1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* RxRPC recvmsg() implementation 3 * 4 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/net.h> 11 #include <linux/skbuff.h> 12 #include <linux/export.h> 13 #include <linux/sched/signal.h> 14 15 #include <net/sock.h> 16 #include <net/af_rxrpc.h> 17 #include "ar-internal.h" 18 19 /* 20 * Post a call for attention by the socket or kernel service. Further 21 * notifications are suppressed by putting recvmsg_link on a dummy queue. 22 */ 23 void rxrpc_notify_socket(struct rxrpc_call *call) 24 { 25 struct rxrpc_sock *rx; 26 struct sock *sk; 27 28 _enter("%d", call->debug_id); 29 30 if (!list_empty(&call->recvmsg_link)) 31 return; 32 33 rcu_read_lock(); 34 35 rx = rcu_dereference(call->socket); 36 sk = &rx->sk; 37 if (rx && sk->sk_state < RXRPC_CLOSE) { 38 if (call->notify_rx) { 39 spin_lock_bh(&call->notify_lock); 40 call->notify_rx(sk, call, call->user_call_ID); 41 spin_unlock_bh(&call->notify_lock); 42 } else { 43 write_lock_bh(&rx->recvmsg_lock); 44 if (list_empty(&call->recvmsg_link)) { 45 rxrpc_get_call(call, rxrpc_call_got); 46 list_add_tail(&call->recvmsg_link, &rx->recvmsg_q); 47 } 48 write_unlock_bh(&rx->recvmsg_lock); 49 50 if (!sock_flag(sk, SOCK_DEAD)) { 51 _debug("call %ps", sk->sk_data_ready); 52 sk->sk_data_ready(sk); 53 } 54 } 55 } 56 57 rcu_read_unlock(); 58 _leave(""); 59 } 60 61 /* 62 * Pass a call terminating message to userspace. 63 */ 64 static int rxrpc_recvmsg_term(struct rxrpc_call *call, struct msghdr *msg) 65 { 66 u32 tmp = 0; 67 int ret; 68 69 switch (call->completion) { 70 case RXRPC_CALL_SUCCEEDED: 71 ret = 0; 72 if (rxrpc_is_service_call(call)) 73 ret = put_cmsg(msg, SOL_RXRPC, RXRPC_ACK, 0, &tmp); 74 break; 75 case RXRPC_CALL_REMOTELY_ABORTED: 76 tmp = call->abort_code; 77 ret = put_cmsg(msg, SOL_RXRPC, RXRPC_ABORT, 4, &tmp); 78 break; 79 case RXRPC_CALL_LOCALLY_ABORTED: 80 tmp = call->abort_code; 81 ret = put_cmsg(msg, SOL_RXRPC, RXRPC_ABORT, 4, &tmp); 82 break; 83 case RXRPC_CALL_NETWORK_ERROR: 84 tmp = -call->error; 85 ret = put_cmsg(msg, SOL_RXRPC, RXRPC_NET_ERROR, 4, &tmp); 86 break; 87 case RXRPC_CALL_LOCAL_ERROR: 88 tmp = -call->error; 89 ret = put_cmsg(msg, SOL_RXRPC, RXRPC_LOCAL_ERROR, 4, &tmp); 90 break; 91 default: 92 pr_err("Invalid terminal call state %u\n", call->state); 93 BUG(); 94 break; 95 } 96 97 trace_rxrpc_recvmsg(call, rxrpc_recvmsg_terminal, call->rx_hard_ack, 98 call->rx_pkt_offset, call->rx_pkt_len, ret); 99 return ret; 100 } 101 102 /* 103 * Pass back notification of a new call. The call is added to the 104 * to-be-accepted list. This means that the next call to be accepted might not 105 * be the last call seen awaiting acceptance, but unless we leave this on the 106 * front of the queue and block all other messages until someone gives us a 107 * user_ID for it, there's not a lot we can do. 108 */ 109 static int rxrpc_recvmsg_new_call(struct rxrpc_sock *rx, 110 struct rxrpc_call *call, 111 struct msghdr *msg, int flags) 112 { 113 int tmp = 0, ret; 114 115 ret = put_cmsg(msg, SOL_RXRPC, RXRPC_NEW_CALL, 0, &tmp); 116 117 if (ret == 0 && !(flags & MSG_PEEK)) { 118 _debug("to be accepted"); 119 write_lock_bh(&rx->recvmsg_lock); 120 list_del_init(&call->recvmsg_link); 121 write_unlock_bh(&rx->recvmsg_lock); 122 123 rxrpc_get_call(call, rxrpc_call_got); 124 write_lock(&rx->call_lock); 125 list_add_tail(&call->accept_link, &rx->to_be_accepted); 126 write_unlock(&rx->call_lock); 127 } 128 129 trace_rxrpc_recvmsg(call, rxrpc_recvmsg_to_be_accepted, 1, 0, 0, ret); 130 return ret; 131 } 132 133 /* 134 * End the packet reception phase. 135 */ 136 static void rxrpc_end_rx_phase(struct rxrpc_call *call, rxrpc_serial_t serial) 137 { 138 _enter("%d,%s", call->debug_id, rxrpc_call_states[call->state]); 139 140 trace_rxrpc_receive(call, rxrpc_receive_end, 0, call->rx_top); 141 ASSERTCMP(call->rx_hard_ack, ==, call->rx_top); 142 143 if (call->state == RXRPC_CALL_CLIENT_RECV_REPLY) { 144 rxrpc_propose_ACK(call, RXRPC_ACK_IDLE, serial, false, true, 145 rxrpc_propose_ack_terminal_ack); 146 //rxrpc_send_ack_packet(call, false, NULL); 147 } 148 149 write_lock_bh(&call->state_lock); 150 151 switch (call->state) { 152 case RXRPC_CALL_CLIENT_RECV_REPLY: 153 __rxrpc_call_completed(call); 154 write_unlock_bh(&call->state_lock); 155 break; 156 157 case RXRPC_CALL_SERVER_RECV_REQUEST: 158 call->tx_phase = true; 159 call->state = RXRPC_CALL_SERVER_ACK_REQUEST; 160 call->expect_req_by = jiffies + MAX_JIFFY_OFFSET; 161 write_unlock_bh(&call->state_lock); 162 rxrpc_propose_ACK(call, RXRPC_ACK_DELAY, serial, false, true, 163 rxrpc_propose_ack_processing_op); 164 break; 165 default: 166 write_unlock_bh(&call->state_lock); 167 break; 168 } 169 } 170 171 /* 172 * Discard a packet we've used up and advance the Rx window by one. 173 */ 174 static void rxrpc_rotate_rx_window(struct rxrpc_call *call) 175 { 176 struct rxrpc_skb_priv *sp; 177 struct sk_buff *skb; 178 rxrpc_serial_t serial; 179 rxrpc_seq_t hard_ack, top; 180 bool last = false; 181 u8 subpacket; 182 int ix; 183 184 _enter("%d", call->debug_id); 185 186 hard_ack = call->rx_hard_ack; 187 top = smp_load_acquire(&call->rx_top); 188 ASSERT(before(hard_ack, top)); 189 190 hard_ack++; 191 ix = hard_ack & RXRPC_RXTX_BUFF_MASK; 192 skb = call->rxtx_buffer[ix]; 193 rxrpc_see_skb(skb, rxrpc_skb_rotated); 194 sp = rxrpc_skb(skb); 195 196 subpacket = call->rxtx_annotations[ix] & RXRPC_RX_ANNO_SUBPACKET; 197 serial = sp->hdr.serial + subpacket; 198 199 if (subpacket == sp->nr_subpackets - 1 && 200 sp->rx_flags & RXRPC_SKB_INCL_LAST) 201 last = true; 202 203 call->rxtx_buffer[ix] = NULL; 204 call->rxtx_annotations[ix] = 0; 205 /* Barrier against rxrpc_input_data(). */ 206 smp_store_release(&call->rx_hard_ack, hard_ack); 207 208 rxrpc_free_skb(skb, rxrpc_skb_freed); 209 210 trace_rxrpc_receive(call, rxrpc_receive_rotate, serial, hard_ack); 211 if (last) { 212 rxrpc_end_rx_phase(call, serial); 213 } else { 214 /* Check to see if there's an ACK that needs sending. */ 215 if (after_eq(hard_ack, call->ackr_consumed + 2) || 216 after_eq(top, call->ackr_seen + 2) || 217 (hard_ack == top && after(hard_ack, call->ackr_consumed))) 218 rxrpc_propose_ACK(call, RXRPC_ACK_DELAY, serial, 219 true, true, 220 rxrpc_propose_ack_rotate_rx); 221 if (call->ackr_reason && call->ackr_reason != RXRPC_ACK_DELAY) 222 rxrpc_send_ack_packet(call, false, NULL); 223 } 224 } 225 226 /* 227 * Decrypt and verify a (sub)packet. The packet's length may be changed due to 228 * padding, but if this is the case, the packet length will be resident in the 229 * socket buffer. Note that we can't modify the master skb info as the skb may 230 * be the home to multiple subpackets. 231 */ 232 static int rxrpc_verify_packet(struct rxrpc_call *call, struct sk_buff *skb, 233 u8 annotation, 234 unsigned int offset, unsigned int len) 235 { 236 struct rxrpc_skb_priv *sp = rxrpc_skb(skb); 237 rxrpc_seq_t seq = sp->hdr.seq; 238 u16 cksum = sp->hdr.cksum; 239 u8 subpacket = annotation & RXRPC_RX_ANNO_SUBPACKET; 240 241 _enter(""); 242 243 /* For all but the head jumbo subpacket, the security checksum is in a 244 * jumbo header immediately prior to the data. 245 */ 246 if (subpacket > 0) { 247 __be16 tmp; 248 if (skb_copy_bits(skb, offset - 2, &tmp, 2) < 0) 249 BUG(); 250 cksum = ntohs(tmp); 251 seq += subpacket; 252 } 253 254 return call->security->verify_packet(call, skb, offset, len, 255 seq, cksum); 256 } 257 258 /* 259 * Locate the data within a packet. This is complicated by: 260 * 261 * (1) An skb may contain a jumbo packet - so we have to find the appropriate 262 * subpacket. 263 * 264 * (2) The (sub)packets may be encrypted and, if so, the encrypted portion 265 * contains an extra header which includes the true length of the data, 266 * excluding any encrypted padding. 267 */ 268 static int rxrpc_locate_data(struct rxrpc_call *call, struct sk_buff *skb, 269 u8 *_annotation, 270 unsigned int *_offset, unsigned int *_len, 271 bool *_last) 272 { 273 struct rxrpc_skb_priv *sp = rxrpc_skb(skb); 274 unsigned int offset = sizeof(struct rxrpc_wire_header); 275 unsigned int len; 276 bool last = false; 277 int ret; 278 u8 annotation = *_annotation; 279 u8 subpacket = annotation & RXRPC_RX_ANNO_SUBPACKET; 280 281 /* Locate the subpacket */ 282 offset += subpacket * RXRPC_JUMBO_SUBPKTLEN; 283 len = skb->len - offset; 284 if (subpacket < sp->nr_subpackets - 1) 285 len = RXRPC_JUMBO_DATALEN; 286 else if (sp->rx_flags & RXRPC_SKB_INCL_LAST) 287 last = true; 288 289 if (!(annotation & RXRPC_RX_ANNO_VERIFIED)) { 290 ret = rxrpc_verify_packet(call, skb, annotation, offset, len); 291 if (ret < 0) 292 return ret; 293 *_annotation |= RXRPC_RX_ANNO_VERIFIED; 294 } 295 296 *_offset = offset; 297 *_len = len; 298 *_last = last; 299 call->security->locate_data(call, skb, _offset, _len); 300 return 0; 301 } 302 303 /* 304 * Deliver messages to a call. This keeps processing packets until the buffer 305 * is filled and we find either more DATA (returns 0) or the end of the DATA 306 * (returns 1). If more packets are required, it returns -EAGAIN. 307 */ 308 static int rxrpc_recvmsg_data(struct socket *sock, struct rxrpc_call *call, 309 struct msghdr *msg, struct iov_iter *iter, 310 size_t len, int flags, size_t *_offset) 311 { 312 struct rxrpc_skb_priv *sp; 313 struct sk_buff *skb; 314 rxrpc_serial_t serial; 315 rxrpc_seq_t hard_ack, top, seq; 316 size_t remain; 317 bool rx_pkt_last; 318 unsigned int rx_pkt_offset, rx_pkt_len; 319 int ix, copy, ret = -EAGAIN, ret2; 320 321 if (test_and_clear_bit(RXRPC_CALL_RX_UNDERRUN, &call->flags) && 322 call->ackr_reason) 323 rxrpc_send_ack_packet(call, false, NULL); 324 325 rx_pkt_offset = call->rx_pkt_offset; 326 rx_pkt_len = call->rx_pkt_len; 327 rx_pkt_last = call->rx_pkt_last; 328 329 if (call->state >= RXRPC_CALL_SERVER_ACK_REQUEST) { 330 seq = call->rx_hard_ack; 331 ret = 1; 332 goto done; 333 } 334 335 /* Barriers against rxrpc_input_data(). */ 336 hard_ack = call->rx_hard_ack; 337 seq = hard_ack + 1; 338 339 while (top = smp_load_acquire(&call->rx_top), 340 before_eq(seq, top) 341 ) { 342 ix = seq & RXRPC_RXTX_BUFF_MASK; 343 skb = call->rxtx_buffer[ix]; 344 if (!skb) { 345 trace_rxrpc_recvmsg(call, rxrpc_recvmsg_hole, seq, 346 rx_pkt_offset, rx_pkt_len, 0); 347 break; 348 } 349 smp_rmb(); 350 rxrpc_see_skb(skb, rxrpc_skb_seen); 351 sp = rxrpc_skb(skb); 352 353 if (!(flags & MSG_PEEK)) { 354 serial = sp->hdr.serial; 355 serial += call->rxtx_annotations[ix] & RXRPC_RX_ANNO_SUBPACKET; 356 trace_rxrpc_receive(call, rxrpc_receive_front, 357 serial, seq); 358 } 359 360 if (msg) 361 sock_recv_timestamp(msg, sock->sk, skb); 362 363 if (rx_pkt_offset == 0) { 364 ret2 = rxrpc_locate_data(call, skb, 365 &call->rxtx_annotations[ix], 366 &rx_pkt_offset, &rx_pkt_len, 367 &rx_pkt_last); 368 trace_rxrpc_recvmsg(call, rxrpc_recvmsg_next, seq, 369 rx_pkt_offset, rx_pkt_len, ret2); 370 if (ret2 < 0) { 371 ret = ret2; 372 goto out; 373 } 374 } else { 375 trace_rxrpc_recvmsg(call, rxrpc_recvmsg_cont, seq, 376 rx_pkt_offset, rx_pkt_len, 0); 377 } 378 379 /* We have to handle short, empty and used-up DATA packets. */ 380 remain = len - *_offset; 381 copy = rx_pkt_len; 382 if (copy > remain) 383 copy = remain; 384 if (copy > 0) { 385 ret2 = skb_copy_datagram_iter(skb, rx_pkt_offset, iter, 386 copy); 387 if (ret2 < 0) { 388 ret = ret2; 389 goto out; 390 } 391 392 /* handle piecemeal consumption of data packets */ 393 rx_pkt_offset += copy; 394 rx_pkt_len -= copy; 395 *_offset += copy; 396 } 397 398 if (rx_pkt_len > 0) { 399 trace_rxrpc_recvmsg(call, rxrpc_recvmsg_full, seq, 400 rx_pkt_offset, rx_pkt_len, 0); 401 ASSERTCMP(*_offset, ==, len); 402 ret = 0; 403 break; 404 } 405 406 /* The whole packet has been transferred. */ 407 if (!(flags & MSG_PEEK)) 408 rxrpc_rotate_rx_window(call); 409 rx_pkt_offset = 0; 410 rx_pkt_len = 0; 411 412 if (rx_pkt_last) { 413 ASSERTCMP(seq, ==, READ_ONCE(call->rx_top)); 414 ret = 1; 415 goto out; 416 } 417 418 seq++; 419 } 420 421 out: 422 if (!(flags & MSG_PEEK)) { 423 call->rx_pkt_offset = rx_pkt_offset; 424 call->rx_pkt_len = rx_pkt_len; 425 call->rx_pkt_last = rx_pkt_last; 426 } 427 done: 428 trace_rxrpc_recvmsg(call, rxrpc_recvmsg_data_return, seq, 429 rx_pkt_offset, rx_pkt_len, ret); 430 if (ret == -EAGAIN) 431 set_bit(RXRPC_CALL_RX_UNDERRUN, &call->flags); 432 return ret; 433 } 434 435 /* 436 * Receive a message from an RxRPC socket 437 * - we need to be careful about two or more threads calling recvmsg 438 * simultaneously 439 */ 440 int rxrpc_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 441 int flags) 442 { 443 struct rxrpc_call *call; 444 struct rxrpc_sock *rx = rxrpc_sk(sock->sk); 445 struct list_head *l; 446 size_t copied = 0; 447 long timeo; 448 int ret; 449 450 DEFINE_WAIT(wait); 451 452 trace_rxrpc_recvmsg(NULL, rxrpc_recvmsg_enter, 0, 0, 0, 0); 453 454 if (flags & (MSG_OOB | MSG_TRUNC)) 455 return -EOPNOTSUPP; 456 457 timeo = sock_rcvtimeo(&rx->sk, flags & MSG_DONTWAIT); 458 459 try_again: 460 lock_sock(&rx->sk); 461 462 /* Return immediately if a client socket has no outstanding calls */ 463 if (RB_EMPTY_ROOT(&rx->calls) && 464 list_empty(&rx->recvmsg_q) && 465 rx->sk.sk_state != RXRPC_SERVER_LISTENING) { 466 release_sock(&rx->sk); 467 return -ENODATA; 468 } 469 470 if (list_empty(&rx->recvmsg_q)) { 471 ret = -EWOULDBLOCK; 472 if (timeo == 0) { 473 call = NULL; 474 goto error_no_call; 475 } 476 477 release_sock(&rx->sk); 478 479 /* Wait for something to happen */ 480 prepare_to_wait_exclusive(sk_sleep(&rx->sk), &wait, 481 TASK_INTERRUPTIBLE); 482 ret = sock_error(&rx->sk); 483 if (ret) 484 goto wait_error; 485 486 if (list_empty(&rx->recvmsg_q)) { 487 if (signal_pending(current)) 488 goto wait_interrupted; 489 trace_rxrpc_recvmsg(NULL, rxrpc_recvmsg_wait, 490 0, 0, 0, 0); 491 timeo = schedule_timeout(timeo); 492 } 493 finish_wait(sk_sleep(&rx->sk), &wait); 494 goto try_again; 495 } 496 497 /* Find the next call and dequeue it if we're not just peeking. If we 498 * do dequeue it, that comes with a ref that we will need to release. 499 */ 500 write_lock_bh(&rx->recvmsg_lock); 501 l = rx->recvmsg_q.next; 502 call = list_entry(l, struct rxrpc_call, recvmsg_link); 503 if (!(flags & MSG_PEEK)) 504 list_del_init(&call->recvmsg_link); 505 else 506 rxrpc_get_call(call, rxrpc_call_got); 507 write_unlock_bh(&rx->recvmsg_lock); 508 509 trace_rxrpc_recvmsg(call, rxrpc_recvmsg_dequeue, 0, 0, 0, 0); 510 511 /* We're going to drop the socket lock, so we need to lock the call 512 * against interference by sendmsg. 513 */ 514 if (!mutex_trylock(&call->user_mutex)) { 515 ret = -EWOULDBLOCK; 516 if (flags & MSG_DONTWAIT) 517 goto error_requeue_call; 518 ret = -ERESTARTSYS; 519 if (mutex_lock_interruptible(&call->user_mutex) < 0) 520 goto error_requeue_call; 521 } 522 523 release_sock(&rx->sk); 524 525 if (test_bit(RXRPC_CALL_RELEASED, &call->flags)) 526 BUG(); 527 528 if (test_bit(RXRPC_CALL_HAS_USERID, &call->flags)) { 529 if (flags & MSG_CMSG_COMPAT) { 530 unsigned int id32 = call->user_call_ID; 531 532 ret = put_cmsg(msg, SOL_RXRPC, RXRPC_USER_CALL_ID, 533 sizeof(unsigned int), &id32); 534 } else { 535 unsigned long idl = call->user_call_ID; 536 537 ret = put_cmsg(msg, SOL_RXRPC, RXRPC_USER_CALL_ID, 538 sizeof(unsigned long), &idl); 539 } 540 if (ret < 0) 541 goto error_unlock_call; 542 } 543 544 if (msg->msg_name) { 545 struct sockaddr_rxrpc *srx = msg->msg_name; 546 size_t len = sizeof(call->peer->srx); 547 548 memcpy(msg->msg_name, &call->peer->srx, len); 549 srx->srx_service = call->service_id; 550 msg->msg_namelen = len; 551 } 552 553 switch (READ_ONCE(call->state)) { 554 case RXRPC_CALL_SERVER_ACCEPTING: 555 ret = rxrpc_recvmsg_new_call(rx, call, msg, flags); 556 break; 557 case RXRPC_CALL_CLIENT_RECV_REPLY: 558 case RXRPC_CALL_SERVER_RECV_REQUEST: 559 case RXRPC_CALL_SERVER_ACK_REQUEST: 560 ret = rxrpc_recvmsg_data(sock, call, msg, &msg->msg_iter, len, 561 flags, &copied); 562 if (ret == -EAGAIN) 563 ret = 0; 564 565 if (after(call->rx_top, call->rx_hard_ack) && 566 call->rxtx_buffer[(call->rx_hard_ack + 1) & RXRPC_RXTX_BUFF_MASK]) 567 rxrpc_notify_socket(call); 568 break; 569 default: 570 ret = 0; 571 break; 572 } 573 574 if (ret < 0) 575 goto error_unlock_call; 576 577 if (call->state == RXRPC_CALL_COMPLETE) { 578 ret = rxrpc_recvmsg_term(call, msg); 579 if (ret < 0) 580 goto error_unlock_call; 581 if (!(flags & MSG_PEEK)) 582 rxrpc_release_call(rx, call); 583 msg->msg_flags |= MSG_EOR; 584 ret = 1; 585 } 586 587 if (ret == 0) 588 msg->msg_flags |= MSG_MORE; 589 else 590 msg->msg_flags &= ~MSG_MORE; 591 ret = copied; 592 593 error_unlock_call: 594 mutex_unlock(&call->user_mutex); 595 rxrpc_put_call(call, rxrpc_call_put); 596 trace_rxrpc_recvmsg(call, rxrpc_recvmsg_return, 0, 0, 0, ret); 597 return ret; 598 599 error_requeue_call: 600 if (!(flags & MSG_PEEK)) { 601 write_lock_bh(&rx->recvmsg_lock); 602 list_add(&call->recvmsg_link, &rx->recvmsg_q); 603 write_unlock_bh(&rx->recvmsg_lock); 604 trace_rxrpc_recvmsg(call, rxrpc_recvmsg_requeue, 0, 0, 0, 0); 605 } else { 606 rxrpc_put_call(call, rxrpc_call_put); 607 } 608 error_no_call: 609 release_sock(&rx->sk); 610 error_trace: 611 trace_rxrpc_recvmsg(call, rxrpc_recvmsg_return, 0, 0, 0, ret); 612 return ret; 613 614 wait_interrupted: 615 ret = sock_intr_errno(timeo); 616 wait_error: 617 finish_wait(sk_sleep(&rx->sk), &wait); 618 call = NULL; 619 goto error_trace; 620 } 621 622 /** 623 * rxrpc_kernel_recv_data - Allow a kernel service to receive data/info 624 * @sock: The socket that the call exists on 625 * @call: The call to send data through 626 * @iter: The buffer to receive into 627 * @want_more: True if more data is expected to be read 628 * @_abort: Where the abort code is stored if -ECONNABORTED is returned 629 * @_service: Where to store the actual service ID (may be upgraded) 630 * 631 * Allow a kernel service to receive data and pick up information about the 632 * state of a call. Returns 0 if got what was asked for and there's more 633 * available, 1 if we got what was asked for and we're at the end of the data 634 * and -EAGAIN if we need more data. 635 * 636 * Note that we may return -EAGAIN to drain empty packets at the end of the 637 * data, even if we've already copied over the requested data. 638 * 639 * *_abort should also be initialised to 0. 640 */ 641 int rxrpc_kernel_recv_data(struct socket *sock, struct rxrpc_call *call, 642 struct iov_iter *iter, 643 bool want_more, u32 *_abort, u16 *_service) 644 { 645 size_t offset = 0; 646 int ret; 647 648 _enter("{%d,%s},%zu,%d", 649 call->debug_id, rxrpc_call_states[call->state], 650 iov_iter_count(iter), want_more); 651 652 ASSERTCMP(call->state, !=, RXRPC_CALL_SERVER_ACCEPTING); 653 654 mutex_lock(&call->user_mutex); 655 656 switch (READ_ONCE(call->state)) { 657 case RXRPC_CALL_CLIENT_RECV_REPLY: 658 case RXRPC_CALL_SERVER_RECV_REQUEST: 659 case RXRPC_CALL_SERVER_ACK_REQUEST: 660 ret = rxrpc_recvmsg_data(sock, call, NULL, iter, 661 iov_iter_count(iter), 0, 662 &offset); 663 if (ret < 0) 664 goto out; 665 666 /* We can only reach here with a partially full buffer if we 667 * have reached the end of the data. We must otherwise have a 668 * full buffer or have been given -EAGAIN. 669 */ 670 if (ret == 1) { 671 if (iov_iter_count(iter) > 0) 672 goto short_data; 673 if (!want_more) 674 goto read_phase_complete; 675 ret = 0; 676 goto out; 677 } 678 679 if (!want_more) 680 goto excess_data; 681 goto out; 682 683 case RXRPC_CALL_COMPLETE: 684 goto call_complete; 685 686 default: 687 ret = -EINPROGRESS; 688 goto out; 689 } 690 691 read_phase_complete: 692 ret = 1; 693 out: 694 switch (call->ackr_reason) { 695 case RXRPC_ACK_IDLE: 696 break; 697 case RXRPC_ACK_DELAY: 698 if (ret != -EAGAIN) 699 break; 700 /* Fall through */ 701 default: 702 rxrpc_send_ack_packet(call, false, NULL); 703 } 704 705 if (_service) 706 *_service = call->service_id; 707 mutex_unlock(&call->user_mutex); 708 _leave(" = %d [%zu,%d]", ret, iov_iter_count(iter), *_abort); 709 return ret; 710 711 short_data: 712 trace_rxrpc_rx_eproto(call, 0, tracepoint_string("short_data")); 713 ret = -EBADMSG; 714 goto out; 715 excess_data: 716 trace_rxrpc_rx_eproto(call, 0, tracepoint_string("excess_data")); 717 ret = -EMSGSIZE; 718 goto out; 719 call_complete: 720 *_abort = call->abort_code; 721 ret = call->error; 722 if (call->completion == RXRPC_CALL_SUCCEEDED) { 723 ret = 1; 724 if (iov_iter_count(iter) > 0) 725 ret = -ECONNRESET; 726 } 727 goto out; 728 } 729 EXPORT_SYMBOL(rxrpc_kernel_recv_data); 730 731 /** 732 * rxrpc_kernel_get_reply_time - Get timestamp on first reply packet 733 * @sock: The socket that the call exists on 734 * @call: The call to query 735 * @_ts: Where to put the timestamp 736 * 737 * Retrieve the timestamp from the first DATA packet of the reply if it is 738 * in the ring. Returns true if successful, false if not. 739 */ 740 bool rxrpc_kernel_get_reply_time(struct socket *sock, struct rxrpc_call *call, 741 ktime_t *_ts) 742 { 743 struct sk_buff *skb; 744 rxrpc_seq_t hard_ack, top, seq; 745 bool success = false; 746 747 mutex_lock(&call->user_mutex); 748 749 if (READ_ONCE(call->state) != RXRPC_CALL_CLIENT_RECV_REPLY) 750 goto out; 751 752 hard_ack = call->rx_hard_ack; 753 if (hard_ack != 0) 754 goto out; 755 756 seq = hard_ack + 1; 757 top = smp_load_acquire(&call->rx_top); 758 if (after(seq, top)) 759 goto out; 760 761 skb = call->rxtx_buffer[seq & RXRPC_RXTX_BUFF_MASK]; 762 if (!skb) 763 goto out; 764 765 *_ts = skb_get_ktime(skb); 766 success = true; 767 768 out: 769 mutex_unlock(&call->user_mutex); 770 return success; 771 } 772 EXPORT_SYMBOL(rxrpc_kernel_get_reply_time); 773