1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Input layer to RF Kill interface connector 4 * 5 * Copyright (c) 2007 Dmitry Torokhov 6 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net> 7 * 8 * If you ever run into a situation in which you have a SW_ type rfkill 9 * input device, then you can revive code that was removed in the patch 10 * "rfkill-input: remove unused code". 11 */ 12 13 #include <linux/input.h> 14 #include <linux/slab.h> 15 #include <linux/moduleparam.h> 16 #include <linux/workqueue.h> 17 #include <linux/init.h> 18 #include <linux/rfkill.h> 19 #include <linux/sched.h> 20 21 #include "rfkill.h" 22 23 enum rfkill_input_master_mode { 24 RFKILL_INPUT_MASTER_UNLOCK = 0, 25 RFKILL_INPUT_MASTER_RESTORE = 1, 26 RFKILL_INPUT_MASTER_UNBLOCKALL = 2, 27 NUM_RFKILL_INPUT_MASTER_MODES 28 }; 29 30 /* Delay (in ms) between consecutive switch ops */ 31 #define RFKILL_OPS_DELAY 200 32 33 static enum rfkill_input_master_mode rfkill_master_switch_mode = 34 RFKILL_INPUT_MASTER_UNBLOCKALL; 35 module_param_named(master_switch_mode, rfkill_master_switch_mode, uint, 0); 36 MODULE_PARM_DESC(master_switch_mode, 37 "SW_RFKILL_ALL ON should: 0=do nothing (only unlock); 1=restore; 2=unblock all"); 38 39 static spinlock_t rfkill_op_lock; 40 static bool rfkill_op_pending; 41 static unsigned long rfkill_sw_pending[BITS_TO_LONGS(NUM_RFKILL_TYPES)]; 42 static unsigned long rfkill_sw_state[BITS_TO_LONGS(NUM_RFKILL_TYPES)]; 43 44 enum rfkill_sched_op { 45 RFKILL_GLOBAL_OP_EPO = 0, 46 RFKILL_GLOBAL_OP_RESTORE, 47 RFKILL_GLOBAL_OP_UNLOCK, 48 RFKILL_GLOBAL_OP_UNBLOCK, 49 }; 50 51 static enum rfkill_sched_op rfkill_master_switch_op; 52 static enum rfkill_sched_op rfkill_op; 53 54 static void __rfkill_handle_global_op(enum rfkill_sched_op op) 55 { 56 unsigned int i; 57 58 switch (op) { 59 case RFKILL_GLOBAL_OP_EPO: 60 rfkill_epo(); 61 break; 62 case RFKILL_GLOBAL_OP_RESTORE: 63 rfkill_restore_states(); 64 break; 65 case RFKILL_GLOBAL_OP_UNLOCK: 66 rfkill_remove_epo_lock(); 67 break; 68 case RFKILL_GLOBAL_OP_UNBLOCK: 69 rfkill_remove_epo_lock(); 70 for (i = 0; i < NUM_RFKILL_TYPES; i++) 71 rfkill_switch_all(i, false); 72 break; 73 default: 74 /* memory corruption or bug, fail safely */ 75 rfkill_epo(); 76 WARN(1, "Unknown requested operation %d! " 77 "rfkill Emergency Power Off activated\n", 78 op); 79 } 80 } 81 82 static void __rfkill_handle_normal_op(const enum rfkill_type type, 83 const bool complement) 84 { 85 bool blocked; 86 87 blocked = rfkill_get_global_sw_state(type); 88 if (complement) 89 blocked = !blocked; 90 91 rfkill_switch_all(type, blocked); 92 } 93 94 static void rfkill_op_handler(struct work_struct *work) 95 { 96 unsigned int i; 97 bool c; 98 99 spin_lock_irq(&rfkill_op_lock); 100 do { 101 if (rfkill_op_pending) { 102 enum rfkill_sched_op op = rfkill_op; 103 rfkill_op_pending = false; 104 memset(rfkill_sw_pending, 0, 105 sizeof(rfkill_sw_pending)); 106 spin_unlock_irq(&rfkill_op_lock); 107 108 __rfkill_handle_global_op(op); 109 110 spin_lock_irq(&rfkill_op_lock); 111 112 /* 113 * handle global ops first -- during unlocked period 114 * we might have gotten a new global op. 115 */ 116 if (rfkill_op_pending) 117 continue; 118 } 119 120 if (rfkill_is_epo_lock_active()) 121 continue; 122 123 for (i = 0; i < NUM_RFKILL_TYPES; i++) { 124 if (__test_and_clear_bit(i, rfkill_sw_pending)) { 125 c = __test_and_clear_bit(i, rfkill_sw_state); 126 spin_unlock_irq(&rfkill_op_lock); 127 128 __rfkill_handle_normal_op(i, c); 129 130 spin_lock_irq(&rfkill_op_lock); 131 } 132 } 133 } while (rfkill_op_pending); 134 spin_unlock_irq(&rfkill_op_lock); 135 } 136 137 static DECLARE_DELAYED_WORK(rfkill_op_work, rfkill_op_handler); 138 static unsigned long rfkill_last_scheduled; 139 140 static unsigned long rfkill_ratelimit(const unsigned long last) 141 { 142 const unsigned long delay = msecs_to_jiffies(RFKILL_OPS_DELAY); 143 return time_after(jiffies, last + delay) ? 0 : delay; 144 } 145 146 static void rfkill_schedule_ratelimited(void) 147 { 148 if (schedule_delayed_work(&rfkill_op_work, 149 rfkill_ratelimit(rfkill_last_scheduled))) 150 rfkill_last_scheduled = jiffies; 151 } 152 153 static void rfkill_schedule_global_op(enum rfkill_sched_op op) 154 { 155 unsigned long flags; 156 157 spin_lock_irqsave(&rfkill_op_lock, flags); 158 rfkill_op = op; 159 rfkill_op_pending = true; 160 if (op == RFKILL_GLOBAL_OP_EPO && !rfkill_is_epo_lock_active()) { 161 /* bypass the limiter for EPO */ 162 mod_delayed_work(system_wq, &rfkill_op_work, 0); 163 rfkill_last_scheduled = jiffies; 164 } else 165 rfkill_schedule_ratelimited(); 166 spin_unlock_irqrestore(&rfkill_op_lock, flags); 167 } 168 169 static void rfkill_schedule_toggle(enum rfkill_type type) 170 { 171 unsigned long flags; 172 173 if (rfkill_is_epo_lock_active()) 174 return; 175 176 spin_lock_irqsave(&rfkill_op_lock, flags); 177 if (!rfkill_op_pending) { 178 __set_bit(type, rfkill_sw_pending); 179 __change_bit(type, rfkill_sw_state); 180 rfkill_schedule_ratelimited(); 181 } 182 spin_unlock_irqrestore(&rfkill_op_lock, flags); 183 } 184 185 static void rfkill_schedule_evsw_rfkillall(int state) 186 { 187 if (state) 188 rfkill_schedule_global_op(rfkill_master_switch_op); 189 else 190 rfkill_schedule_global_op(RFKILL_GLOBAL_OP_EPO); 191 } 192 193 static void rfkill_event(struct input_handle *handle, unsigned int type, 194 unsigned int code, int data) 195 { 196 if (type == EV_KEY && data == 1) { 197 switch (code) { 198 case KEY_WLAN: 199 rfkill_schedule_toggle(RFKILL_TYPE_WLAN); 200 break; 201 case KEY_BLUETOOTH: 202 rfkill_schedule_toggle(RFKILL_TYPE_BLUETOOTH); 203 break; 204 case KEY_UWB: 205 rfkill_schedule_toggle(RFKILL_TYPE_UWB); 206 break; 207 case KEY_WIMAX: 208 rfkill_schedule_toggle(RFKILL_TYPE_WIMAX); 209 break; 210 case KEY_RFKILL: 211 rfkill_schedule_toggle(RFKILL_TYPE_ALL); 212 break; 213 } 214 } else if (type == EV_SW && code == SW_RFKILL_ALL) 215 rfkill_schedule_evsw_rfkillall(data); 216 } 217 218 static int rfkill_connect(struct input_handler *handler, struct input_dev *dev, 219 const struct input_device_id *id) 220 { 221 struct input_handle *handle; 222 int error; 223 224 handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL); 225 if (!handle) 226 return -ENOMEM; 227 228 handle->dev = dev; 229 handle->handler = handler; 230 handle->name = "rfkill"; 231 232 /* causes rfkill_start() to be called */ 233 error = input_register_handle(handle); 234 if (error) 235 goto err_free_handle; 236 237 error = input_open_device(handle); 238 if (error) 239 goto err_unregister_handle; 240 241 return 0; 242 243 err_unregister_handle: 244 input_unregister_handle(handle); 245 err_free_handle: 246 kfree(handle); 247 return error; 248 } 249 250 static void rfkill_start(struct input_handle *handle) 251 { 252 /* 253 * Take event_lock to guard against configuration changes, we 254 * should be able to deal with concurrency with rfkill_event() 255 * just fine (which event_lock will also avoid). 256 */ 257 spin_lock_irq(&handle->dev->event_lock); 258 259 if (test_bit(EV_SW, handle->dev->evbit) && 260 test_bit(SW_RFKILL_ALL, handle->dev->swbit)) 261 rfkill_schedule_evsw_rfkillall(test_bit(SW_RFKILL_ALL, 262 handle->dev->sw)); 263 264 spin_unlock_irq(&handle->dev->event_lock); 265 } 266 267 static void rfkill_disconnect(struct input_handle *handle) 268 { 269 input_close_device(handle); 270 input_unregister_handle(handle); 271 kfree(handle); 272 } 273 274 static const struct input_device_id rfkill_ids[] = { 275 { 276 .flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_KEYBIT, 277 .evbit = { BIT_MASK(EV_KEY) }, 278 .keybit = { [BIT_WORD(KEY_WLAN)] = BIT_MASK(KEY_WLAN) }, 279 }, 280 { 281 .flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_KEYBIT, 282 .evbit = { BIT_MASK(EV_KEY) }, 283 .keybit = { [BIT_WORD(KEY_BLUETOOTH)] = BIT_MASK(KEY_BLUETOOTH) }, 284 }, 285 { 286 .flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_KEYBIT, 287 .evbit = { BIT_MASK(EV_KEY) }, 288 .keybit = { [BIT_WORD(KEY_UWB)] = BIT_MASK(KEY_UWB) }, 289 }, 290 { 291 .flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_KEYBIT, 292 .evbit = { BIT_MASK(EV_KEY) }, 293 .keybit = { [BIT_WORD(KEY_WIMAX)] = BIT_MASK(KEY_WIMAX) }, 294 }, 295 { 296 .flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_KEYBIT, 297 .evbit = { BIT_MASK(EV_KEY) }, 298 .keybit = { [BIT_WORD(KEY_RFKILL)] = BIT_MASK(KEY_RFKILL) }, 299 }, 300 { 301 .flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_SWBIT, 302 .evbit = { BIT(EV_SW) }, 303 .swbit = { [BIT_WORD(SW_RFKILL_ALL)] = BIT_MASK(SW_RFKILL_ALL) }, 304 }, 305 { } 306 }; 307 308 static struct input_handler rfkill_handler = { 309 .name = "rfkill", 310 .event = rfkill_event, 311 .connect = rfkill_connect, 312 .start = rfkill_start, 313 .disconnect = rfkill_disconnect, 314 .id_table = rfkill_ids, 315 }; 316 317 int __init rfkill_handler_init(void) 318 { 319 switch (rfkill_master_switch_mode) { 320 case RFKILL_INPUT_MASTER_UNBLOCKALL: 321 rfkill_master_switch_op = RFKILL_GLOBAL_OP_UNBLOCK; 322 break; 323 case RFKILL_INPUT_MASTER_RESTORE: 324 rfkill_master_switch_op = RFKILL_GLOBAL_OP_RESTORE; 325 break; 326 case RFKILL_INPUT_MASTER_UNLOCK: 327 rfkill_master_switch_op = RFKILL_GLOBAL_OP_UNLOCK; 328 break; 329 default: 330 return -EINVAL; 331 } 332 333 spin_lock_init(&rfkill_op_lock); 334 335 /* Avoid delay at first schedule */ 336 rfkill_last_scheduled = 337 jiffies - msecs_to_jiffies(RFKILL_OPS_DELAY) - 1; 338 return input_register_handler(&rfkill_handler); 339 } 340 341 void __exit rfkill_handler_exit(void) 342 { 343 input_unregister_handler(&rfkill_handler); 344 cancel_delayed_work_sync(&rfkill_op_work); 345 } 346