xref: /openbmc/linux/net/rose/af_rose.c (revision eb3fcf00)
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License as published by
4  * the Free Software Foundation; either version 2 of the License, or
5  * (at your option) any later version.
6  *
7  * Copyright (C) Jonathan Naylor G4KLX (g4klx@g4klx.demon.co.uk)
8  * Copyright (C) Alan Cox GW4PTS (alan@lxorguk.ukuu.org.uk)
9  * Copyright (C) Terry Dawson VK2KTJ (terry@animats.net)
10  * Copyright (C) Tomi Manninen OH2BNS (oh2bns@sral.fi)
11  */
12 
13 #include <linux/capability.h>
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/init.h>
17 #include <linux/errno.h>
18 #include <linux/types.h>
19 #include <linux/socket.h>
20 #include <linux/in.h>
21 #include <linux/slab.h>
22 #include <linux/kernel.h>
23 #include <linux/sched.h>
24 #include <linux/spinlock.h>
25 #include <linux/timer.h>
26 #include <linux/string.h>
27 #include <linux/sockios.h>
28 #include <linux/net.h>
29 #include <linux/stat.h>
30 #include <net/net_namespace.h>
31 #include <net/ax25.h>
32 #include <linux/inet.h>
33 #include <linux/netdevice.h>
34 #include <linux/if_arp.h>
35 #include <linux/skbuff.h>
36 #include <net/sock.h>
37 #include <asm/uaccess.h>
38 #include <linux/fcntl.h>
39 #include <linux/termios.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/notifier.h>
43 #include <net/rose.h>
44 #include <linux/proc_fs.h>
45 #include <linux/seq_file.h>
46 #include <net/tcp_states.h>
47 #include <net/ip.h>
48 #include <net/arp.h>
49 
50 static int rose_ndevs = 10;
51 
52 int sysctl_rose_restart_request_timeout = ROSE_DEFAULT_T0;
53 int sysctl_rose_call_request_timeout    = ROSE_DEFAULT_T1;
54 int sysctl_rose_reset_request_timeout   = ROSE_DEFAULT_T2;
55 int sysctl_rose_clear_request_timeout   = ROSE_DEFAULT_T3;
56 int sysctl_rose_no_activity_timeout     = ROSE_DEFAULT_IDLE;
57 int sysctl_rose_ack_hold_back_timeout   = ROSE_DEFAULT_HB;
58 int sysctl_rose_routing_control         = ROSE_DEFAULT_ROUTING;
59 int sysctl_rose_link_fail_timeout       = ROSE_DEFAULT_FAIL_TIMEOUT;
60 int sysctl_rose_maximum_vcs             = ROSE_DEFAULT_MAXVC;
61 int sysctl_rose_window_size             = ROSE_DEFAULT_WINDOW_SIZE;
62 
63 static HLIST_HEAD(rose_list);
64 static DEFINE_SPINLOCK(rose_list_lock);
65 
66 static const struct proto_ops rose_proto_ops;
67 
68 ax25_address rose_callsign;
69 
70 /*
71  * ROSE network devices are virtual network devices encapsulating ROSE
72  * frames into AX.25 which will be sent through an AX.25 device, so form a
73  * special "super class" of normal net devices; split their locks off into a
74  * separate class since they always nest.
75  */
76 static struct lock_class_key rose_netdev_xmit_lock_key;
77 static struct lock_class_key rose_netdev_addr_lock_key;
78 
79 static void rose_set_lockdep_one(struct net_device *dev,
80 				 struct netdev_queue *txq,
81 				 void *_unused)
82 {
83 	lockdep_set_class(&txq->_xmit_lock, &rose_netdev_xmit_lock_key);
84 }
85 
86 static void rose_set_lockdep_key(struct net_device *dev)
87 {
88 	lockdep_set_class(&dev->addr_list_lock, &rose_netdev_addr_lock_key);
89 	netdev_for_each_tx_queue(dev, rose_set_lockdep_one, NULL);
90 }
91 
92 /*
93  *	Convert a ROSE address into text.
94  */
95 char *rose2asc(char *buf, const rose_address *addr)
96 {
97 	if (addr->rose_addr[0] == 0x00 && addr->rose_addr[1] == 0x00 &&
98 	    addr->rose_addr[2] == 0x00 && addr->rose_addr[3] == 0x00 &&
99 	    addr->rose_addr[4] == 0x00) {
100 		strcpy(buf, "*");
101 	} else {
102 		sprintf(buf, "%02X%02X%02X%02X%02X", addr->rose_addr[0] & 0xFF,
103 						addr->rose_addr[1] & 0xFF,
104 						addr->rose_addr[2] & 0xFF,
105 						addr->rose_addr[3] & 0xFF,
106 						addr->rose_addr[4] & 0xFF);
107 	}
108 
109 	return buf;
110 }
111 
112 /*
113  *	Compare two ROSE addresses, 0 == equal.
114  */
115 int rosecmp(rose_address *addr1, rose_address *addr2)
116 {
117 	int i;
118 
119 	for (i = 0; i < 5; i++)
120 		if (addr1->rose_addr[i] != addr2->rose_addr[i])
121 			return 1;
122 
123 	return 0;
124 }
125 
126 /*
127  *	Compare two ROSE addresses for only mask digits, 0 == equal.
128  */
129 int rosecmpm(rose_address *addr1, rose_address *addr2, unsigned short mask)
130 {
131 	unsigned int i, j;
132 
133 	if (mask > 10)
134 		return 1;
135 
136 	for (i = 0; i < mask; i++) {
137 		j = i / 2;
138 
139 		if ((i % 2) != 0) {
140 			if ((addr1->rose_addr[j] & 0x0F) != (addr2->rose_addr[j] & 0x0F))
141 				return 1;
142 		} else {
143 			if ((addr1->rose_addr[j] & 0xF0) != (addr2->rose_addr[j] & 0xF0))
144 				return 1;
145 		}
146 	}
147 
148 	return 0;
149 }
150 
151 /*
152  *	Socket removal during an interrupt is now safe.
153  */
154 static void rose_remove_socket(struct sock *sk)
155 {
156 	spin_lock_bh(&rose_list_lock);
157 	sk_del_node_init(sk);
158 	spin_unlock_bh(&rose_list_lock);
159 }
160 
161 /*
162  *	Kill all bound sockets on a broken link layer connection to a
163  *	particular neighbour.
164  */
165 void rose_kill_by_neigh(struct rose_neigh *neigh)
166 {
167 	struct sock *s;
168 
169 	spin_lock_bh(&rose_list_lock);
170 	sk_for_each(s, &rose_list) {
171 		struct rose_sock *rose = rose_sk(s);
172 
173 		if (rose->neighbour == neigh) {
174 			rose_disconnect(s, ENETUNREACH, ROSE_OUT_OF_ORDER, 0);
175 			rose->neighbour->use--;
176 			rose->neighbour = NULL;
177 		}
178 	}
179 	spin_unlock_bh(&rose_list_lock);
180 }
181 
182 /*
183  *	Kill all bound sockets on a dropped device.
184  */
185 static void rose_kill_by_device(struct net_device *dev)
186 {
187 	struct sock *s;
188 
189 	spin_lock_bh(&rose_list_lock);
190 	sk_for_each(s, &rose_list) {
191 		struct rose_sock *rose = rose_sk(s);
192 
193 		if (rose->device == dev) {
194 			rose_disconnect(s, ENETUNREACH, ROSE_OUT_OF_ORDER, 0);
195 			if (rose->neighbour)
196 				rose->neighbour->use--;
197 			rose->device = NULL;
198 		}
199 	}
200 	spin_unlock_bh(&rose_list_lock);
201 }
202 
203 /*
204  *	Handle device status changes.
205  */
206 static int rose_device_event(struct notifier_block *this,
207 			     unsigned long event, void *ptr)
208 {
209 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
210 
211 	if (!net_eq(dev_net(dev), &init_net))
212 		return NOTIFY_DONE;
213 
214 	if (event != NETDEV_DOWN)
215 		return NOTIFY_DONE;
216 
217 	switch (dev->type) {
218 	case ARPHRD_ROSE:
219 		rose_kill_by_device(dev);
220 		break;
221 	case ARPHRD_AX25:
222 		rose_link_device_down(dev);
223 		rose_rt_device_down(dev);
224 		break;
225 	}
226 
227 	return NOTIFY_DONE;
228 }
229 
230 /*
231  *	Add a socket to the bound sockets list.
232  */
233 static void rose_insert_socket(struct sock *sk)
234 {
235 
236 	spin_lock_bh(&rose_list_lock);
237 	sk_add_node(sk, &rose_list);
238 	spin_unlock_bh(&rose_list_lock);
239 }
240 
241 /*
242  *	Find a socket that wants to accept the Call Request we just
243  *	received.
244  */
245 static struct sock *rose_find_listener(rose_address *addr, ax25_address *call)
246 {
247 	struct sock *s;
248 
249 	spin_lock_bh(&rose_list_lock);
250 	sk_for_each(s, &rose_list) {
251 		struct rose_sock *rose = rose_sk(s);
252 
253 		if (!rosecmp(&rose->source_addr, addr) &&
254 		    !ax25cmp(&rose->source_call, call) &&
255 		    !rose->source_ndigis && s->sk_state == TCP_LISTEN)
256 			goto found;
257 	}
258 
259 	sk_for_each(s, &rose_list) {
260 		struct rose_sock *rose = rose_sk(s);
261 
262 		if (!rosecmp(&rose->source_addr, addr) &&
263 		    !ax25cmp(&rose->source_call, &null_ax25_address) &&
264 		    s->sk_state == TCP_LISTEN)
265 			goto found;
266 	}
267 	s = NULL;
268 found:
269 	spin_unlock_bh(&rose_list_lock);
270 	return s;
271 }
272 
273 /*
274  *	Find a connected ROSE socket given my LCI and device.
275  */
276 struct sock *rose_find_socket(unsigned int lci, struct rose_neigh *neigh)
277 {
278 	struct sock *s;
279 
280 	spin_lock_bh(&rose_list_lock);
281 	sk_for_each(s, &rose_list) {
282 		struct rose_sock *rose = rose_sk(s);
283 
284 		if (rose->lci == lci && rose->neighbour == neigh)
285 			goto found;
286 	}
287 	s = NULL;
288 found:
289 	spin_unlock_bh(&rose_list_lock);
290 	return s;
291 }
292 
293 /*
294  *	Find a unique LCI for a given device.
295  */
296 unsigned int rose_new_lci(struct rose_neigh *neigh)
297 {
298 	int lci;
299 
300 	if (neigh->dce_mode) {
301 		for (lci = 1; lci <= sysctl_rose_maximum_vcs; lci++)
302 			if (rose_find_socket(lci, neigh) == NULL && rose_route_free_lci(lci, neigh) == NULL)
303 				return lci;
304 	} else {
305 		for (lci = sysctl_rose_maximum_vcs; lci > 0; lci--)
306 			if (rose_find_socket(lci, neigh) == NULL && rose_route_free_lci(lci, neigh) == NULL)
307 				return lci;
308 	}
309 
310 	return 0;
311 }
312 
313 /*
314  *	Deferred destroy.
315  */
316 void rose_destroy_socket(struct sock *);
317 
318 /*
319  *	Handler for deferred kills.
320  */
321 static void rose_destroy_timer(unsigned long data)
322 {
323 	rose_destroy_socket((struct sock *)data);
324 }
325 
326 /*
327  *	This is called from user mode and the timers. Thus it protects itself
328  *	against interrupt users but doesn't worry about being called during
329  *	work.  Once it is removed from the queue no interrupt or bottom half
330  *	will touch it and we are (fairly 8-) ) safe.
331  */
332 void rose_destroy_socket(struct sock *sk)
333 {
334 	struct sk_buff *skb;
335 
336 	rose_remove_socket(sk);
337 	rose_stop_heartbeat(sk);
338 	rose_stop_idletimer(sk);
339 	rose_stop_timer(sk);
340 
341 	rose_clear_queues(sk);		/* Flush the queues */
342 
343 	while ((skb = skb_dequeue(&sk->sk_receive_queue)) != NULL) {
344 		if (skb->sk != sk) {	/* A pending connection */
345 			/* Queue the unaccepted socket for death */
346 			sock_set_flag(skb->sk, SOCK_DEAD);
347 			rose_start_heartbeat(skb->sk);
348 			rose_sk(skb->sk)->state = ROSE_STATE_0;
349 		}
350 
351 		kfree_skb(skb);
352 	}
353 
354 	if (sk_has_allocations(sk)) {
355 		/* Defer: outstanding buffers */
356 		setup_timer(&sk->sk_timer, rose_destroy_timer,
357 				(unsigned long)sk);
358 		sk->sk_timer.expires  = jiffies + 10 * HZ;
359 		add_timer(&sk->sk_timer);
360 	} else
361 		sock_put(sk);
362 }
363 
364 /*
365  *	Handling for system calls applied via the various interfaces to a
366  *	ROSE socket object.
367  */
368 
369 static int rose_setsockopt(struct socket *sock, int level, int optname,
370 	char __user *optval, unsigned int optlen)
371 {
372 	struct sock *sk = sock->sk;
373 	struct rose_sock *rose = rose_sk(sk);
374 	int opt;
375 
376 	if (level != SOL_ROSE)
377 		return -ENOPROTOOPT;
378 
379 	if (optlen < sizeof(int))
380 		return -EINVAL;
381 
382 	if (get_user(opt, (int __user *)optval))
383 		return -EFAULT;
384 
385 	switch (optname) {
386 	case ROSE_DEFER:
387 		rose->defer = opt ? 1 : 0;
388 		return 0;
389 
390 	case ROSE_T1:
391 		if (opt < 1)
392 			return -EINVAL;
393 		rose->t1 = opt * HZ;
394 		return 0;
395 
396 	case ROSE_T2:
397 		if (opt < 1)
398 			return -EINVAL;
399 		rose->t2 = opt * HZ;
400 		return 0;
401 
402 	case ROSE_T3:
403 		if (opt < 1)
404 			return -EINVAL;
405 		rose->t3 = opt * HZ;
406 		return 0;
407 
408 	case ROSE_HOLDBACK:
409 		if (opt < 1)
410 			return -EINVAL;
411 		rose->hb = opt * HZ;
412 		return 0;
413 
414 	case ROSE_IDLE:
415 		if (opt < 0)
416 			return -EINVAL;
417 		rose->idle = opt * 60 * HZ;
418 		return 0;
419 
420 	case ROSE_QBITINCL:
421 		rose->qbitincl = opt ? 1 : 0;
422 		return 0;
423 
424 	default:
425 		return -ENOPROTOOPT;
426 	}
427 }
428 
429 static int rose_getsockopt(struct socket *sock, int level, int optname,
430 	char __user *optval, int __user *optlen)
431 {
432 	struct sock *sk = sock->sk;
433 	struct rose_sock *rose = rose_sk(sk);
434 	int val = 0;
435 	int len;
436 
437 	if (level != SOL_ROSE)
438 		return -ENOPROTOOPT;
439 
440 	if (get_user(len, optlen))
441 		return -EFAULT;
442 
443 	if (len < 0)
444 		return -EINVAL;
445 
446 	switch (optname) {
447 	case ROSE_DEFER:
448 		val = rose->defer;
449 		break;
450 
451 	case ROSE_T1:
452 		val = rose->t1 / HZ;
453 		break;
454 
455 	case ROSE_T2:
456 		val = rose->t2 / HZ;
457 		break;
458 
459 	case ROSE_T3:
460 		val = rose->t3 / HZ;
461 		break;
462 
463 	case ROSE_HOLDBACK:
464 		val = rose->hb / HZ;
465 		break;
466 
467 	case ROSE_IDLE:
468 		val = rose->idle / (60 * HZ);
469 		break;
470 
471 	case ROSE_QBITINCL:
472 		val = rose->qbitincl;
473 		break;
474 
475 	default:
476 		return -ENOPROTOOPT;
477 	}
478 
479 	len = min_t(unsigned int, len, sizeof(int));
480 
481 	if (put_user(len, optlen))
482 		return -EFAULT;
483 
484 	return copy_to_user(optval, &val, len) ? -EFAULT : 0;
485 }
486 
487 static int rose_listen(struct socket *sock, int backlog)
488 {
489 	struct sock *sk = sock->sk;
490 
491 	if (sk->sk_state != TCP_LISTEN) {
492 		struct rose_sock *rose = rose_sk(sk);
493 
494 		rose->dest_ndigis = 0;
495 		memset(&rose->dest_addr, 0, ROSE_ADDR_LEN);
496 		memset(&rose->dest_call, 0, AX25_ADDR_LEN);
497 		memset(rose->dest_digis, 0, AX25_ADDR_LEN * ROSE_MAX_DIGIS);
498 		sk->sk_max_ack_backlog = backlog;
499 		sk->sk_state           = TCP_LISTEN;
500 		return 0;
501 	}
502 
503 	return -EOPNOTSUPP;
504 }
505 
506 static struct proto rose_proto = {
507 	.name	  = "ROSE",
508 	.owner	  = THIS_MODULE,
509 	.obj_size = sizeof(struct rose_sock),
510 };
511 
512 static int rose_create(struct net *net, struct socket *sock, int protocol,
513 		       int kern)
514 {
515 	struct sock *sk;
516 	struct rose_sock *rose;
517 
518 	if (!net_eq(net, &init_net))
519 		return -EAFNOSUPPORT;
520 
521 	if (sock->type != SOCK_SEQPACKET || protocol != 0)
522 		return -ESOCKTNOSUPPORT;
523 
524 	sk = sk_alloc(net, PF_ROSE, GFP_ATOMIC, &rose_proto, kern);
525 	if (sk == NULL)
526 		return -ENOMEM;
527 
528 	rose = rose_sk(sk);
529 
530 	sock_init_data(sock, sk);
531 
532 	skb_queue_head_init(&rose->ack_queue);
533 #ifdef M_BIT
534 	skb_queue_head_init(&rose->frag_queue);
535 	rose->fraglen    = 0;
536 #endif
537 
538 	sock->ops    = &rose_proto_ops;
539 	sk->sk_protocol = protocol;
540 
541 	init_timer(&rose->timer);
542 	init_timer(&rose->idletimer);
543 
544 	rose->t1   = msecs_to_jiffies(sysctl_rose_call_request_timeout);
545 	rose->t2   = msecs_to_jiffies(sysctl_rose_reset_request_timeout);
546 	rose->t3   = msecs_to_jiffies(sysctl_rose_clear_request_timeout);
547 	rose->hb   = msecs_to_jiffies(sysctl_rose_ack_hold_back_timeout);
548 	rose->idle = msecs_to_jiffies(sysctl_rose_no_activity_timeout);
549 
550 	rose->state = ROSE_STATE_0;
551 
552 	return 0;
553 }
554 
555 static struct sock *rose_make_new(struct sock *osk)
556 {
557 	struct sock *sk;
558 	struct rose_sock *rose, *orose;
559 
560 	if (osk->sk_type != SOCK_SEQPACKET)
561 		return NULL;
562 
563 	sk = sk_alloc(sock_net(osk), PF_ROSE, GFP_ATOMIC, &rose_proto, 0);
564 	if (sk == NULL)
565 		return NULL;
566 
567 	rose = rose_sk(sk);
568 
569 	sock_init_data(NULL, sk);
570 
571 	skb_queue_head_init(&rose->ack_queue);
572 #ifdef M_BIT
573 	skb_queue_head_init(&rose->frag_queue);
574 	rose->fraglen  = 0;
575 #endif
576 
577 	sk->sk_type     = osk->sk_type;
578 	sk->sk_priority = osk->sk_priority;
579 	sk->sk_protocol = osk->sk_protocol;
580 	sk->sk_rcvbuf   = osk->sk_rcvbuf;
581 	sk->sk_sndbuf   = osk->sk_sndbuf;
582 	sk->sk_state    = TCP_ESTABLISHED;
583 	sock_copy_flags(sk, osk);
584 
585 	init_timer(&rose->timer);
586 	init_timer(&rose->idletimer);
587 
588 	orose		= rose_sk(osk);
589 	rose->t1	= orose->t1;
590 	rose->t2	= orose->t2;
591 	rose->t3	= orose->t3;
592 	rose->hb	= orose->hb;
593 	rose->idle	= orose->idle;
594 	rose->defer	= orose->defer;
595 	rose->device	= orose->device;
596 	rose->qbitincl	= orose->qbitincl;
597 
598 	return sk;
599 }
600 
601 static int rose_release(struct socket *sock)
602 {
603 	struct sock *sk = sock->sk;
604 	struct rose_sock *rose;
605 
606 	if (sk == NULL) return 0;
607 
608 	sock_hold(sk);
609 	sock_orphan(sk);
610 	lock_sock(sk);
611 	rose = rose_sk(sk);
612 
613 	switch (rose->state) {
614 	case ROSE_STATE_0:
615 		release_sock(sk);
616 		rose_disconnect(sk, 0, -1, -1);
617 		lock_sock(sk);
618 		rose_destroy_socket(sk);
619 		break;
620 
621 	case ROSE_STATE_2:
622 		rose->neighbour->use--;
623 		release_sock(sk);
624 		rose_disconnect(sk, 0, -1, -1);
625 		lock_sock(sk);
626 		rose_destroy_socket(sk);
627 		break;
628 
629 	case ROSE_STATE_1:
630 	case ROSE_STATE_3:
631 	case ROSE_STATE_4:
632 	case ROSE_STATE_5:
633 		rose_clear_queues(sk);
634 		rose_stop_idletimer(sk);
635 		rose_write_internal(sk, ROSE_CLEAR_REQUEST);
636 		rose_start_t3timer(sk);
637 		rose->state  = ROSE_STATE_2;
638 		sk->sk_state    = TCP_CLOSE;
639 		sk->sk_shutdown |= SEND_SHUTDOWN;
640 		sk->sk_state_change(sk);
641 		sock_set_flag(sk, SOCK_DEAD);
642 		sock_set_flag(sk, SOCK_DESTROY);
643 		break;
644 
645 	default:
646 		break;
647 	}
648 
649 	sock->sk = NULL;
650 	release_sock(sk);
651 	sock_put(sk);
652 
653 	return 0;
654 }
655 
656 static int rose_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
657 {
658 	struct sock *sk = sock->sk;
659 	struct rose_sock *rose = rose_sk(sk);
660 	struct sockaddr_rose *addr = (struct sockaddr_rose *)uaddr;
661 	struct net_device *dev;
662 	ax25_address *source;
663 	ax25_uid_assoc *user;
664 	int n;
665 
666 	if (!sock_flag(sk, SOCK_ZAPPED))
667 		return -EINVAL;
668 
669 	if (addr_len != sizeof(struct sockaddr_rose) && addr_len != sizeof(struct full_sockaddr_rose))
670 		return -EINVAL;
671 
672 	if (addr->srose_family != AF_ROSE)
673 		return -EINVAL;
674 
675 	if (addr_len == sizeof(struct sockaddr_rose) && addr->srose_ndigis > 1)
676 		return -EINVAL;
677 
678 	if ((unsigned int) addr->srose_ndigis > ROSE_MAX_DIGIS)
679 		return -EINVAL;
680 
681 	if ((dev = rose_dev_get(&addr->srose_addr)) == NULL)
682 		return -EADDRNOTAVAIL;
683 
684 	source = &addr->srose_call;
685 
686 	user = ax25_findbyuid(current_euid());
687 	if (user) {
688 		rose->source_call = user->call;
689 		ax25_uid_put(user);
690 	} else {
691 		if (ax25_uid_policy && !capable(CAP_NET_BIND_SERVICE))
692 			return -EACCES;
693 		rose->source_call   = *source;
694 	}
695 
696 	rose->source_addr   = addr->srose_addr;
697 	rose->device        = dev;
698 	rose->source_ndigis = addr->srose_ndigis;
699 
700 	if (addr_len == sizeof(struct full_sockaddr_rose)) {
701 		struct full_sockaddr_rose *full_addr = (struct full_sockaddr_rose *)uaddr;
702 		for (n = 0 ; n < addr->srose_ndigis ; n++)
703 			rose->source_digis[n] = full_addr->srose_digis[n];
704 	} else {
705 		if (rose->source_ndigis == 1) {
706 			rose->source_digis[0] = addr->srose_digi;
707 		}
708 	}
709 
710 	rose_insert_socket(sk);
711 
712 	sock_reset_flag(sk, SOCK_ZAPPED);
713 
714 	return 0;
715 }
716 
717 static int rose_connect(struct socket *sock, struct sockaddr *uaddr, int addr_len, int flags)
718 {
719 	struct sock *sk = sock->sk;
720 	struct rose_sock *rose = rose_sk(sk);
721 	struct sockaddr_rose *addr = (struct sockaddr_rose *)uaddr;
722 	unsigned char cause, diagnostic;
723 	struct net_device *dev;
724 	ax25_uid_assoc *user;
725 	int n, err = 0;
726 
727 	if (addr_len != sizeof(struct sockaddr_rose) && addr_len != sizeof(struct full_sockaddr_rose))
728 		return -EINVAL;
729 
730 	if (addr->srose_family != AF_ROSE)
731 		return -EINVAL;
732 
733 	if (addr_len == sizeof(struct sockaddr_rose) && addr->srose_ndigis > 1)
734 		return -EINVAL;
735 
736 	if ((unsigned int) addr->srose_ndigis > ROSE_MAX_DIGIS)
737 		return -EINVAL;
738 
739 	/* Source + Destination digis should not exceed ROSE_MAX_DIGIS */
740 	if ((rose->source_ndigis + addr->srose_ndigis) > ROSE_MAX_DIGIS)
741 		return -EINVAL;
742 
743 	lock_sock(sk);
744 
745 	if (sk->sk_state == TCP_ESTABLISHED && sock->state == SS_CONNECTING) {
746 		/* Connect completed during a ERESTARTSYS event */
747 		sock->state = SS_CONNECTED;
748 		goto out_release;
749 	}
750 
751 	if (sk->sk_state == TCP_CLOSE && sock->state == SS_CONNECTING) {
752 		sock->state = SS_UNCONNECTED;
753 		err = -ECONNREFUSED;
754 		goto out_release;
755 	}
756 
757 	if (sk->sk_state == TCP_ESTABLISHED) {
758 		/* No reconnect on a seqpacket socket */
759 		err = -EISCONN;
760 		goto out_release;
761 	}
762 
763 	sk->sk_state   = TCP_CLOSE;
764 	sock->state = SS_UNCONNECTED;
765 
766 	rose->neighbour = rose_get_neigh(&addr->srose_addr, &cause,
767 					 &diagnostic, 0);
768 	if (!rose->neighbour) {
769 		err = -ENETUNREACH;
770 		goto out_release;
771 	}
772 
773 	rose->lci = rose_new_lci(rose->neighbour);
774 	if (!rose->lci) {
775 		err = -ENETUNREACH;
776 		goto out_release;
777 	}
778 
779 	if (sock_flag(sk, SOCK_ZAPPED)) {	/* Must bind first - autobinding in this may or may not work */
780 		sock_reset_flag(sk, SOCK_ZAPPED);
781 
782 		if ((dev = rose_dev_first()) == NULL) {
783 			err = -ENETUNREACH;
784 			goto out_release;
785 		}
786 
787 		user = ax25_findbyuid(current_euid());
788 		if (!user) {
789 			err = -EINVAL;
790 			goto out_release;
791 		}
792 
793 		memcpy(&rose->source_addr, dev->dev_addr, ROSE_ADDR_LEN);
794 		rose->source_call = user->call;
795 		rose->device      = dev;
796 		ax25_uid_put(user);
797 
798 		rose_insert_socket(sk);		/* Finish the bind */
799 	}
800 	rose->dest_addr   = addr->srose_addr;
801 	rose->dest_call   = addr->srose_call;
802 	rose->rand        = ((long)rose & 0xFFFF) + rose->lci;
803 	rose->dest_ndigis = addr->srose_ndigis;
804 
805 	if (addr_len == sizeof(struct full_sockaddr_rose)) {
806 		struct full_sockaddr_rose *full_addr = (struct full_sockaddr_rose *)uaddr;
807 		for (n = 0 ; n < addr->srose_ndigis ; n++)
808 			rose->dest_digis[n] = full_addr->srose_digis[n];
809 	} else {
810 		if (rose->dest_ndigis == 1) {
811 			rose->dest_digis[0] = addr->srose_digi;
812 		}
813 	}
814 
815 	/* Move to connecting socket, start sending Connect Requests */
816 	sock->state   = SS_CONNECTING;
817 	sk->sk_state     = TCP_SYN_SENT;
818 
819 	rose->state = ROSE_STATE_1;
820 
821 	rose->neighbour->use++;
822 
823 	rose_write_internal(sk, ROSE_CALL_REQUEST);
824 	rose_start_heartbeat(sk);
825 	rose_start_t1timer(sk);
826 
827 	/* Now the loop */
828 	if (sk->sk_state != TCP_ESTABLISHED && (flags & O_NONBLOCK)) {
829 		err = -EINPROGRESS;
830 		goto out_release;
831 	}
832 
833 	/*
834 	 * A Connect Ack with Choke or timeout or failed routing will go to
835 	 * closed.
836 	 */
837 	if (sk->sk_state == TCP_SYN_SENT) {
838 		DEFINE_WAIT(wait);
839 
840 		for (;;) {
841 			prepare_to_wait(sk_sleep(sk), &wait,
842 					TASK_INTERRUPTIBLE);
843 			if (sk->sk_state != TCP_SYN_SENT)
844 				break;
845 			if (!signal_pending(current)) {
846 				release_sock(sk);
847 				schedule();
848 				lock_sock(sk);
849 				continue;
850 			}
851 			err = -ERESTARTSYS;
852 			break;
853 		}
854 		finish_wait(sk_sleep(sk), &wait);
855 
856 		if (err)
857 			goto out_release;
858 	}
859 
860 	if (sk->sk_state != TCP_ESTABLISHED) {
861 		sock->state = SS_UNCONNECTED;
862 		err = sock_error(sk);	/* Always set at this point */
863 		goto out_release;
864 	}
865 
866 	sock->state = SS_CONNECTED;
867 
868 out_release:
869 	release_sock(sk);
870 
871 	return err;
872 }
873 
874 static int rose_accept(struct socket *sock, struct socket *newsock, int flags)
875 {
876 	struct sk_buff *skb;
877 	struct sock *newsk;
878 	DEFINE_WAIT(wait);
879 	struct sock *sk;
880 	int err = 0;
881 
882 	if ((sk = sock->sk) == NULL)
883 		return -EINVAL;
884 
885 	lock_sock(sk);
886 	if (sk->sk_type != SOCK_SEQPACKET) {
887 		err = -EOPNOTSUPP;
888 		goto out_release;
889 	}
890 
891 	if (sk->sk_state != TCP_LISTEN) {
892 		err = -EINVAL;
893 		goto out_release;
894 	}
895 
896 	/*
897 	 *	The write queue this time is holding sockets ready to use
898 	 *	hooked into the SABM we saved
899 	 */
900 	for (;;) {
901 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
902 
903 		skb = skb_dequeue(&sk->sk_receive_queue);
904 		if (skb)
905 			break;
906 
907 		if (flags & O_NONBLOCK) {
908 			err = -EWOULDBLOCK;
909 			break;
910 		}
911 		if (!signal_pending(current)) {
912 			release_sock(sk);
913 			schedule();
914 			lock_sock(sk);
915 			continue;
916 		}
917 		err = -ERESTARTSYS;
918 		break;
919 	}
920 	finish_wait(sk_sleep(sk), &wait);
921 	if (err)
922 		goto out_release;
923 
924 	newsk = skb->sk;
925 	sock_graft(newsk, newsock);
926 
927 	/* Now attach up the new socket */
928 	skb->sk = NULL;
929 	kfree_skb(skb);
930 	sk->sk_ack_backlog--;
931 
932 out_release:
933 	release_sock(sk);
934 
935 	return err;
936 }
937 
938 static int rose_getname(struct socket *sock, struct sockaddr *uaddr,
939 	int *uaddr_len, int peer)
940 {
941 	struct full_sockaddr_rose *srose = (struct full_sockaddr_rose *)uaddr;
942 	struct sock *sk = sock->sk;
943 	struct rose_sock *rose = rose_sk(sk);
944 	int n;
945 
946 	memset(srose, 0, sizeof(*srose));
947 	if (peer != 0) {
948 		if (sk->sk_state != TCP_ESTABLISHED)
949 			return -ENOTCONN;
950 		srose->srose_family = AF_ROSE;
951 		srose->srose_addr   = rose->dest_addr;
952 		srose->srose_call   = rose->dest_call;
953 		srose->srose_ndigis = rose->dest_ndigis;
954 		for (n = 0; n < rose->dest_ndigis; n++)
955 			srose->srose_digis[n] = rose->dest_digis[n];
956 	} else {
957 		srose->srose_family = AF_ROSE;
958 		srose->srose_addr   = rose->source_addr;
959 		srose->srose_call   = rose->source_call;
960 		srose->srose_ndigis = rose->source_ndigis;
961 		for (n = 0; n < rose->source_ndigis; n++)
962 			srose->srose_digis[n] = rose->source_digis[n];
963 	}
964 
965 	*uaddr_len = sizeof(struct full_sockaddr_rose);
966 	return 0;
967 }
968 
969 int rose_rx_call_request(struct sk_buff *skb, struct net_device *dev, struct rose_neigh *neigh, unsigned int lci)
970 {
971 	struct sock *sk;
972 	struct sock *make;
973 	struct rose_sock *make_rose;
974 	struct rose_facilities_struct facilities;
975 	int n;
976 
977 	skb->sk = NULL;		/* Initially we don't know who it's for */
978 
979 	/*
980 	 *	skb->data points to the rose frame start
981 	 */
982 	memset(&facilities, 0x00, sizeof(struct rose_facilities_struct));
983 
984 	if (!rose_parse_facilities(skb->data + ROSE_CALL_REQ_FACILITIES_OFF,
985 				   skb->len - ROSE_CALL_REQ_FACILITIES_OFF,
986 				   &facilities)) {
987 		rose_transmit_clear_request(neigh, lci, ROSE_INVALID_FACILITY, 76);
988 		return 0;
989 	}
990 
991 	sk = rose_find_listener(&facilities.source_addr, &facilities.source_call);
992 
993 	/*
994 	 * We can't accept the Call Request.
995 	 */
996 	if (sk == NULL || sk_acceptq_is_full(sk) ||
997 	    (make = rose_make_new(sk)) == NULL) {
998 		rose_transmit_clear_request(neigh, lci, ROSE_NETWORK_CONGESTION, 120);
999 		return 0;
1000 	}
1001 
1002 	skb->sk     = make;
1003 	make->sk_state = TCP_ESTABLISHED;
1004 	make_rose = rose_sk(make);
1005 
1006 	make_rose->lci           = lci;
1007 	make_rose->dest_addr     = facilities.dest_addr;
1008 	make_rose->dest_call     = facilities.dest_call;
1009 	make_rose->dest_ndigis   = facilities.dest_ndigis;
1010 	for (n = 0 ; n < facilities.dest_ndigis ; n++)
1011 		make_rose->dest_digis[n] = facilities.dest_digis[n];
1012 	make_rose->source_addr   = facilities.source_addr;
1013 	make_rose->source_call   = facilities.source_call;
1014 	make_rose->source_ndigis = facilities.source_ndigis;
1015 	for (n = 0 ; n < facilities.source_ndigis ; n++)
1016 		make_rose->source_digis[n] = facilities.source_digis[n];
1017 	make_rose->neighbour     = neigh;
1018 	make_rose->device        = dev;
1019 	make_rose->facilities    = facilities;
1020 
1021 	make_rose->neighbour->use++;
1022 
1023 	if (rose_sk(sk)->defer) {
1024 		make_rose->state = ROSE_STATE_5;
1025 	} else {
1026 		rose_write_internal(make, ROSE_CALL_ACCEPTED);
1027 		make_rose->state = ROSE_STATE_3;
1028 		rose_start_idletimer(make);
1029 	}
1030 
1031 	make_rose->condition = 0x00;
1032 	make_rose->vs        = 0;
1033 	make_rose->va        = 0;
1034 	make_rose->vr        = 0;
1035 	make_rose->vl        = 0;
1036 	sk->sk_ack_backlog++;
1037 
1038 	rose_insert_socket(make);
1039 
1040 	skb_queue_head(&sk->sk_receive_queue, skb);
1041 
1042 	rose_start_heartbeat(make);
1043 
1044 	if (!sock_flag(sk, SOCK_DEAD))
1045 		sk->sk_data_ready(sk);
1046 
1047 	return 1;
1048 }
1049 
1050 static int rose_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
1051 {
1052 	struct sock *sk = sock->sk;
1053 	struct rose_sock *rose = rose_sk(sk);
1054 	DECLARE_SOCKADDR(struct sockaddr_rose *, usrose, msg->msg_name);
1055 	int err;
1056 	struct full_sockaddr_rose srose;
1057 	struct sk_buff *skb;
1058 	unsigned char *asmptr;
1059 	int n, size, qbit = 0;
1060 
1061 	if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_EOR|MSG_CMSG_COMPAT))
1062 		return -EINVAL;
1063 
1064 	if (sock_flag(sk, SOCK_ZAPPED))
1065 		return -EADDRNOTAVAIL;
1066 
1067 	if (sk->sk_shutdown & SEND_SHUTDOWN) {
1068 		send_sig(SIGPIPE, current, 0);
1069 		return -EPIPE;
1070 	}
1071 
1072 	if (rose->neighbour == NULL || rose->device == NULL)
1073 		return -ENETUNREACH;
1074 
1075 	if (usrose != NULL) {
1076 		if (msg->msg_namelen != sizeof(struct sockaddr_rose) && msg->msg_namelen != sizeof(struct full_sockaddr_rose))
1077 			return -EINVAL;
1078 		memset(&srose, 0, sizeof(struct full_sockaddr_rose));
1079 		memcpy(&srose, usrose, msg->msg_namelen);
1080 		if (rosecmp(&rose->dest_addr, &srose.srose_addr) != 0 ||
1081 		    ax25cmp(&rose->dest_call, &srose.srose_call) != 0)
1082 			return -EISCONN;
1083 		if (srose.srose_ndigis != rose->dest_ndigis)
1084 			return -EISCONN;
1085 		if (srose.srose_ndigis == rose->dest_ndigis) {
1086 			for (n = 0 ; n < srose.srose_ndigis ; n++)
1087 				if (ax25cmp(&rose->dest_digis[n],
1088 					    &srose.srose_digis[n]))
1089 					return -EISCONN;
1090 		}
1091 		if (srose.srose_family != AF_ROSE)
1092 			return -EINVAL;
1093 	} else {
1094 		if (sk->sk_state != TCP_ESTABLISHED)
1095 			return -ENOTCONN;
1096 
1097 		srose.srose_family = AF_ROSE;
1098 		srose.srose_addr   = rose->dest_addr;
1099 		srose.srose_call   = rose->dest_call;
1100 		srose.srose_ndigis = rose->dest_ndigis;
1101 		for (n = 0 ; n < rose->dest_ndigis ; n++)
1102 			srose.srose_digis[n] = rose->dest_digis[n];
1103 	}
1104 
1105 	/* Build a packet */
1106 	/* Sanity check the packet size */
1107 	if (len > 65535)
1108 		return -EMSGSIZE;
1109 
1110 	size = len + AX25_BPQ_HEADER_LEN + AX25_MAX_HEADER_LEN + ROSE_MIN_LEN;
1111 
1112 	if ((skb = sock_alloc_send_skb(sk, size, msg->msg_flags & MSG_DONTWAIT, &err)) == NULL)
1113 		return err;
1114 
1115 	skb_reserve(skb, AX25_BPQ_HEADER_LEN + AX25_MAX_HEADER_LEN + ROSE_MIN_LEN);
1116 
1117 	/*
1118 	 *	Put the data on the end
1119 	 */
1120 
1121 	skb_reset_transport_header(skb);
1122 	skb_put(skb, len);
1123 
1124 	err = memcpy_from_msg(skb_transport_header(skb), msg, len);
1125 	if (err) {
1126 		kfree_skb(skb);
1127 		return err;
1128 	}
1129 
1130 	/*
1131 	 *	If the Q BIT Include socket option is in force, the first
1132 	 *	byte of the user data is the logical value of the Q Bit.
1133 	 */
1134 	if (rose->qbitincl) {
1135 		qbit = skb->data[0];
1136 		skb_pull(skb, 1);
1137 	}
1138 
1139 	/*
1140 	 *	Push down the ROSE header
1141 	 */
1142 	asmptr = skb_push(skb, ROSE_MIN_LEN);
1143 
1144 	/* Build a ROSE Network header */
1145 	asmptr[0] = ((rose->lci >> 8) & 0x0F) | ROSE_GFI;
1146 	asmptr[1] = (rose->lci >> 0) & 0xFF;
1147 	asmptr[2] = ROSE_DATA;
1148 
1149 	if (qbit)
1150 		asmptr[0] |= ROSE_Q_BIT;
1151 
1152 	if (sk->sk_state != TCP_ESTABLISHED) {
1153 		kfree_skb(skb);
1154 		return -ENOTCONN;
1155 	}
1156 
1157 #ifdef M_BIT
1158 #define ROSE_PACLEN (256-ROSE_MIN_LEN)
1159 	if (skb->len - ROSE_MIN_LEN > ROSE_PACLEN) {
1160 		unsigned char header[ROSE_MIN_LEN];
1161 		struct sk_buff *skbn;
1162 		int frontlen;
1163 		int lg;
1164 
1165 		/* Save a copy of the Header */
1166 		skb_copy_from_linear_data(skb, header, ROSE_MIN_LEN);
1167 		skb_pull(skb, ROSE_MIN_LEN);
1168 
1169 		frontlen = skb_headroom(skb);
1170 
1171 		while (skb->len > 0) {
1172 			if ((skbn = sock_alloc_send_skb(sk, frontlen + ROSE_PACLEN, 0, &err)) == NULL) {
1173 				kfree_skb(skb);
1174 				return err;
1175 			}
1176 
1177 			skbn->sk   = sk;
1178 			skbn->free = 1;
1179 			skbn->arp  = 1;
1180 
1181 			skb_reserve(skbn, frontlen);
1182 
1183 			lg = (ROSE_PACLEN > skb->len) ? skb->len : ROSE_PACLEN;
1184 
1185 			/* Copy the user data */
1186 			skb_copy_from_linear_data(skb, skb_put(skbn, lg), lg);
1187 			skb_pull(skb, lg);
1188 
1189 			/* Duplicate the Header */
1190 			skb_push(skbn, ROSE_MIN_LEN);
1191 			skb_copy_to_linear_data(skbn, header, ROSE_MIN_LEN);
1192 
1193 			if (skb->len > 0)
1194 				skbn->data[2] |= M_BIT;
1195 
1196 			skb_queue_tail(&sk->sk_write_queue, skbn); /* Throw it on the queue */
1197 		}
1198 
1199 		skb->free = 1;
1200 		kfree_skb(skb);
1201 	} else {
1202 		skb_queue_tail(&sk->sk_write_queue, skb);		/* Throw it on the queue */
1203 	}
1204 #else
1205 	skb_queue_tail(&sk->sk_write_queue, skb);	/* Shove it onto the queue */
1206 #endif
1207 
1208 	rose_kick(sk);
1209 
1210 	return len;
1211 }
1212 
1213 
1214 static int rose_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1215 			int flags)
1216 {
1217 	struct sock *sk = sock->sk;
1218 	struct rose_sock *rose = rose_sk(sk);
1219 	size_t copied;
1220 	unsigned char *asmptr;
1221 	struct sk_buff *skb;
1222 	int n, er, qbit;
1223 
1224 	/*
1225 	 * This works for seqpacket too. The receiver has ordered the queue for
1226 	 * us! We do one quick check first though
1227 	 */
1228 	if (sk->sk_state != TCP_ESTABLISHED)
1229 		return -ENOTCONN;
1230 
1231 	/* Now we can treat all alike */
1232 	if ((skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT, flags & MSG_DONTWAIT, &er)) == NULL)
1233 		return er;
1234 
1235 	qbit = (skb->data[0] & ROSE_Q_BIT) == ROSE_Q_BIT;
1236 
1237 	skb_pull(skb, ROSE_MIN_LEN);
1238 
1239 	if (rose->qbitincl) {
1240 		asmptr  = skb_push(skb, 1);
1241 		*asmptr = qbit;
1242 	}
1243 
1244 	skb_reset_transport_header(skb);
1245 	copied     = skb->len;
1246 
1247 	if (copied > size) {
1248 		copied = size;
1249 		msg->msg_flags |= MSG_TRUNC;
1250 	}
1251 
1252 	skb_copy_datagram_msg(skb, 0, msg, copied);
1253 
1254 	if (msg->msg_name) {
1255 		struct sockaddr_rose *srose;
1256 		DECLARE_SOCKADDR(struct full_sockaddr_rose *, full_srose,
1257 				 msg->msg_name);
1258 
1259 		memset(msg->msg_name, 0, sizeof(struct full_sockaddr_rose));
1260 		srose = msg->msg_name;
1261 		srose->srose_family = AF_ROSE;
1262 		srose->srose_addr   = rose->dest_addr;
1263 		srose->srose_call   = rose->dest_call;
1264 		srose->srose_ndigis = rose->dest_ndigis;
1265 		for (n = 0 ; n < rose->dest_ndigis ; n++)
1266 			full_srose->srose_digis[n] = rose->dest_digis[n];
1267 		msg->msg_namelen = sizeof(struct full_sockaddr_rose);
1268 	}
1269 
1270 	skb_free_datagram(sk, skb);
1271 
1272 	return copied;
1273 }
1274 
1275 
1276 static int rose_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1277 {
1278 	struct sock *sk = sock->sk;
1279 	struct rose_sock *rose = rose_sk(sk);
1280 	void __user *argp = (void __user *)arg;
1281 
1282 	switch (cmd) {
1283 	case TIOCOUTQ: {
1284 		long amount;
1285 
1286 		amount = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
1287 		if (amount < 0)
1288 			amount = 0;
1289 		return put_user(amount, (unsigned int __user *) argp);
1290 	}
1291 
1292 	case TIOCINQ: {
1293 		struct sk_buff *skb;
1294 		long amount = 0L;
1295 		/* These two are safe on a single CPU system as only user tasks fiddle here */
1296 		if ((skb = skb_peek(&sk->sk_receive_queue)) != NULL)
1297 			amount = skb->len;
1298 		return put_user(amount, (unsigned int __user *) argp);
1299 	}
1300 
1301 	case SIOCGSTAMP:
1302 		return sock_get_timestamp(sk, (struct timeval __user *) argp);
1303 
1304 	case SIOCGSTAMPNS:
1305 		return sock_get_timestampns(sk, (struct timespec __user *) argp);
1306 
1307 	case SIOCGIFADDR:
1308 	case SIOCSIFADDR:
1309 	case SIOCGIFDSTADDR:
1310 	case SIOCSIFDSTADDR:
1311 	case SIOCGIFBRDADDR:
1312 	case SIOCSIFBRDADDR:
1313 	case SIOCGIFNETMASK:
1314 	case SIOCSIFNETMASK:
1315 	case SIOCGIFMETRIC:
1316 	case SIOCSIFMETRIC:
1317 		return -EINVAL;
1318 
1319 	case SIOCADDRT:
1320 	case SIOCDELRT:
1321 	case SIOCRSCLRRT:
1322 		if (!capable(CAP_NET_ADMIN))
1323 			return -EPERM;
1324 		return rose_rt_ioctl(cmd, argp);
1325 
1326 	case SIOCRSGCAUSE: {
1327 		struct rose_cause_struct rose_cause;
1328 		rose_cause.cause      = rose->cause;
1329 		rose_cause.diagnostic = rose->diagnostic;
1330 		return copy_to_user(argp, &rose_cause, sizeof(struct rose_cause_struct)) ? -EFAULT : 0;
1331 	}
1332 
1333 	case SIOCRSSCAUSE: {
1334 		struct rose_cause_struct rose_cause;
1335 		if (copy_from_user(&rose_cause, argp, sizeof(struct rose_cause_struct)))
1336 			return -EFAULT;
1337 		rose->cause      = rose_cause.cause;
1338 		rose->diagnostic = rose_cause.diagnostic;
1339 		return 0;
1340 	}
1341 
1342 	case SIOCRSSL2CALL:
1343 		if (!capable(CAP_NET_ADMIN)) return -EPERM;
1344 		if (ax25cmp(&rose_callsign, &null_ax25_address) != 0)
1345 			ax25_listen_release(&rose_callsign, NULL);
1346 		if (copy_from_user(&rose_callsign, argp, sizeof(ax25_address)))
1347 			return -EFAULT;
1348 		if (ax25cmp(&rose_callsign, &null_ax25_address) != 0)
1349 			return ax25_listen_register(&rose_callsign, NULL);
1350 
1351 		return 0;
1352 
1353 	case SIOCRSGL2CALL:
1354 		return copy_to_user(argp, &rose_callsign, sizeof(ax25_address)) ? -EFAULT : 0;
1355 
1356 	case SIOCRSACCEPT:
1357 		if (rose->state == ROSE_STATE_5) {
1358 			rose_write_internal(sk, ROSE_CALL_ACCEPTED);
1359 			rose_start_idletimer(sk);
1360 			rose->condition = 0x00;
1361 			rose->vs        = 0;
1362 			rose->va        = 0;
1363 			rose->vr        = 0;
1364 			rose->vl        = 0;
1365 			rose->state     = ROSE_STATE_3;
1366 		}
1367 		return 0;
1368 
1369 	default:
1370 		return -ENOIOCTLCMD;
1371 	}
1372 
1373 	return 0;
1374 }
1375 
1376 #ifdef CONFIG_PROC_FS
1377 static void *rose_info_start(struct seq_file *seq, loff_t *pos)
1378 	__acquires(rose_list_lock)
1379 {
1380 	spin_lock_bh(&rose_list_lock);
1381 	return seq_hlist_start_head(&rose_list, *pos);
1382 }
1383 
1384 static void *rose_info_next(struct seq_file *seq, void *v, loff_t *pos)
1385 {
1386 	return seq_hlist_next(v, &rose_list, pos);
1387 }
1388 
1389 static void rose_info_stop(struct seq_file *seq, void *v)
1390 	__releases(rose_list_lock)
1391 {
1392 	spin_unlock_bh(&rose_list_lock);
1393 }
1394 
1395 static int rose_info_show(struct seq_file *seq, void *v)
1396 {
1397 	char buf[11], rsbuf[11];
1398 
1399 	if (v == SEQ_START_TOKEN)
1400 		seq_puts(seq,
1401 			 "dest_addr  dest_call src_addr   src_call  dev   lci neigh st vs vr va   t  t1  t2  t3  hb    idle Snd-Q Rcv-Q inode\n");
1402 
1403 	else {
1404 		struct sock *s = sk_entry(v);
1405 		struct rose_sock *rose = rose_sk(s);
1406 		const char *devname, *callsign;
1407 		const struct net_device *dev = rose->device;
1408 
1409 		if (!dev)
1410 			devname = "???";
1411 		else
1412 			devname = dev->name;
1413 
1414 		seq_printf(seq, "%-10s %-9s ",
1415 			   rose2asc(rsbuf, &rose->dest_addr),
1416 			   ax2asc(buf, &rose->dest_call));
1417 
1418 		if (ax25cmp(&rose->source_call, &null_ax25_address) == 0)
1419 			callsign = "??????-?";
1420 		else
1421 			callsign = ax2asc(buf, &rose->source_call);
1422 
1423 		seq_printf(seq,
1424 			   "%-10s %-9s %-5s %3.3X %05d  %d  %d  %d  %d %3lu %3lu %3lu %3lu %3lu %3lu/%03lu %5d %5d %ld\n",
1425 			rose2asc(rsbuf, &rose->source_addr),
1426 			callsign,
1427 			devname,
1428 			rose->lci & 0x0FFF,
1429 			(rose->neighbour) ? rose->neighbour->number : 0,
1430 			rose->state,
1431 			rose->vs,
1432 			rose->vr,
1433 			rose->va,
1434 			ax25_display_timer(&rose->timer) / HZ,
1435 			rose->t1 / HZ,
1436 			rose->t2 / HZ,
1437 			rose->t3 / HZ,
1438 			rose->hb / HZ,
1439 			ax25_display_timer(&rose->idletimer) / (60 * HZ),
1440 			rose->idle / (60 * HZ),
1441 			sk_wmem_alloc_get(s),
1442 			sk_rmem_alloc_get(s),
1443 			s->sk_socket ? SOCK_INODE(s->sk_socket)->i_ino : 0L);
1444 	}
1445 
1446 	return 0;
1447 }
1448 
1449 static const struct seq_operations rose_info_seqops = {
1450 	.start = rose_info_start,
1451 	.next = rose_info_next,
1452 	.stop = rose_info_stop,
1453 	.show = rose_info_show,
1454 };
1455 
1456 static int rose_info_open(struct inode *inode, struct file *file)
1457 {
1458 	return seq_open(file, &rose_info_seqops);
1459 }
1460 
1461 static const struct file_operations rose_info_fops = {
1462 	.owner = THIS_MODULE,
1463 	.open = rose_info_open,
1464 	.read = seq_read,
1465 	.llseek = seq_lseek,
1466 	.release = seq_release,
1467 };
1468 #endif	/* CONFIG_PROC_FS */
1469 
1470 static const struct net_proto_family rose_family_ops = {
1471 	.family		=	PF_ROSE,
1472 	.create		=	rose_create,
1473 	.owner		=	THIS_MODULE,
1474 };
1475 
1476 static const struct proto_ops rose_proto_ops = {
1477 	.family		=	PF_ROSE,
1478 	.owner		=	THIS_MODULE,
1479 	.release	=	rose_release,
1480 	.bind		=	rose_bind,
1481 	.connect	=	rose_connect,
1482 	.socketpair	=	sock_no_socketpair,
1483 	.accept		=	rose_accept,
1484 	.getname	=	rose_getname,
1485 	.poll		=	datagram_poll,
1486 	.ioctl		=	rose_ioctl,
1487 	.listen		=	rose_listen,
1488 	.shutdown	=	sock_no_shutdown,
1489 	.setsockopt	=	rose_setsockopt,
1490 	.getsockopt	=	rose_getsockopt,
1491 	.sendmsg	=	rose_sendmsg,
1492 	.recvmsg	=	rose_recvmsg,
1493 	.mmap		=	sock_no_mmap,
1494 	.sendpage	=	sock_no_sendpage,
1495 };
1496 
1497 static struct notifier_block rose_dev_notifier = {
1498 	.notifier_call	=	rose_device_event,
1499 };
1500 
1501 static struct net_device **dev_rose;
1502 
1503 static struct ax25_protocol rose_pid = {
1504 	.pid	= AX25_P_ROSE,
1505 	.func	= rose_route_frame
1506 };
1507 
1508 static struct ax25_linkfail rose_linkfail_notifier = {
1509 	.func	= rose_link_failed
1510 };
1511 
1512 static int __init rose_proto_init(void)
1513 {
1514 	int i;
1515 	int rc;
1516 
1517 	if (rose_ndevs > 0x7FFFFFFF/sizeof(struct net_device *)) {
1518 		printk(KERN_ERR "ROSE: rose_proto_init - rose_ndevs parameter to large\n");
1519 		rc = -EINVAL;
1520 		goto out;
1521 	}
1522 
1523 	rc = proto_register(&rose_proto, 0);
1524 	if (rc != 0)
1525 		goto out;
1526 
1527 	rose_callsign = null_ax25_address;
1528 
1529 	dev_rose = kzalloc(rose_ndevs * sizeof(struct net_device *), GFP_KERNEL);
1530 	if (dev_rose == NULL) {
1531 		printk(KERN_ERR "ROSE: rose_proto_init - unable to allocate device structure\n");
1532 		rc = -ENOMEM;
1533 		goto out_proto_unregister;
1534 	}
1535 
1536 	for (i = 0; i < rose_ndevs; i++) {
1537 		struct net_device *dev;
1538 		char name[IFNAMSIZ];
1539 
1540 		sprintf(name, "rose%d", i);
1541 		dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, rose_setup);
1542 		if (!dev) {
1543 			printk(KERN_ERR "ROSE: rose_proto_init - unable to allocate memory\n");
1544 			rc = -ENOMEM;
1545 			goto fail;
1546 		}
1547 		rc = register_netdev(dev);
1548 		if (rc) {
1549 			printk(KERN_ERR "ROSE: netdevice registration failed\n");
1550 			free_netdev(dev);
1551 			goto fail;
1552 		}
1553 		rose_set_lockdep_key(dev);
1554 		dev_rose[i] = dev;
1555 	}
1556 
1557 	sock_register(&rose_family_ops);
1558 	register_netdevice_notifier(&rose_dev_notifier);
1559 
1560 	ax25_register_pid(&rose_pid);
1561 	ax25_linkfail_register(&rose_linkfail_notifier);
1562 
1563 #ifdef CONFIG_SYSCTL
1564 	rose_register_sysctl();
1565 #endif
1566 	rose_loopback_init();
1567 
1568 	rose_add_loopback_neigh();
1569 
1570 	proc_create("rose", S_IRUGO, init_net.proc_net, &rose_info_fops);
1571 	proc_create("rose_neigh", S_IRUGO, init_net.proc_net,
1572 		    &rose_neigh_fops);
1573 	proc_create("rose_nodes", S_IRUGO, init_net.proc_net,
1574 		    &rose_nodes_fops);
1575 	proc_create("rose_routes", S_IRUGO, init_net.proc_net,
1576 		    &rose_routes_fops);
1577 out:
1578 	return rc;
1579 fail:
1580 	while (--i >= 0) {
1581 		unregister_netdev(dev_rose[i]);
1582 		free_netdev(dev_rose[i]);
1583 	}
1584 	kfree(dev_rose);
1585 out_proto_unregister:
1586 	proto_unregister(&rose_proto);
1587 	goto out;
1588 }
1589 module_init(rose_proto_init);
1590 
1591 module_param(rose_ndevs, int, 0);
1592 MODULE_PARM_DESC(rose_ndevs, "number of ROSE devices");
1593 
1594 MODULE_AUTHOR("Jonathan Naylor G4KLX <g4klx@g4klx.demon.co.uk>");
1595 MODULE_DESCRIPTION("The amateur radio ROSE network layer protocol");
1596 MODULE_LICENSE("GPL");
1597 MODULE_ALIAS_NETPROTO(PF_ROSE);
1598 
1599 static void __exit rose_exit(void)
1600 {
1601 	int i;
1602 
1603 	remove_proc_entry("rose", init_net.proc_net);
1604 	remove_proc_entry("rose_neigh", init_net.proc_net);
1605 	remove_proc_entry("rose_nodes", init_net.proc_net);
1606 	remove_proc_entry("rose_routes", init_net.proc_net);
1607 	rose_loopback_clear();
1608 
1609 	rose_rt_free();
1610 
1611 	ax25_protocol_release(AX25_P_ROSE);
1612 	ax25_linkfail_release(&rose_linkfail_notifier);
1613 
1614 	if (ax25cmp(&rose_callsign, &null_ax25_address) != 0)
1615 		ax25_listen_release(&rose_callsign, NULL);
1616 
1617 #ifdef CONFIG_SYSCTL
1618 	rose_unregister_sysctl();
1619 #endif
1620 	unregister_netdevice_notifier(&rose_dev_notifier);
1621 
1622 	sock_unregister(PF_ROSE);
1623 
1624 	for (i = 0; i < rose_ndevs; i++) {
1625 		struct net_device *dev = dev_rose[i];
1626 
1627 		if (dev) {
1628 			unregister_netdev(dev);
1629 			free_netdev(dev);
1630 		}
1631 	}
1632 
1633 	kfree(dev_rose);
1634 	proto_unregister(&rose_proto);
1635 }
1636 
1637 module_exit(rose_exit);
1638