKAD_VERSION)
1217 		goto protocol_error;
1218 
1219 	eproto = tracepoint_string("rxkad_rsp_tktlen");
1220 	abort_code = RXKADTICKETLEN;
1221 	if (ticket_len < 4 || ticket_len > MAXKRB5TICKETLEN)
1222 		goto protocol_error;
1223 
1224 	eproto = tracepoint_string("rxkad_rsp_unkkey");
1225 	abort_code = RXKADUNKNOWNKEY;
1226 	if (kvno >= RXKAD_TKT_TYPE_KERBEROS_V5)
1227 		goto protocol_error;
1228 
1229 	/* extract the kerberos ticket and decrypt and decode it */
1230 	ret = -ENOMEM;
1231 	ticket = kmalloc(ticket_len, GFP_NOFS);
1232 	if (!ticket)
1233 		goto temporary_error_free_resp;
1234 
1235 	eproto = tracepoint_string("rxkad_tkt_short");
1236 	abort_code = RXKADPACKETSHORT;
1237 	if (skb_copy_bits(skb, sizeof(struct rxrpc_wire_header) + sizeof(*response),
1238 			  ticket, ticket_len) < 0)
1239 		goto protocol_error_free;
1240 
1241 	ret = rxkad_decrypt_ticket(conn, server_key, skb, ticket, ticket_len,
1242 				   &session_key, &expiry, _abort_code);
1243 	if (ret < 0)
1244 		goto temporary_error_free_ticket;
1245 
1246 	/* use the session key from inside the ticket to decrypt the
1247 	 * response */
1248 	rxkad_decrypt_response(conn, response, &session_key);
1249 
1250 	eproto = tracepoint_string("rxkad_rsp_param");
1251 	abort_code = RXKADSEALEDINCON;
1252 	if (ntohl(response->encrypted.epoch) != conn->proto.epoch)
1253 		goto protocol_error_free;
1254 	if (ntohl(response->encrypted.cid) != conn->proto.cid)
1255 		goto protocol_error_free;
1256 	if (ntohl(response->encrypted.securityIndex) != conn->security_ix)
1257 		goto protocol_error_free;
1258 	csum = response->encrypted.checksum;
1259 	response->encrypted.checksum = 0;
1260 	rxkad_calc_response_checksum(response);
1261 	eproto = tracepoint_string("rxkad_rsp_csum");
1262 	if (response->encrypted.checksum != csum)
1263 		goto protocol_error_free;
1264 
1265 	spin_lock(&conn->bundle->channel_lock);
1266 	for (i = 0; i < RXRPC_MAXCALLS; i++) {
1267 		struct rxrpc_call *call;
1268 		u32 call_id = ntohl(response->encrypted.call_id[i]);
1269 
1270 		eproto = tracepoint_string("rxkad_rsp_callid");
1271 		if (call_id > INT_MAX)
1272 			goto protocol_error_unlock;
1273 
1274 		eproto = tracepoint_string("rxkad_rsp_callctr");
1275 		if (call_id < conn->channels[i].call_counter)
1276 			goto protocol_error_unlock;
1277 
1278 		eproto = tracepoint_string("rxkad_rsp_callst");
1279 		if (call_id > conn->channels[i].call_counter) {
1280 			call = rcu_dereference_protected(
1281 				conn->channels[i].call,
1282 				lockdep_is_held(&conn->bundle->channel_lock));
1283 			if (call && call->state < RXRPC_CALL_COMPLETE)
1284 				goto protocol_error_unlock;
1285 			conn->channels[i].call_counter = call_id;
1286 		}
1287 	}
1288 	spin_unlock(&conn->bundle->channel_lock);
1289 
1290 	eproto = tracepoint_string("rxkad_rsp_seq");
1291 	abort_code = RXKADOUTOFSEQUENCE;
1292 	if (ntohl(response->encrypted.inc_nonce) != conn->rxkad.nonce + 1)
1293 		goto protocol_error_free;
1294 
1295 	eproto = tracepoint_string("rxkad_rsp_level");
1296 	abort_code = RXKADLEVELFAIL;
1297 	level = ntohl(response->encrypted.level);
1298 	if (level > RXRPC_SECURITY_ENCRYPT)
1299 		goto protocol_error_free;
1300 	conn->params.security_level = level;
1301 
1302 	/* create a key to hold the security data and expiration time - after
1303 	 * this the connection security can be handled in exactly the same way
1304 	 * as for a client connection */
1305 	ret = rxrpc_get_server_data_key(conn, &session_key, expiry, kvno);
1306 	if (ret < 0)
1307 		goto temporary_error_free_ticket;
1308 
1309 	kfree(ticket);
1310 	kfree(response);
1311 	_leave(" = 0");
1312 	return 0;
1313 
1314 protocol_error_unlock:
1315 	spin_unlock(&conn->bundle->channel_lock);
1316 protocol_error_free:
1317 	kfree(ticket);
1318 protocol_error:
1319 	kfree(response);
1320 	trace_rxrpc_rx_eproto(NULL, sp->hdr.serial, eproto);
1321 	key_put(server_key);
1322 	*_abort_code = abort_code;
1323 	return -EPROTO;
1324 
1325 temporary_error_free_ticket:
1326 	kfree(ticket);
1327 temporary_error_free_resp:
1328 	kfree(response);
1329 temporary_error:
1330 	/* Ignore the response packet if we got a temporary error such as
1331 	 * ENOMEM.  We just want to send the challenge again.  Note that we
1332 	 * also come out this way if the ticket decryption fails.
1333 	 */
1334 	key_put(server_key);
1335 	return ret;
1336 }
1337 
1338 /*
1339  * clear the connection security
1340  */
1341 static void rxkad_clear(struct rxrpc_connection *conn)
1342 {
1343 	_enter("");
1344 
1345 	if (conn->rxkad.cipher)
1346 		crypto_free_sync_skcipher(conn->rxkad.cipher);
1347 }
1348 
1349 /*
1350  * Initialise the rxkad security service.
1351  */
1352 static int rxkad_init(void)
1353 {
1354 	struct crypto_sync_skcipher *tfm;
1355 	struct skcipher_request *req;
1356 
1357 	/* pin the cipher we need so that the crypto layer doesn't invoke
1358 	 * keventd to go get it */
1359 	tfm = crypto_alloc_sync_skcipher("pcbc(fcrypt)", 0, 0);
1360 	if (IS_ERR(tfm))
1361 		return PTR_ERR(tfm);
1362 
1363 	req = skcipher_request_alloc(&tfm->base, GFP_KERNEL);
1364 	if (!req)
1365 		goto nomem_tfm;
1366 
1367 	rxkad_ci_req = req;
1368 	rxkad_ci = tfm;
1369 	return 0;
1370 
1371 nomem_tfm:
1372 	crypto_free_sync_skcipher(tfm);
1373 	return -ENOMEM;
1374 }
1375 
1376 /*
1377  * Clean up the rxkad security service.
1378  */
1379 static void rxkad_exit(void)
1380 {
1381 	crypto_free_sync_skcipher(rxkad_ci);
1382 	skcipher_request_free(rxkad_ci_req);
1383 }
1384 
1385 /*
1386  * RxRPC Kerberos-based security
1387  */
1388 const struct rxrpc_security rxkad = {
1389 	.name				= "rxkad",
1390 	.security_index			= RXRPC_SECURITY_RXKAD,
1391 	.no_key_abort			= RXKADUNKNOWNKEY,
1392 	.init				= rxkad_init,
1393 	.exit				= rxkad_exit,
1394 	.preparse_server_key		= rxkad_preparse_server_key,
1395 	.free_preparse_server_key	= rxkad_free_preparse_server_key,
1396 	.destroy_server_key		= rxkad_destroy_server_key,
1397 	.init_connection_security	= rxkad_init_connection_security,
1398 	.how_much_data			= rxkad_how_much_data,
1399 	.secure_packet			= rxkad_secure_packet,
1400 	.verify_packet			= rxkad_verify_packet,
1401 	.free_call_crypto		= rxkad_free_call_crypto,
1402 	.locate_data			= rxkad_locate_data,
1403 	.issue_challenge		= rxkad_issue_challenge,
1404 	.respond_to_challenge		= rxkad_respond_to_challenge,
1405 	.verify_response		= rxkad_verify_response,
1406 	.clear				= rxkad_clear,
1407 };
1408