xref: /openbmc/linux/net/rxrpc/rxkad.c (revision 2a9eb57e)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Kerberos-based RxRPC security
3  *
4  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <crypto/skcipher.h>
11 #include <linux/module.h>
12 #include <linux/net.h>
13 #include <linux/skbuff.h>
14 #include <linux/udp.h>
15 #include <linux/scatterlist.h>
16 #include <linux/ctype.h>
17 #include <linux/slab.h>
18 #include <linux/key-type.h>
19 #include <net/sock.h>
20 #include <net/af_rxrpc.h>
21 #include <keys/rxrpc-type.h>
22 #include "ar-internal.h"
23 
24 #define RXKAD_VERSION			2
25 #define MAXKRB5TICKETLEN		1024
26 #define RXKAD_TKT_TYPE_KERBEROS_V5	256
27 #define ANAME_SZ			40	/* size of authentication name */
28 #define INST_SZ				40	/* size of principal's instance */
29 #define REALM_SZ			40	/* size of principal's auth domain */
30 #define SNAME_SZ			40	/* size of service name */
31 #define RXKAD_ALIGN			8
32 
33 struct rxkad_level1_hdr {
34 	__be32	data_size;	/* true data size (excluding padding) */
35 };
36 
37 struct rxkad_level2_hdr {
38 	__be32	data_size;	/* true data size (excluding padding) */
39 	__be32	checksum;	/* decrypted data checksum */
40 };
41 
42 static int rxkad_prime_packet_security(struct rxrpc_connection *conn,
43 				       struct crypto_sync_skcipher *ci);
44 
45 /*
46  * this holds a pinned cipher so that keventd doesn't get called by the cipher
47  * alloc routine, but since we have it to hand, we use it to decrypt RESPONSE
48  * packets
49  */
50 static struct crypto_sync_skcipher *rxkad_ci;
51 static struct skcipher_request *rxkad_ci_req;
52 static DEFINE_MUTEX(rxkad_ci_mutex);
53 
54 /*
55  * Parse the information from a server key
56  *
57  * The data should be the 8-byte secret key.
58  */
59 static int rxkad_preparse_server_key(struct key_preparsed_payload *prep)
60 {
61 	struct crypto_skcipher *ci;
62 
63 	if (prep->datalen != 8)
64 		return -EINVAL;
65 
66 	memcpy(&prep->payload.data[2], prep->data, 8);
67 
68 	ci = crypto_alloc_skcipher("pcbc(des)", 0, CRYPTO_ALG_ASYNC);
69 	if (IS_ERR(ci)) {
70 		_leave(" = %ld", PTR_ERR(ci));
71 		return PTR_ERR(ci);
72 	}
73 
74 	if (crypto_skcipher_setkey(ci, prep->data, 8) < 0)
75 		BUG();
76 
77 	prep->payload.data[0] = ci;
78 	_leave(" = 0");
79 	return 0;
80 }
81 
82 static void rxkad_free_preparse_server_key(struct key_preparsed_payload *prep)
83 {
84 
85 	if (prep->payload.data[0])
86 		crypto_free_skcipher(prep->payload.data[0]);
87 }
88 
89 static void rxkad_destroy_server_key(struct key *key)
90 {
91 	if (key->payload.data[0]) {
92 		crypto_free_skcipher(key->payload.data[0]);
93 		key->payload.data[0] = NULL;
94 	}
95 }
96 
97 /*
98  * initialise connection security
99  */
100 static int rxkad_init_connection_security(struct rxrpc_connection *conn,
101 					  struct rxrpc_key_token *token)
102 {
103 	struct crypto_sync_skcipher *ci;
104 	int ret;
105 
106 	_enter("{%d},{%x}", conn->debug_id, key_serial(conn->params.key));
107 
108 	conn->security_ix = token->security_index;
109 
110 	ci = crypto_alloc_sync_skcipher("pcbc(fcrypt)", 0, 0);
111 	if (IS_ERR(ci)) {
112 		_debug("no cipher");
113 		ret = PTR_ERR(ci);
114 		goto error;
115 	}
116 
117 	if (crypto_sync_skcipher_setkey(ci, token->kad->session_key,
118 				   sizeof(token->kad->session_key)) < 0)
119 		BUG();
120 
121 	switch (conn->params.security_level) {
122 	case RXRPC_SECURITY_PLAIN:
123 	case RXRPC_SECURITY_AUTH:
124 	case RXRPC_SECURITY_ENCRYPT:
125 		break;
126 	default:
127 		ret = -EKEYREJECTED;
128 		goto error;
129 	}
130 
131 	ret = rxkad_prime_packet_security(conn, ci);
132 	if (ret < 0)
133 		goto error_ci;
134 
135 	conn->rxkad.cipher = ci;
136 	return 0;
137 
138 error_ci:
139 	crypto_free_sync_skcipher(ci);
140 error:
141 	_leave(" = %d", ret);
142 	return ret;
143 }
144 
145 /*
146  * Work out how much data we can put in a packet.
147  */
148 static int rxkad_how_much_data(struct rxrpc_call *call, size_t remain,
149 			       size_t *_buf_size, size_t *_data_size, size_t *_offset)
150 {
151 	size_t shdr, buf_size, chunk;
152 
153 	switch (call->conn->params.security_level) {
154 	default:
155 		buf_size = chunk = min_t(size_t, remain, RXRPC_JUMBO_DATALEN);
156 		shdr = 0;
157 		goto out;
158 	case RXRPC_SECURITY_AUTH:
159 		shdr = sizeof(struct rxkad_level1_hdr);
160 		break;
161 	case RXRPC_SECURITY_ENCRYPT:
162 		shdr = sizeof(struct rxkad_level2_hdr);
163 		break;
164 	}
165 
166 	buf_size = round_down(RXRPC_JUMBO_DATALEN, RXKAD_ALIGN);
167 
168 	chunk = buf_size - shdr;
169 	if (remain < chunk)
170 		buf_size = round_up(shdr + remain, RXKAD_ALIGN);
171 
172 out:
173 	*_buf_size = buf_size;
174 	*_data_size = chunk;
175 	*_offset = shdr;
176 	return 0;
177 }
178 
179 /*
180  * prime the encryption state with the invariant parts of a connection's
181  * description
182  */
183 static int rxkad_prime_packet_security(struct rxrpc_connection *conn,
184 				       struct crypto_sync_skcipher *ci)
185 {
186 	struct skcipher_request *req;
187 	struct rxrpc_key_token *token;
188 	struct scatterlist sg;
189 	struct rxrpc_crypt iv;
190 	__be32 *tmpbuf;
191 	size_t tmpsize = 4 * sizeof(__be32);
192 
193 	_enter("");
194 
195 	if (!conn->params.key)
196 		return 0;
197 
198 	tmpbuf = kmalloc(tmpsize, GFP_KERNEL);
199 	if (!tmpbuf)
200 		return -ENOMEM;
201 
202 	req = skcipher_request_alloc(&ci->base, GFP_NOFS);
203 	if (!req) {
204 		kfree(tmpbuf);
205 		return -ENOMEM;
206 	}
207 
208 	token = conn->params.key->payload.data[0];
209 	memcpy(&iv, token->kad->session_key, sizeof(iv));
210 
211 	tmpbuf[0] = htonl(conn->proto.epoch);
212 	tmpbuf[1] = htonl(conn->proto.cid);
213 	tmpbuf[2] = 0;
214 	tmpbuf[3] = htonl(conn->security_ix);
215 
216 	sg_init_one(&sg, tmpbuf, tmpsize);
217 	skcipher_request_set_sync_tfm(req, ci);
218 	skcipher_request_set_callback(req, 0, NULL, NULL);
219 	skcipher_request_set_crypt(req, &sg, &sg, tmpsize, iv.x);
220 	crypto_skcipher_encrypt(req);
221 	skcipher_request_free(req);
222 
223 	memcpy(&conn->rxkad.csum_iv, tmpbuf + 2, sizeof(conn->rxkad.csum_iv));
224 	kfree(tmpbuf);
225 	_leave(" = 0");
226 	return 0;
227 }
228 
229 /*
230  * Allocate and prepare the crypto request on a call.  For any particular call,
231  * this is called serially for the packets, so no lock should be necessary.
232  */
233 static struct skcipher_request *rxkad_get_call_crypto(struct rxrpc_call *call)
234 {
235 	struct crypto_skcipher *tfm = &call->conn->rxkad.cipher->base;
236 	struct skcipher_request	*cipher_req = call->cipher_req;
237 
238 	if (!cipher_req) {
239 		cipher_req = skcipher_request_alloc(tfm, GFP_NOFS);
240 		if (!cipher_req)
241 			return NULL;
242 		call->cipher_req = cipher_req;
243 	}
244 
245 	return cipher_req;
246 }
247 
248 /*
249  * Clean up the crypto on a call.
250  */
251 static void rxkad_free_call_crypto(struct rxrpc_call *call)
252 {
253 	if (call->cipher_req)
254 		skcipher_request_free(call->cipher_req);
255 	call->cipher_req = NULL;
256 }
257 
258 /*
259  * partially encrypt a packet (level 1 security)
260  */
261 static int rxkad_secure_packet_auth(const struct rxrpc_call *call,
262 				    struct sk_buff *skb, u32 data_size,
263 				    struct skcipher_request *req)
264 {
265 	struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
266 	struct rxkad_level1_hdr hdr;
267 	struct rxrpc_crypt iv;
268 	struct scatterlist sg;
269 	size_t pad;
270 	u16 check;
271 
272 	_enter("");
273 
274 	check = sp->hdr.seq ^ call->call_id;
275 	data_size |= (u32)check << 16;
276 
277 	hdr.data_size = htonl(data_size);
278 	memcpy(skb->head, &hdr, sizeof(hdr));
279 
280 	pad = sizeof(struct rxkad_level1_hdr) + data_size;
281 	pad = RXKAD_ALIGN - pad;
282 	pad &= RXKAD_ALIGN - 1;
283 	if (pad)
284 		skb_put_zero(skb, pad);
285 
286 	/* start the encryption afresh */
287 	memset(&iv, 0, sizeof(iv));
288 
289 	sg_init_one(&sg, skb->head, 8);
290 	skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
291 	skcipher_request_set_callback(req, 0, NULL, NULL);
292 	skcipher_request_set_crypt(req, &sg, &sg, 8, iv.x);
293 	crypto_skcipher_encrypt(req);
294 	skcipher_request_zero(req);
295 
296 	_leave(" = 0");
297 	return 0;
298 }
299 
300 /*
301  * wholly encrypt a packet (level 2 security)
302  */
303 static int rxkad_secure_packet_encrypt(const struct rxrpc_call *call,
304 				       struct sk_buff *skb,
305 				       u32 data_size,
306 				       struct skcipher_request *req)
307 {
308 	const struct rxrpc_key_token *token;
309 	struct rxkad_level2_hdr rxkhdr;
310 	struct rxrpc_skb_priv *sp;
311 	struct rxrpc_crypt iv;
312 	struct scatterlist sg[16];
313 	unsigned int len;
314 	size_t pad;
315 	u16 check;
316 	int err;
317 
318 	sp = rxrpc_skb(skb);
319 
320 	_enter("");
321 
322 	check = sp->hdr.seq ^ call->call_id;
323 
324 	rxkhdr.data_size = htonl(data_size | (u32)check << 16);
325 	rxkhdr.checksum = 0;
326 	memcpy(skb->head, &rxkhdr, sizeof(rxkhdr));
327 
328 	pad = sizeof(struct rxkad_level2_hdr) + data_size;
329 	pad = RXKAD_ALIGN - pad;
330 	pad &= RXKAD_ALIGN - 1;
331 	if (pad)
332 		skb_put_zero(skb, pad);
333 
334 	/* encrypt from the session key */
335 	token = call->conn->params.key->payload.data[0];
336 	memcpy(&iv, token->kad->session_key, sizeof(iv));
337 
338 	sg_init_one(&sg[0], skb->head, sizeof(rxkhdr));
339 	skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
340 	skcipher_request_set_callback(req, 0, NULL, NULL);
341 	skcipher_request_set_crypt(req, &sg[0], &sg[0], sizeof(rxkhdr), iv.x);
342 	crypto_skcipher_encrypt(req);
343 
344 	/* we want to encrypt the skbuff in-place */
345 	err = -EMSGSIZE;
346 	if (skb_shinfo(skb)->nr_frags > 16)
347 		goto out;
348 
349 	len = round_up(data_size, RXKAD_ALIGN);
350 
351 	sg_init_table(sg, ARRAY_SIZE(sg));
352 	err = skb_to_sgvec(skb, sg, 8, len);
353 	if (unlikely(err < 0))
354 		goto out;
355 	skcipher_request_set_crypt(req, sg, sg, len, iv.x);
356 	crypto_skcipher_encrypt(req);
357 
358 	_leave(" = 0");
359 	err = 0;
360 
361 out:
362 	skcipher_request_zero(req);
363 	return err;
364 }
365 
366 /*
367  * checksum an RxRPC packet header
368  */
369 static int rxkad_secure_packet(struct rxrpc_call *call,
370 			       struct sk_buff *skb,
371 			       size_t data_size)
372 {
373 	struct rxrpc_skb_priv *sp;
374 	struct skcipher_request	*req;
375 	struct rxrpc_crypt iv;
376 	struct scatterlist sg;
377 	u32 x, y;
378 	int ret;
379 
380 	sp = rxrpc_skb(skb);
381 
382 	_enter("{%d{%x}},{#%u},%zu,",
383 	       call->debug_id, key_serial(call->conn->params.key),
384 	       sp->hdr.seq, data_size);
385 
386 	if (!call->conn->rxkad.cipher)
387 		return 0;
388 
389 	ret = key_validate(call->conn->params.key);
390 	if (ret < 0)
391 		return ret;
392 
393 	req = rxkad_get_call_crypto(call);
394 	if (!req)
395 		return -ENOMEM;
396 
397 	/* continue encrypting from where we left off */
398 	memcpy(&iv, call->conn->rxkad.csum_iv.x, sizeof(iv));
399 
400 	/* calculate the security checksum */
401 	x = (call->cid & RXRPC_CHANNELMASK) << (32 - RXRPC_CIDSHIFT);
402 	x |= sp->hdr.seq & 0x3fffffff;
403 	call->crypto_buf[0] = htonl(call->call_id);
404 	call->crypto_buf[1] = htonl(x);
405 
406 	sg_init_one(&sg, call->crypto_buf, 8);
407 	skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
408 	skcipher_request_set_callback(req, 0, NULL, NULL);
409 	skcipher_request_set_crypt(req, &sg, &sg, 8, iv.x);
410 	crypto_skcipher_encrypt(req);
411 	skcipher_request_zero(req);
412 
413 	y = ntohl(call->crypto_buf[1]);
414 	y = (y >> 16) & 0xffff;
415 	if (y == 0)
416 		y = 1; /* zero checksums are not permitted */
417 	sp->hdr.cksum = y;
418 
419 	switch (call->conn->params.security_level) {
420 	case RXRPC_SECURITY_PLAIN:
421 		ret = 0;
422 		break;
423 	case RXRPC_SECURITY_AUTH:
424 		ret = rxkad_secure_packet_auth(call, skb, data_size, req);
425 		break;
426 	case RXRPC_SECURITY_ENCRYPT:
427 		ret = rxkad_secure_packet_encrypt(call, skb, data_size, req);
428 		break;
429 	default:
430 		ret = -EPERM;
431 		break;
432 	}
433 
434 	_leave(" = %d [set %x]", ret, y);
435 	return ret;
436 }
437 
438 /*
439  * decrypt partial encryption on a packet (level 1 security)
440  */
441 static int rxkad_verify_packet_1(struct rxrpc_call *call, struct sk_buff *skb,
442 				 unsigned int offset, unsigned int len,
443 				 rxrpc_seq_t seq,
444 				 struct skcipher_request *req)
445 {
446 	struct rxkad_level1_hdr sechdr;
447 	struct rxrpc_crypt iv;
448 	struct scatterlist sg[16];
449 	bool aborted;
450 	u32 data_size, buf;
451 	u16 check;
452 	int ret;
453 
454 	_enter("");
455 
456 	if (len < 8) {
457 		aborted = rxrpc_abort_eproto(call, skb, "rxkad_1_hdr", "V1H",
458 					   RXKADSEALEDINCON);
459 		goto protocol_error;
460 	}
461 
462 	/* Decrypt the skbuff in-place.  TODO: We really want to decrypt
463 	 * directly into the target buffer.
464 	 */
465 	sg_init_table(sg, ARRAY_SIZE(sg));
466 	ret = skb_to_sgvec(skb, sg, offset, 8);
467 	if (unlikely(ret < 0))
468 		return ret;
469 
470 	/* start the decryption afresh */
471 	memset(&iv, 0, sizeof(iv));
472 
473 	skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
474 	skcipher_request_set_callback(req, 0, NULL, NULL);
475 	skcipher_request_set_crypt(req, sg, sg, 8, iv.x);
476 	crypto_skcipher_decrypt(req);
477 	skcipher_request_zero(req);
478 
479 	/* Extract the decrypted packet length */
480 	if (skb_copy_bits(skb, offset, &sechdr, sizeof(sechdr)) < 0) {
481 		aborted = rxrpc_abort_eproto(call, skb, "rxkad_1_len", "XV1",
482 					     RXKADDATALEN);
483 		goto protocol_error;
484 	}
485 	len -= sizeof(sechdr);
486 
487 	buf = ntohl(sechdr.data_size);
488 	data_size = buf & 0xffff;
489 
490 	check = buf >> 16;
491 	check ^= seq ^ call->call_id;
492 	check &= 0xffff;
493 	if (check != 0) {
494 		aborted = rxrpc_abort_eproto(call, skb, "rxkad_1_check", "V1C",
495 					     RXKADSEALEDINCON);
496 		goto protocol_error;
497 	}
498 
499 	if (data_size > len) {
500 		aborted = rxrpc_abort_eproto(call, skb, "rxkad_1_datalen", "V1L",
501 					     RXKADDATALEN);
502 		goto protocol_error;
503 	}
504 
505 	_leave(" = 0 [dlen=%x]", data_size);
506 	return 0;
507 
508 protocol_error:
509 	if (aborted)
510 		rxrpc_send_abort_packet(call);
511 	return -EPROTO;
512 }
513 
514 /*
515  * wholly decrypt a packet (level 2 security)
516  */
517 static int rxkad_verify_packet_2(struct rxrpc_call *call, struct sk_buff *skb,
518 				 unsigned int offset, unsigned int len,
519 				 rxrpc_seq_t seq,
520 				 struct skcipher_request *req)
521 {
522 	const struct rxrpc_key_token *token;
523 	struct rxkad_level2_hdr sechdr;
524 	struct rxrpc_crypt iv;
525 	struct scatterlist _sg[4], *sg;
526 	bool aborted;
527 	u32 data_size, buf;
528 	u16 check;
529 	int nsg, ret;
530 
531 	_enter(",{%d}", skb->len);
532 
533 	if (len < 8) {
534 		aborted = rxrpc_abort_eproto(call, skb, "rxkad_2_hdr", "V2H",
535 					     RXKADSEALEDINCON);
536 		goto protocol_error;
537 	}
538 
539 	/* Decrypt the skbuff in-place.  TODO: We really want to decrypt
540 	 * directly into the target buffer.
541 	 */
542 	sg = _sg;
543 	nsg = skb_shinfo(skb)->nr_frags;
544 	if (nsg <= 4) {
545 		nsg = 4;
546 	} else {
547 		sg = kmalloc_array(nsg, sizeof(*sg), GFP_NOIO);
548 		if (!sg)
549 			goto nomem;
550 	}
551 
552 	sg_init_table(sg, nsg);
553 	ret = skb_to_sgvec(skb, sg, offset, len);
554 	if (unlikely(ret < 0)) {
555 		if (sg != _sg)
556 			kfree(sg);
557 		return ret;
558 	}
559 
560 	/* decrypt from the session key */
561 	token = call->conn->params.key->payload.data[0];
562 	memcpy(&iv, token->kad->session_key, sizeof(iv));
563 
564 	skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
565 	skcipher_request_set_callback(req, 0, NULL, NULL);
566 	skcipher_request_set_crypt(req, sg, sg, len, iv.x);
567 	crypto_skcipher_decrypt(req);
568 	skcipher_request_zero(req);
569 	if (sg != _sg)
570 		kfree(sg);
571 
572 	/* Extract the decrypted packet length */
573 	if (skb_copy_bits(skb, offset, &sechdr, sizeof(sechdr)) < 0) {
574 		aborted = rxrpc_abort_eproto(call, skb, "rxkad_2_len", "XV2",
575 					     RXKADDATALEN);
576 		goto protocol_error;
577 	}
578 	len -= sizeof(sechdr);
579 
580 	buf = ntohl(sechdr.data_size);
581 	data_size = buf & 0xffff;
582 
583 	check = buf >> 16;
584 	check ^= seq ^ call->call_id;
585 	check &= 0xffff;
586 	if (check != 0) {
587 		aborted = rxrpc_abort_eproto(call, skb, "rxkad_2_check", "V2C",
588 					     RXKADSEALEDINCON);
589 		goto protocol_error;
590 	}
591 
592 	if (data_size > len) {
593 		aborted = rxrpc_abort_eproto(call, skb, "rxkad_2_datalen", "V2L",
594 					     RXKADDATALEN);
595 		goto protocol_error;
596 	}
597 
598 	_leave(" = 0 [dlen=%x]", data_size);
599 	return 0;
600 
601 protocol_error:
602 	if (aborted)
603 		rxrpc_send_abort_packet(call);
604 	return -EPROTO;
605 
606 nomem:
607 	_leave(" = -ENOMEM");
608 	return -ENOMEM;
609 }
610 
611 /*
612  * Verify the security on a received packet or subpacket (if part of a
613  * jumbo packet).
614  */
615 static int rxkad_verify_packet(struct rxrpc_call *call, struct sk_buff *skb,
616 			       unsigned int offset, unsigned int len,
617 			       rxrpc_seq_t seq, u16 expected_cksum)
618 {
619 	struct skcipher_request	*req;
620 	struct rxrpc_crypt iv;
621 	struct scatterlist sg;
622 	bool aborted;
623 	u16 cksum;
624 	u32 x, y;
625 
626 	_enter("{%d{%x}},{#%u}",
627 	       call->debug_id, key_serial(call->conn->params.key), seq);
628 
629 	if (!call->conn->rxkad.cipher)
630 		return 0;
631 
632 	req = rxkad_get_call_crypto(call);
633 	if (!req)
634 		return -ENOMEM;
635 
636 	/* continue encrypting from where we left off */
637 	memcpy(&iv, call->conn->rxkad.csum_iv.x, sizeof(iv));
638 
639 	/* validate the security checksum */
640 	x = (call->cid & RXRPC_CHANNELMASK) << (32 - RXRPC_CIDSHIFT);
641 	x |= seq & 0x3fffffff;
642 	call->crypto_buf[0] = htonl(call->call_id);
643 	call->crypto_buf[1] = htonl(x);
644 
645 	sg_init_one(&sg, call->crypto_buf, 8);
646 	skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
647 	skcipher_request_set_callback(req, 0, NULL, NULL);
648 	skcipher_request_set_crypt(req, &sg, &sg, 8, iv.x);
649 	crypto_skcipher_encrypt(req);
650 	skcipher_request_zero(req);
651 
652 	y = ntohl(call->crypto_buf[1]);
653 	cksum = (y >> 16) & 0xffff;
654 	if (cksum == 0)
655 		cksum = 1; /* zero checksums are not permitted */
656 
657 	if (cksum != expected_cksum) {
658 		aborted = rxrpc_abort_eproto(call, skb, "rxkad_csum", "VCK",
659 					     RXKADSEALEDINCON);
660 		goto protocol_error;
661 	}
662 
663 	switch (call->conn->params.security_level) {
664 	case RXRPC_SECURITY_PLAIN:
665 		return 0;
666 	case RXRPC_SECURITY_AUTH:
667 		return rxkad_verify_packet_1(call, skb, offset, len, seq, req);
668 	case RXRPC_SECURITY_ENCRYPT:
669 		return rxkad_verify_packet_2(call, skb, offset, len, seq, req);
670 	default:
671 		return -ENOANO;
672 	}
673 
674 protocol_error:
675 	if (aborted)
676 		rxrpc_send_abort_packet(call);
677 	return -EPROTO;
678 }
679 
680 /*
681  * Locate the data contained in a packet that was partially encrypted.
682  */
683 static void rxkad_locate_data_1(struct rxrpc_call *call, struct sk_buff *skb,
684 				unsigned int *_offset, unsigned int *_len)
685 {
686 	struct rxkad_level1_hdr sechdr;
687 
688 	if (skb_copy_bits(skb, *_offset, &sechdr, sizeof(sechdr)) < 0)
689 		BUG();
690 	*_offset += sizeof(sechdr);
691 	*_len = ntohl(sechdr.data_size) & 0xffff;
692 }
693 
694 /*
695  * Locate the data contained in a packet that was completely encrypted.
696  */
697 static void rxkad_locate_data_2(struct rxrpc_call *call, struct sk_buff *skb,
698 				unsigned int *_offset, unsigned int *_len)
699 {
700 	struct rxkad_level2_hdr sechdr;
701 
702 	if (skb_copy_bits(skb, *_offset, &sechdr, sizeof(sechdr)) < 0)
703 		BUG();
704 	*_offset += sizeof(sechdr);
705 	*_len = ntohl(sechdr.data_size) & 0xffff;
706 }
707 
708 /*
709  * Locate the data contained in an already decrypted packet.
710  */
711 static void rxkad_locate_data(struct rxrpc_call *call, struct sk_buff *skb,
712 			      unsigned int *_offset, unsigned int *_len)
713 {
714 	switch (call->conn->params.security_level) {
715 	case RXRPC_SECURITY_AUTH:
716 		rxkad_locate_data_1(call, skb, _offset, _len);
717 		return;
718 	case RXRPC_SECURITY_ENCRYPT:
719 		rxkad_locate_data_2(call, skb, _offset, _len);
720 		return;
721 	default:
722 		return;
723 	}
724 }
725 
726 /*
727  * issue a challenge
728  */
729 static int rxkad_issue_challenge(struct rxrpc_connection *conn)
730 {
731 	struct rxkad_challenge challenge;
732 	struct rxrpc_wire_header whdr;
733 	struct msghdr msg;
734 	struct kvec iov[2];
735 	size_t len;
736 	u32 serial;
737 	int ret;
738 
739 	_enter("{%d}", conn->debug_id);
740 
741 	get_random_bytes(&conn->rxkad.nonce, sizeof(conn->rxkad.nonce));
742 
743 	challenge.version	= htonl(2);
744 	challenge.nonce		= htonl(conn->rxkad.nonce);
745 	challenge.min_level	= htonl(0);
746 	challenge.__padding	= 0;
747 
748 	msg.msg_name	= &conn->params.peer->srx.transport;
749 	msg.msg_namelen	= conn->params.peer->srx.transport_len;
750 	msg.msg_control	= NULL;
751 	msg.msg_controllen = 0;
752 	msg.msg_flags	= 0;
753 
754 	whdr.epoch	= htonl(conn->proto.epoch);
755 	whdr.cid	= htonl(conn->proto.cid);
756 	whdr.callNumber	= 0;
757 	whdr.seq	= 0;
758 	whdr.type	= RXRPC_PACKET_TYPE_CHALLENGE;
759 	whdr.flags	= conn->out_clientflag;
760 	whdr.userStatus	= 0;
761 	whdr.securityIndex = conn->security_ix;
762 	whdr._rsvd	= 0;
763 	whdr.serviceId	= htons(conn->service_id);
764 
765 	iov[0].iov_base	= &whdr;
766 	iov[0].iov_len	= sizeof(whdr);
767 	iov[1].iov_base	= &challenge;
768 	iov[1].iov_len	= sizeof(challenge);
769 
770 	len = iov[0].iov_len + iov[1].iov_len;
771 
772 	serial = atomic_inc_return(&conn->serial);
773 	whdr.serial = htonl(serial);
774 	_proto("Tx CHALLENGE %%%u", serial);
775 
776 	ret = kernel_sendmsg(conn->params.local->socket, &msg, iov, 2, len);
777 	if (ret < 0) {
778 		trace_rxrpc_tx_fail(conn->debug_id, serial, ret,
779 				    rxrpc_tx_point_rxkad_challenge);
780 		return -EAGAIN;
781 	}
782 
783 	conn->params.peer->last_tx_at = ktime_get_seconds();
784 	trace_rxrpc_tx_packet(conn->debug_id, &whdr,
785 			      rxrpc_tx_point_rxkad_challenge);
786 	_leave(" = 0");
787 	return 0;
788 }
789 
790 /*
791  * send a Kerberos security response
792  */
793 static int rxkad_send_response(struct rxrpc_connection *conn,
794 			       struct rxrpc_host_header *hdr,
795 			       struct rxkad_response *resp,
796 			       const struct rxkad_key *s2)
797 {
798 	struct rxrpc_wire_header whdr;
799 	struct msghdr msg;
800 	struct kvec iov[3];
801 	size_t len;
802 	u32 serial;
803 	int ret;
804 
805 	_enter("");
806 
807 	msg.msg_name	= &conn->params.peer->srx.transport;
808 	msg.msg_namelen	= conn->params.peer->srx.transport_len;
809 	msg.msg_control	= NULL;
810 	msg.msg_controllen = 0;
811 	msg.msg_flags	= 0;
812 
813 	memset(&whdr, 0, sizeof(whdr));
814 	whdr.epoch	= htonl(hdr->epoch);
815 	whdr.cid	= htonl(hdr->cid);
816 	whdr.type	= RXRPC_PACKET_TYPE_RESPONSE;
817 	whdr.flags	= conn->out_clientflag;
818 	whdr.securityIndex = hdr->securityIndex;
819 	whdr.serviceId	= htons(hdr->serviceId);
820 
821 	iov[0].iov_base	= &whdr;
822 	iov[0].iov_len	= sizeof(whdr);
823 	iov[1].iov_base	= resp;
824 	iov[1].iov_len	= sizeof(*resp);
825 	iov[2].iov_base	= (void *)s2->ticket;
826 	iov[2].iov_len	= s2->ticket_len;
827 
828 	len = iov[0].iov_len + iov[1].iov_len + iov[2].iov_len;
829 
830 	serial = atomic_inc_return(&conn->serial);
831 	whdr.serial = htonl(serial);
832 	_proto("Tx RESPONSE %%%u", serial);
833 
834 	ret = kernel_sendmsg(conn->params.local->socket, &msg, iov, 3, len);
835 	if (ret < 0) {
836 		trace_rxrpc_tx_fail(conn->debug_id, serial, ret,
837 				    rxrpc_tx_point_rxkad_response);
838 		return -EAGAIN;
839 	}
840 
841 	conn->params.peer->last_tx_at = ktime_get_seconds();
842 	_leave(" = 0");
843 	return 0;
844 }
845 
846 /*
847  * calculate the response checksum
848  */
849 static void rxkad_calc_response_checksum(struct rxkad_response *response)
850 {
851 	u32 csum = 1000003;
852 	int loop;
853 	u8 *p = (u8 *) response;
854 
855 	for (loop = sizeof(*response); loop > 0; loop--)
856 		csum = csum * 0x10204081 + *p++;
857 
858 	response->encrypted.checksum = htonl(csum);
859 }
860 
861 /*
862  * encrypt the response packet
863  */
864 static int rxkad_encrypt_response(struct rxrpc_connection *conn,
865 				  struct rxkad_response *resp,
866 				  const struct rxkad_key *s2)
867 {
868 	struct skcipher_request *req;
869 	struct rxrpc_crypt iv;
870 	struct scatterlist sg[1];
871 
872 	req = skcipher_request_alloc(&conn->rxkad.cipher->base, GFP_NOFS);
873 	if (!req)
874 		return -ENOMEM;
875 
876 	/* continue encrypting from where we left off */
877 	memcpy(&iv, s2->session_key, sizeof(iv));
878 
879 	sg_init_table(sg, 1);
880 	sg_set_buf(sg, &resp->encrypted, sizeof(resp->encrypted));
881 	skcipher_request_set_sync_tfm(req, conn->rxkad.cipher);
882 	skcipher_request_set_callback(req, 0, NULL, NULL);
883 	skcipher_request_set_crypt(req, sg, sg, sizeof(resp->encrypted), iv.x);
884 	crypto_skcipher_encrypt(req);
885 	skcipher_request_free(req);
886 	return 0;
887 }
888 
889 /*
890  * respond to a challenge packet
891  */
892 static int rxkad_respond_to_challenge(struct rxrpc_connection *conn,
893 				      struct sk_buff *skb,
894 				      u32 *_abort_code)
895 {
896 	const struct rxrpc_key_token *token;
897 	struct rxkad_challenge challenge;
898 	struct rxkad_response *resp;
899 	struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
900 	const char *eproto;
901 	u32 version, nonce, min_level, abort_code;
902 	int ret;
903 
904 	_enter("{%d,%x}", conn->debug_id, key_serial(conn->params.key));
905 
906 	eproto = tracepoint_string("chall_no_key");
907 	abort_code = RX_PROTOCOL_ERROR;
908 	if (!conn->params.key)
909 		goto protocol_error;
910 
911 	abort_code = RXKADEXPIRED;
912 	ret = key_validate(conn->params.key);
913 	if (ret < 0)
914 		goto other_error;
915 
916 	eproto = tracepoint_string("chall_short");
917 	abort_code = RXKADPACKETSHORT;
918 	if (skb_copy_bits(skb, sizeof(struct rxrpc_wire_header),
919 			  &challenge, sizeof(challenge)) < 0)
920 		goto protocol_error;
921 
922 	version = ntohl(challenge.version);
923 	nonce = ntohl(challenge.nonce);
924 	min_level = ntohl(challenge.min_level);
925 
926 	_proto("Rx CHALLENGE %%%u { v=%u n=%u ml=%u }",
927 	       sp->hdr.serial, version, nonce, min_level);
928 
929 	eproto = tracepoint_string("chall_ver");
930 	abort_code = RXKADINCONSISTENCY;
931 	if (version != RXKAD_VERSION)
932 		goto protocol_error;
933 
934 	abort_code = RXKADLEVELFAIL;
935 	ret = -EACCES;
936 	if (conn->params.security_level < min_level)
937 		goto other_error;
938 
939 	token = conn->params.key->payload.data[0];
940 
941 	/* build the response packet */
942 	resp = kzalloc(sizeof(struct rxkad_response), GFP_NOFS);
943 	if (!resp)
944 		return -ENOMEM;
945 
946 	resp->version			= htonl(RXKAD_VERSION);
947 	resp->encrypted.epoch		= htonl(conn->proto.epoch);
948 	resp->encrypted.cid		= htonl(conn->proto.cid);
949 	resp->encrypted.securityIndex	= htonl(conn->security_ix);
950 	resp->encrypted.inc_nonce	= htonl(nonce + 1);
951 	resp->encrypted.level		= htonl(conn->params.security_level);
952 	resp->kvno			= htonl(token->kad->kvno);
953 	resp->ticket_len		= htonl(token->kad->ticket_len);
954 	resp->encrypted.call_id[0]	= htonl(conn->channels[0].call_counter);
955 	resp->encrypted.call_id[1]	= htonl(conn->channels[1].call_counter);
956 	resp->encrypted.call_id[2]	= htonl(conn->channels[2].call_counter);
957 	resp->encrypted.call_id[3]	= htonl(conn->channels[3].call_counter);
958 
959 	/* calculate the response checksum and then do the encryption */
960 	rxkad_calc_response_checksum(resp);
961 	ret = rxkad_encrypt_response(conn, resp, token->kad);
962 	if (ret == 0)
963 		ret = rxkad_send_response(conn, &sp->hdr, resp, token->kad);
964 	kfree(resp);
965 	return ret;
966 
967 protocol_error:
968 	trace_rxrpc_rx_eproto(NULL, sp->hdr.serial, eproto);
969 	ret = -EPROTO;
970 other_error:
971 	*_abort_code = abort_code;
972 	return ret;
973 }
974 
975 /*
976  * decrypt the kerberos IV ticket in the response
977  */
978 static int rxkad_decrypt_ticket(struct rxrpc_connection *conn,
979 				struct key *server_key,
980 				struct sk_buff *skb,
981 				void *ticket, size_t ticket_len,
982 				struct rxrpc_crypt *_session_key,
983 				time64_t *_expiry,
984 				u32 *_abort_code)
985 {
986 	struct skcipher_request *req;
987 	struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
988 	struct rxrpc_crypt iv, key;
989 	struct scatterlist sg[1];
990 	struct in_addr addr;
991 	unsigned int life;
992 	const char *eproto;
993 	time64_t issue, now;
994 	bool little_endian;
995 	int ret;
996 	u32 abort_code;
997 	u8 *p, *q, *name, *end;
998 
999 	_enter("{%d},{%x}", conn->debug_id, key_serial(server_key));
1000 
1001 	*_expiry = 0;
1002 
1003 	ASSERT(server_key->payload.data[0] != NULL);
1004 	ASSERTCMP((unsigned long) ticket & 7UL, ==, 0);
1005 
1006 	memcpy(&iv, &server_key->payload.data[2], sizeof(iv));
1007 
1008 	ret = -ENOMEM;
1009 	req = skcipher_request_alloc(server_key->payload.data[0], GFP_NOFS);
1010 	if (!req)
1011 		goto temporary_error;
1012 
1013 	sg_init_one(&sg[0], ticket, ticket_len);
1014 	skcipher_request_set_callback(req, 0, NULL, NULL);
1015 	skcipher_request_set_crypt(req, sg, sg, ticket_len, iv.x);
1016 	crypto_skcipher_decrypt(req);
1017 	skcipher_request_free(req);
1018 
1019 	p = ticket;
1020 	end = p + ticket_len;
1021 
1022 #define Z(field)					\
1023 	({						\
1024 		u8 *__str = p;				\
1025 		eproto = tracepoint_string("rxkad_bad_"#field); \
1026 		q = memchr(p, 0, end - p);		\
1027 		if (!q || q - p > (field##_SZ))		\
1028 			goto bad_ticket;		\
1029 		for (; p < q; p++)			\
1030 			if (!isprint(*p))		\
1031 				goto bad_ticket;	\
1032 		p++;					\
1033 		__str;					\
1034 	})
1035 
1036 	/* extract the ticket flags */
1037 	_debug("KIV FLAGS: %x", *p);
1038 	little_endian = *p & 1;
1039 	p++;
1040 
1041 	/* extract the authentication name */
1042 	name = Z(ANAME);
1043 	_debug("KIV ANAME: %s", name);
1044 
1045 	/* extract the principal's instance */
1046 	name = Z(INST);
1047 	_debug("KIV INST : %s", name);
1048 
1049 	/* extract the principal's authentication domain */
1050 	name = Z(REALM);
1051 	_debug("KIV REALM: %s", name);
1052 
1053 	eproto = tracepoint_string("rxkad_bad_len");
1054 	if (end - p < 4 + 8 + 4 + 2)
1055 		goto bad_ticket;
1056 
1057 	/* get the IPv4 address of the entity that requested the ticket */
1058 	memcpy(&addr, p, sizeof(addr));
1059 	p += 4;
1060 	_debug("KIV ADDR : %pI4", &addr);
1061 
1062 	/* get the session key from the ticket */
1063 	memcpy(&key, p, sizeof(key));
1064 	p += 8;
1065 	_debug("KIV KEY  : %08x %08x", ntohl(key.n[0]), ntohl(key.n[1]));
1066 	memcpy(_session_key, &key, sizeof(key));
1067 
1068 	/* get the ticket's lifetime */
1069 	life = *p++ * 5 * 60;
1070 	_debug("KIV LIFE : %u", life);
1071 
1072 	/* get the issue time of the ticket */
1073 	if (little_endian) {
1074 		__le32 stamp;
1075 		memcpy(&stamp, p, 4);
1076 		issue = rxrpc_u32_to_time64(le32_to_cpu(stamp));
1077 	} else {
1078 		__be32 stamp;
1079 		memcpy(&stamp, p, 4);
1080 		issue = rxrpc_u32_to_time64(be32_to_cpu(stamp));
1081 	}
1082 	p += 4;
1083 	now = ktime_get_real_seconds();
1084 	_debug("KIV ISSUE: %llx [%llx]", issue, now);
1085 
1086 	/* check the ticket is in date */
1087 	if (issue > now) {
1088 		abort_code = RXKADNOAUTH;
1089 		ret = -EKEYREJECTED;
1090 		goto other_error;
1091 	}
1092 
1093 	if (issue < now - life) {
1094 		abort_code = RXKADEXPIRED;
1095 		ret = -EKEYEXPIRED;
1096 		goto other_error;
1097 	}
1098 
1099 	*_expiry = issue + life;
1100 
1101 	/* get the service name */
1102 	name = Z(SNAME);
1103 	_debug("KIV SNAME: %s", name);
1104 
1105 	/* get the service instance name */
1106 	name = Z(INST);
1107 	_debug("KIV SINST: %s", name);
1108 	return 0;
1109 
1110 bad_ticket:
1111 	trace_rxrpc_rx_eproto(NULL, sp->hdr.serial, eproto);
1112 	abort_code = RXKADBADTICKET;
1113 	ret = -EPROTO;
1114 other_error:
1115 	*_abort_code = abort_code;
1116 	return ret;
1117 temporary_error:
1118 	return ret;
1119 }
1120 
1121 /*
1122  * decrypt the response packet
1123  */
1124 static void rxkad_decrypt_response(struct rxrpc_connection *conn,
1125 				   struct rxkad_response *resp,
1126 				   const struct rxrpc_crypt *session_key)
1127 {
1128 	struct skcipher_request *req = rxkad_ci_req;
1129 	struct scatterlist sg[1];
1130 	struct rxrpc_crypt iv;
1131 
1132 	_enter(",,%08x%08x",
1133 	       ntohl(session_key->n[0]), ntohl(session_key->n[1]));
1134 
1135 	mutex_lock(&rxkad_ci_mutex);
1136 	if (crypto_sync_skcipher_setkey(rxkad_ci, session_key->x,
1137 					sizeof(*session_key)) < 0)
1138 		BUG();
1139 
1140 	memcpy(&iv, session_key, sizeof(iv));
1141 
1142 	sg_init_table(sg, 1);
1143 	sg_set_buf(sg, &resp->encrypted, sizeof(resp->encrypted));
1144 	skcipher_request_set_sync_tfm(req, rxkad_ci);
1145 	skcipher_request_set_callback(req, 0, NULL, NULL);
1146 	skcipher_request_set_crypt(req, sg, sg, sizeof(resp->encrypted), iv.x);
1147 	crypto_skcipher_decrypt(req);
1148 	skcipher_request_zero(req);
1149 
1150 	mutex_unlock(&rxkad_ci_mutex);
1151 
1152 	_leave("");
1153 }
1154 
1155 /*
1156  * verify a response
1157  */
1158 static int rxkad_verify_response(struct rxrpc_connection *conn,
1159 				 struct sk_buff *skb,
1160 				 u32 *_abort_code)
1161 {
1162 	struct rxkad_response *response;
1163 	struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
1164 	struct rxrpc_crypt session_key;
1165 	struct key *server_key;
1166 	const char *eproto;
1167 	time64_t expiry;
1168 	void *ticket;
1169 	u32 abort_code, version, kvno, ticket_len, level;
1170 	__be32 csum;
1171 	int ret, i;
1172 
1173 	_enter("{%d}", conn->debug_id);
1174 
1175 	server_key = rxrpc_look_up_server_security(conn, skb, 0, 0);
1176 	if (IS_ERR(server_key)) {
1177 		switch (PTR_ERR(server_key)) {
1178 		case -ENOKEY:
1179 			abort_code = RXKADUNKNOWNKEY;
1180 			break;
1181 		case -EKEYEXPIRED:
1182 			abort_code = RXKADEXPIRED;
1183 			break;
1184 		default:
1185 			abort_code = RXKADNOAUTH;
1186 			break;
1187 		}
1188 		trace_rxrpc_abort(0, "SVK",
1189 				  sp->hdr.cid, sp->hdr.callNumber, sp->hdr.seq,
1190 				  abort_code, PTR_ERR(server_key));
1191 		*_abort_code = abort_code;
1192 		return -EPROTO;
1193 	}
1194 
1195 	ret = -ENOMEM;
1196 	response = kzalloc(sizeof(struct rxkad_response), GFP_NOFS);
1197 	if (!response)
1198 		goto temporary_error;
1199 
1200 	eproto = tracepoint_string("rxkad_rsp_short");
1201 	abort_code = RXKADPACKETSHORT;
1202 	if (skb_copy_bits(skb, sizeof(struct rxrpc_wire_header),
1203 			  response, sizeof(*response)) < 0)
1204 		goto protocol_error;
1205 
1206 	version = ntohl(response->version);
1207 	ticket_len = ntohl(response->ticket_len);
1208 	kvno = ntohl(response->kvno);
1209 	_proto("Rx RESPONSE %%%u { v=%u kv=%u tl=%u }",
1210 	       sp->hdr.serial, version, kvno, ticket_len);
1211 
1212 	eproto = tracepoint_string("rxkad_rsp_ver");
1213 	abort_code = RXKADINCONSISTENCY;
1214 	if (version != RXKAD_VERSION)
1215 		goto protocol_error;
1216 
1217 	eproto = tracepoint_string("rxkad_rsp_tktlen");
1218 	abort_code = RXKADTICKETLEN;
1219 	if (ticket_len < 4 || ticket_len > MAXKRB5TICKETLEN)
1220 		goto protocol_error;
1221 
1222 	eproto = tracepoint_string("rxkad_rsp_unkkey");
1223 	abort_code = RXKADUNKNOWNKEY;
1224 	if (kvno >= RXKAD_TKT_TYPE_KERBEROS_V5)
1225 		goto protocol_error;
1226 
1227 	/* extract the kerberos ticket and decrypt and decode it */
1228 	ret = -ENOMEM;
1229 	ticket = kmalloc(ticket_len, GFP_NOFS);
1230 	if (!ticket)
1231 		goto temporary_error_free_resp;
1232 
1233 	eproto = tracepoint_string("rxkad_tkt_short");
1234 	abort_code = RXKADPACKETSHORT;
1235 	if (skb_copy_bits(skb, sizeof(struct rxrpc_wire_header) + sizeof(*response),
1236 			  ticket, ticket_len) < 0)
1237 		goto protocol_error_free;
1238 
1239 	ret = rxkad_decrypt_ticket(conn, server_key, skb, ticket, ticket_len,
1240 				   &session_key, &expiry, _abort_code);
1241 	if (ret < 0)
1242 		goto temporary_error_free_ticket;
1243 
1244 	/* use the session key from inside the ticket to decrypt the
1245 	 * response */
1246 	rxkad_decrypt_response(conn, response, &session_key);
1247 
1248 	eproto = tracepoint_string("rxkad_rsp_param");
1249 	abort_code = RXKADSEALEDINCON;
1250 	if (ntohl(response->encrypted.epoch) != conn->proto.epoch)
1251 		goto protocol_error_free;
1252 	if (ntohl(response->encrypted.cid) != conn->proto.cid)
1253 		goto protocol_error_free;
1254 	if (ntohl(response->encrypted.securityIndex) != conn->security_ix)
1255 		goto protocol_error_free;
1256 	csum = response->encrypted.checksum;
1257 	response->encrypted.checksum = 0;
1258 	rxkad_calc_response_checksum(response);
1259 	eproto = tracepoint_string("rxkad_rsp_csum");
1260 	if (response->encrypted.checksum != csum)
1261 		goto protocol_error_free;
1262 
1263 	spin_lock(&conn->bundle->channel_lock);
1264 	for (i = 0; i < RXRPC_MAXCALLS; i++) {
1265 		struct rxrpc_call *call;
1266 		u32 call_id = ntohl(response->encrypted.call_id[i]);
1267 
1268 		eproto = tracepoint_string("rxkad_rsp_callid");
1269 		if (call_id > INT_MAX)
1270 			goto protocol_error_unlock;
1271 
1272 		eproto = tracepoint_string("rxkad_rsp_callctr");
1273 		if (call_id < conn->channels[i].call_counter)
1274 			goto protocol_error_unlock;
1275 
1276 		eproto = tracepoint_string("rxkad_rsp_callst");
1277 		if (call_id > conn->channels[i].call_counter) {
1278 			call = rcu_dereference_protected(
1279 				conn->channels[i].call,
1280 				lockdep_is_held(&conn->bundle->channel_lock));
1281 			if (call && call->state < RXRPC_CALL_COMPLETE)
1282 				goto protocol_error_unlock;
1283 			conn->channels[i].call_counter = call_id;
1284 		}
1285 	}
1286 	spin_unlock(&conn->bundle->channel_lock);
1287 
1288 	eproto = tracepoint_string("rxkad_rsp_seq");
1289 	abort_code = RXKADOUTOFSEQUENCE;
1290 	if (ntohl(response->encrypted.inc_nonce) != conn->rxkad.nonce + 1)
1291 		goto protocol_error_free;
1292 
1293 	eproto = tracepoint_string("rxkad_rsp_level");
1294 	abort_code = RXKADLEVELFAIL;
1295 	level = ntohl(response->encrypted.level);
1296 	if (level > RXRPC_SECURITY_ENCRYPT)
1297 		goto protocol_error_free;
1298 	conn->params.security_level = level;
1299 
1300 	/* create a key to hold the security data and expiration time - after
1301 	 * this the connection security can be handled in exactly the same way
1302 	 * as for a client connection */
1303 	ret = rxrpc_get_server_data_key(conn, &session_key, expiry, kvno);
1304 	if (ret < 0)
1305 		goto temporary_error_free_ticket;
1306 
1307 	kfree(ticket);
1308 	kfree(response);
1309 	_leave(" = 0");
1310 	return 0;
1311 
1312 protocol_error_unlock:
1313 	spin_unlock(&conn->bundle->channel_lock);
1314 protocol_error_free:
1315 	kfree(ticket);
1316 protocol_error:
1317 	kfree(response);
1318 	trace_rxrpc_rx_eproto(NULL, sp->hdr.serial, eproto);
1319 	key_put(server_key);
1320 	*_abort_code = abort_code;
1321 	return -EPROTO;
1322 
1323 temporary_error_free_ticket:
1324 	kfree(ticket);
1325 temporary_error_free_resp:
1326 	kfree(response);
1327 temporary_error:
1328 	/* Ignore the response packet if we got a temporary error such as
1329 	 * ENOMEM.  We just want to send the challenge again.  Note that we
1330 	 * also come out this way if the ticket decryption fails.
1331 	 */
1332 	key_put(server_key);
1333 	return ret;
1334 }
1335 
1336 /*
1337  * clear the connection security
1338  */
1339 static void rxkad_clear(struct rxrpc_connection *conn)
1340 {
1341 	_enter("");
1342 
1343 	if (conn->rxkad.cipher)
1344 		crypto_free_sync_skcipher(conn->rxkad.cipher);
1345 }
1346 
1347 /*
1348  * Initialise the rxkad security service.
1349  */
1350 static int rxkad_init(void)
1351 {
1352 	struct crypto_sync_skcipher *tfm;
1353 	struct skcipher_request *req;
1354 
1355 	/* pin the cipher we need so that the crypto layer doesn't invoke
1356 	 * keventd to go get it */
1357 	tfm = crypto_alloc_sync_skcipher("pcbc(fcrypt)", 0, 0);
1358 	if (IS_ERR(tfm))
1359 		return PTR_ERR(tfm);
1360 
1361 	req = skcipher_request_alloc(&tfm->base, GFP_KERNEL);
1362 	if (!req)
1363 		goto nomem_tfm;
1364 
1365 	rxkad_ci_req = req;
1366 	rxkad_ci = tfm;
1367 	return 0;
1368 
1369 nomem_tfm:
1370 	crypto_free_sync_skcipher(tfm);
1371 	return -ENOMEM;
1372 }
1373 
1374 /*
1375  * Clean up the rxkad security service.
1376  */
1377 static void rxkad_exit(void)
1378 {
1379 	crypto_free_sync_skcipher(rxkad_ci);
1380 	skcipher_request_free(rxkad_ci_req);
1381 }
1382 
1383 /*
1384  * RxRPC Kerberos-based security
1385  */
1386 const struct rxrpc_security rxkad = {
1387 	.name				= "rxkad",
1388 	.security_index			= RXRPC_SECURITY_RXKAD,
1389 	.no_key_abort			= RXKADUNKNOWNKEY,
1390 	.init				= rxkad_init,
1391 	.exit				= rxkad_exit,
1392 	.preparse_server_key		= rxkad_preparse_server_key,
1393 	.free_preparse_server_key	= rxkad_free_preparse_server_key,
1394 	.destroy_server_key		= rxkad_destroy_server_key,
1395 	.init_connection_security	= rxkad_init_connection_security,
1396 	.how_much_data			= rxkad_how_much_data,
1397 	.secure_packet			= rxkad_secure_packet,
1398 	.verify_packet			= rxkad_verify_packet,
1399 	.free_call_crypto		= rxkad_free_call_crypto,
1400 	.locate_data			= rxkad_locate_data,
1401 	.issue_challenge		= rxkad_issue_challenge,
1402 	.respond_to_challenge		= rxkad_respond_to_challenge,
1403 	.verify_response		= rxkad_verify_response,
1404 	.clear				= rxkad_clear,
1405 };
1406