1 /* 2 * Copyright (C) 2006 - 2007 Ivo van Doorn 3 * Copyright (C) 2007 Dmitry Torokhov 4 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/init.h> 23 #include <linux/workqueue.h> 24 #include <linux/capability.h> 25 #include <linux/list.h> 26 #include <linux/mutex.h> 27 #include <linux/rfkill.h> 28 #include <linux/sched.h> 29 #include <linux/spinlock.h> 30 #include <linux/device.h> 31 #include <linux/miscdevice.h> 32 #include <linux/wait.h> 33 #include <linux/poll.h> 34 #include <linux/fs.h> 35 #include <linux/slab.h> 36 37 #include "rfkill.h" 38 39 #define POLL_INTERVAL (5 * HZ) 40 41 #define RFKILL_BLOCK_HW BIT(0) 42 #define RFKILL_BLOCK_SW BIT(1) 43 #define RFKILL_BLOCK_SW_PREV BIT(2) 44 #define RFKILL_BLOCK_ANY (RFKILL_BLOCK_HW |\ 45 RFKILL_BLOCK_SW |\ 46 RFKILL_BLOCK_SW_PREV) 47 #define RFKILL_BLOCK_SW_SETCALL BIT(31) 48 49 struct rfkill { 50 spinlock_t lock; 51 52 enum rfkill_type type; 53 54 unsigned long state; 55 56 u32 idx; 57 58 bool registered; 59 bool persistent; 60 bool polling_paused; 61 bool suspended; 62 63 const struct rfkill_ops *ops; 64 void *data; 65 66 #ifdef CONFIG_RFKILL_LEDS 67 struct led_trigger led_trigger; 68 const char *ledtrigname; 69 #endif 70 71 struct device dev; 72 struct list_head node; 73 74 struct delayed_work poll_work; 75 struct work_struct uevent_work; 76 struct work_struct sync_work; 77 char name[]; 78 }; 79 #define to_rfkill(d) container_of(d, struct rfkill, dev) 80 81 struct rfkill_int_event { 82 struct list_head list; 83 struct rfkill_event ev; 84 }; 85 86 struct rfkill_data { 87 struct list_head list; 88 struct list_head events; 89 struct mutex mtx; 90 wait_queue_head_t read_wait; 91 bool input_handler; 92 }; 93 94 95 MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>"); 96 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>"); 97 MODULE_DESCRIPTION("RF switch support"); 98 MODULE_LICENSE("GPL"); 99 100 101 /* 102 * The locking here should be made much smarter, we currently have 103 * a bit of a stupid situation because drivers might want to register 104 * the rfkill struct under their own lock, and take this lock during 105 * rfkill method calls -- which will cause an AB-BA deadlock situation. 106 * 107 * To fix that, we need to rework this code here to be mostly lock-free 108 * and only use the mutex for list manipulations, not to protect the 109 * various other global variables. Then we can avoid holding the mutex 110 * around driver operations, and all is happy. 111 */ 112 static LIST_HEAD(rfkill_list); /* list of registered rf switches */ 113 static DEFINE_MUTEX(rfkill_global_mutex); 114 static LIST_HEAD(rfkill_fds); /* list of open fds of /dev/rfkill */ 115 116 static unsigned int rfkill_default_state = 1; 117 module_param_named(default_state, rfkill_default_state, uint, 0444); 118 MODULE_PARM_DESC(default_state, 119 "Default initial state for all radio types, 0 = radio off"); 120 121 static struct { 122 bool cur, sav; 123 } rfkill_global_states[NUM_RFKILL_TYPES]; 124 125 static bool rfkill_epo_lock_active; 126 127 128 #ifdef CONFIG_RFKILL_LEDS 129 static void rfkill_led_trigger_event(struct rfkill *rfkill) 130 { 131 struct led_trigger *trigger; 132 133 if (!rfkill->registered) 134 return; 135 136 trigger = &rfkill->led_trigger; 137 138 if (rfkill->state & RFKILL_BLOCK_ANY) 139 led_trigger_event(trigger, LED_OFF); 140 else 141 led_trigger_event(trigger, LED_FULL); 142 } 143 144 static int rfkill_led_trigger_activate(struct led_classdev *led) 145 { 146 struct rfkill *rfkill; 147 148 rfkill = container_of(led->trigger, struct rfkill, led_trigger); 149 150 rfkill_led_trigger_event(rfkill); 151 152 return 0; 153 } 154 155 const char *rfkill_get_led_trigger_name(struct rfkill *rfkill) 156 { 157 return rfkill->led_trigger.name; 158 } 159 EXPORT_SYMBOL(rfkill_get_led_trigger_name); 160 161 void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name) 162 { 163 BUG_ON(!rfkill); 164 165 rfkill->ledtrigname = name; 166 } 167 EXPORT_SYMBOL(rfkill_set_led_trigger_name); 168 169 static int rfkill_led_trigger_register(struct rfkill *rfkill) 170 { 171 rfkill->led_trigger.name = rfkill->ledtrigname 172 ? : dev_name(&rfkill->dev); 173 rfkill->led_trigger.activate = rfkill_led_trigger_activate; 174 return led_trigger_register(&rfkill->led_trigger); 175 } 176 177 static void rfkill_led_trigger_unregister(struct rfkill *rfkill) 178 { 179 led_trigger_unregister(&rfkill->led_trigger); 180 } 181 182 static struct led_trigger rfkill_any_led_trigger; 183 static struct led_trigger rfkill_none_led_trigger; 184 static struct work_struct rfkill_global_led_trigger_work; 185 186 static void rfkill_global_led_trigger_worker(struct work_struct *work) 187 { 188 enum led_brightness brightness = LED_OFF; 189 struct rfkill *rfkill; 190 191 mutex_lock(&rfkill_global_mutex); 192 list_for_each_entry(rfkill, &rfkill_list, node) { 193 if (!(rfkill->state & RFKILL_BLOCK_ANY)) { 194 brightness = LED_FULL; 195 break; 196 } 197 } 198 mutex_unlock(&rfkill_global_mutex); 199 200 led_trigger_event(&rfkill_any_led_trigger, brightness); 201 led_trigger_event(&rfkill_none_led_trigger, 202 brightness == LED_OFF ? LED_FULL : LED_OFF); 203 } 204 205 static void rfkill_global_led_trigger_event(void) 206 { 207 schedule_work(&rfkill_global_led_trigger_work); 208 } 209 210 static int rfkill_global_led_trigger_register(void) 211 { 212 int ret; 213 214 INIT_WORK(&rfkill_global_led_trigger_work, 215 rfkill_global_led_trigger_worker); 216 217 rfkill_any_led_trigger.name = "rfkill-any"; 218 ret = led_trigger_register(&rfkill_any_led_trigger); 219 if (ret) 220 return ret; 221 222 rfkill_none_led_trigger.name = "rfkill-none"; 223 ret = led_trigger_register(&rfkill_none_led_trigger); 224 if (ret) 225 led_trigger_unregister(&rfkill_any_led_trigger); 226 else 227 /* Delay activation until all global triggers are registered */ 228 rfkill_global_led_trigger_event(); 229 230 return ret; 231 } 232 233 static void rfkill_global_led_trigger_unregister(void) 234 { 235 led_trigger_unregister(&rfkill_none_led_trigger); 236 led_trigger_unregister(&rfkill_any_led_trigger); 237 cancel_work_sync(&rfkill_global_led_trigger_work); 238 } 239 #else 240 static void rfkill_led_trigger_event(struct rfkill *rfkill) 241 { 242 } 243 244 static inline int rfkill_led_trigger_register(struct rfkill *rfkill) 245 { 246 return 0; 247 } 248 249 static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill) 250 { 251 } 252 253 static void rfkill_global_led_trigger_event(void) 254 { 255 } 256 257 static int rfkill_global_led_trigger_register(void) 258 { 259 return 0; 260 } 261 262 static void rfkill_global_led_trigger_unregister(void) 263 { 264 } 265 #endif /* CONFIG_RFKILL_LEDS */ 266 267 static void rfkill_fill_event(struct rfkill_event *ev, struct rfkill *rfkill, 268 enum rfkill_operation op) 269 { 270 unsigned long flags; 271 272 ev->idx = rfkill->idx; 273 ev->type = rfkill->type; 274 ev->op = op; 275 276 spin_lock_irqsave(&rfkill->lock, flags); 277 ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW); 278 ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW | 279 RFKILL_BLOCK_SW_PREV)); 280 spin_unlock_irqrestore(&rfkill->lock, flags); 281 } 282 283 static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op) 284 { 285 struct rfkill_data *data; 286 struct rfkill_int_event *ev; 287 288 list_for_each_entry(data, &rfkill_fds, list) { 289 ev = kzalloc(sizeof(*ev), GFP_KERNEL); 290 if (!ev) 291 continue; 292 rfkill_fill_event(&ev->ev, rfkill, op); 293 mutex_lock(&data->mtx); 294 list_add_tail(&ev->list, &data->events); 295 mutex_unlock(&data->mtx); 296 wake_up_interruptible(&data->read_wait); 297 } 298 } 299 300 static void rfkill_event(struct rfkill *rfkill) 301 { 302 if (!rfkill->registered) 303 return; 304 305 kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE); 306 307 /* also send event to /dev/rfkill */ 308 rfkill_send_events(rfkill, RFKILL_OP_CHANGE); 309 } 310 311 /** 312 * rfkill_set_block - wrapper for set_block method 313 * 314 * @rfkill: the rfkill struct to use 315 * @blocked: the new software state 316 * 317 * Calls the set_block method (when applicable) and handles notifications 318 * etc. as well. 319 */ 320 static void rfkill_set_block(struct rfkill *rfkill, bool blocked) 321 { 322 unsigned long flags; 323 bool prev, curr; 324 int err; 325 326 if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP)) 327 return; 328 329 /* 330 * Some platforms (...!) generate input events which affect the 331 * _hard_ kill state -- whenever something tries to change the 332 * current software state query the hardware state too. 333 */ 334 if (rfkill->ops->query) 335 rfkill->ops->query(rfkill, rfkill->data); 336 337 spin_lock_irqsave(&rfkill->lock, flags); 338 prev = rfkill->state & RFKILL_BLOCK_SW; 339 340 if (prev) 341 rfkill->state |= RFKILL_BLOCK_SW_PREV; 342 else 343 rfkill->state &= ~RFKILL_BLOCK_SW_PREV; 344 345 if (blocked) 346 rfkill->state |= RFKILL_BLOCK_SW; 347 else 348 rfkill->state &= ~RFKILL_BLOCK_SW; 349 350 rfkill->state |= RFKILL_BLOCK_SW_SETCALL; 351 spin_unlock_irqrestore(&rfkill->lock, flags); 352 353 err = rfkill->ops->set_block(rfkill->data, blocked); 354 355 spin_lock_irqsave(&rfkill->lock, flags); 356 if (err) { 357 /* 358 * Failed -- reset status to _PREV, which may be different 359 * from what we have set _PREV to earlier in this function 360 * if rfkill_set_sw_state was invoked. 361 */ 362 if (rfkill->state & RFKILL_BLOCK_SW_PREV) 363 rfkill->state |= RFKILL_BLOCK_SW; 364 else 365 rfkill->state &= ~RFKILL_BLOCK_SW; 366 } 367 rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL; 368 rfkill->state &= ~RFKILL_BLOCK_SW_PREV; 369 curr = rfkill->state & RFKILL_BLOCK_SW; 370 spin_unlock_irqrestore(&rfkill->lock, flags); 371 372 rfkill_led_trigger_event(rfkill); 373 rfkill_global_led_trigger_event(); 374 375 if (prev != curr) 376 rfkill_event(rfkill); 377 } 378 379 static void rfkill_update_global_state(enum rfkill_type type, bool blocked) 380 { 381 int i; 382 383 if (type != RFKILL_TYPE_ALL) { 384 rfkill_global_states[type].cur = blocked; 385 return; 386 } 387 388 for (i = 0; i < NUM_RFKILL_TYPES; i++) 389 rfkill_global_states[i].cur = blocked; 390 } 391 392 #ifdef CONFIG_RFKILL_INPUT 393 static atomic_t rfkill_input_disabled = ATOMIC_INIT(0); 394 395 /** 396 * __rfkill_switch_all - Toggle state of all switches of given type 397 * @type: type of interfaces to be affected 398 * @blocked: the new state 399 * 400 * This function sets the state of all switches of given type, 401 * unless a specific switch is suspended. 402 * 403 * Caller must have acquired rfkill_global_mutex. 404 */ 405 static void __rfkill_switch_all(const enum rfkill_type type, bool blocked) 406 { 407 struct rfkill *rfkill; 408 409 rfkill_update_global_state(type, blocked); 410 list_for_each_entry(rfkill, &rfkill_list, node) { 411 if (rfkill->type != type && type != RFKILL_TYPE_ALL) 412 continue; 413 414 rfkill_set_block(rfkill, blocked); 415 } 416 } 417 418 /** 419 * rfkill_switch_all - Toggle state of all switches of given type 420 * @type: type of interfaces to be affected 421 * @blocked: the new state 422 * 423 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state). 424 * Please refer to __rfkill_switch_all() for details. 425 * 426 * Does nothing if the EPO lock is active. 427 */ 428 void rfkill_switch_all(enum rfkill_type type, bool blocked) 429 { 430 if (atomic_read(&rfkill_input_disabled)) 431 return; 432 433 mutex_lock(&rfkill_global_mutex); 434 435 if (!rfkill_epo_lock_active) 436 __rfkill_switch_all(type, blocked); 437 438 mutex_unlock(&rfkill_global_mutex); 439 } 440 441 /** 442 * rfkill_epo - emergency power off all transmitters 443 * 444 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED, 445 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex. 446 * 447 * The global state before the EPO is saved and can be restored later 448 * using rfkill_restore_states(). 449 */ 450 void rfkill_epo(void) 451 { 452 struct rfkill *rfkill; 453 int i; 454 455 if (atomic_read(&rfkill_input_disabled)) 456 return; 457 458 mutex_lock(&rfkill_global_mutex); 459 460 rfkill_epo_lock_active = true; 461 list_for_each_entry(rfkill, &rfkill_list, node) 462 rfkill_set_block(rfkill, true); 463 464 for (i = 0; i < NUM_RFKILL_TYPES; i++) { 465 rfkill_global_states[i].sav = rfkill_global_states[i].cur; 466 rfkill_global_states[i].cur = true; 467 } 468 469 mutex_unlock(&rfkill_global_mutex); 470 } 471 472 /** 473 * rfkill_restore_states - restore global states 474 * 475 * Restore (and sync switches to) the global state from the 476 * states in rfkill_default_states. This can undo the effects of 477 * a call to rfkill_epo(). 478 */ 479 void rfkill_restore_states(void) 480 { 481 int i; 482 483 if (atomic_read(&rfkill_input_disabled)) 484 return; 485 486 mutex_lock(&rfkill_global_mutex); 487 488 rfkill_epo_lock_active = false; 489 for (i = 0; i < NUM_RFKILL_TYPES; i++) 490 __rfkill_switch_all(i, rfkill_global_states[i].sav); 491 mutex_unlock(&rfkill_global_mutex); 492 } 493 494 /** 495 * rfkill_remove_epo_lock - unlock state changes 496 * 497 * Used by rfkill-input manually unlock state changes, when 498 * the EPO switch is deactivated. 499 */ 500 void rfkill_remove_epo_lock(void) 501 { 502 if (atomic_read(&rfkill_input_disabled)) 503 return; 504 505 mutex_lock(&rfkill_global_mutex); 506 rfkill_epo_lock_active = false; 507 mutex_unlock(&rfkill_global_mutex); 508 } 509 510 /** 511 * rfkill_is_epo_lock_active - returns true EPO is active 512 * 513 * Returns 0 (false) if there is NOT an active EPO condition, 514 * and 1 (true) if there is an active EPO condition, which 515 * locks all radios in one of the BLOCKED states. 516 * 517 * Can be called in atomic context. 518 */ 519 bool rfkill_is_epo_lock_active(void) 520 { 521 return rfkill_epo_lock_active; 522 } 523 524 /** 525 * rfkill_get_global_sw_state - returns global state for a type 526 * @type: the type to get the global state of 527 * 528 * Returns the current global state for a given wireless 529 * device type. 530 */ 531 bool rfkill_get_global_sw_state(const enum rfkill_type type) 532 { 533 return rfkill_global_states[type].cur; 534 } 535 #endif 536 537 bool rfkill_set_hw_state(struct rfkill *rfkill, bool blocked) 538 { 539 unsigned long flags; 540 bool ret, prev; 541 542 BUG_ON(!rfkill); 543 544 spin_lock_irqsave(&rfkill->lock, flags); 545 prev = !!(rfkill->state & RFKILL_BLOCK_HW); 546 if (blocked) 547 rfkill->state |= RFKILL_BLOCK_HW; 548 else 549 rfkill->state &= ~RFKILL_BLOCK_HW; 550 ret = !!(rfkill->state & RFKILL_BLOCK_ANY); 551 spin_unlock_irqrestore(&rfkill->lock, flags); 552 553 rfkill_led_trigger_event(rfkill); 554 rfkill_global_led_trigger_event(); 555 556 if (rfkill->registered && prev != blocked) 557 schedule_work(&rfkill->uevent_work); 558 559 return ret; 560 } 561 EXPORT_SYMBOL(rfkill_set_hw_state); 562 563 static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked) 564 { 565 u32 bit = RFKILL_BLOCK_SW; 566 567 /* if in a ops->set_block right now, use other bit */ 568 if (rfkill->state & RFKILL_BLOCK_SW_SETCALL) 569 bit = RFKILL_BLOCK_SW_PREV; 570 571 if (blocked) 572 rfkill->state |= bit; 573 else 574 rfkill->state &= ~bit; 575 } 576 577 bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked) 578 { 579 unsigned long flags; 580 bool prev, hwblock; 581 582 BUG_ON(!rfkill); 583 584 spin_lock_irqsave(&rfkill->lock, flags); 585 prev = !!(rfkill->state & RFKILL_BLOCK_SW); 586 __rfkill_set_sw_state(rfkill, blocked); 587 hwblock = !!(rfkill->state & RFKILL_BLOCK_HW); 588 blocked = blocked || hwblock; 589 spin_unlock_irqrestore(&rfkill->lock, flags); 590 591 if (!rfkill->registered) 592 return blocked; 593 594 if (prev != blocked && !hwblock) 595 schedule_work(&rfkill->uevent_work); 596 597 rfkill_led_trigger_event(rfkill); 598 rfkill_global_led_trigger_event(); 599 600 return blocked; 601 } 602 EXPORT_SYMBOL(rfkill_set_sw_state); 603 604 void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked) 605 { 606 unsigned long flags; 607 608 BUG_ON(!rfkill); 609 BUG_ON(rfkill->registered); 610 611 spin_lock_irqsave(&rfkill->lock, flags); 612 __rfkill_set_sw_state(rfkill, blocked); 613 rfkill->persistent = true; 614 spin_unlock_irqrestore(&rfkill->lock, flags); 615 } 616 EXPORT_SYMBOL(rfkill_init_sw_state); 617 618 void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw) 619 { 620 unsigned long flags; 621 bool swprev, hwprev; 622 623 BUG_ON(!rfkill); 624 625 spin_lock_irqsave(&rfkill->lock, flags); 626 627 /* 628 * No need to care about prev/setblock ... this is for uevent only 629 * and that will get triggered by rfkill_set_block anyway. 630 */ 631 swprev = !!(rfkill->state & RFKILL_BLOCK_SW); 632 hwprev = !!(rfkill->state & RFKILL_BLOCK_HW); 633 __rfkill_set_sw_state(rfkill, sw); 634 if (hw) 635 rfkill->state |= RFKILL_BLOCK_HW; 636 else 637 rfkill->state &= ~RFKILL_BLOCK_HW; 638 639 spin_unlock_irqrestore(&rfkill->lock, flags); 640 641 if (!rfkill->registered) { 642 rfkill->persistent = true; 643 } else { 644 if (swprev != sw || hwprev != hw) 645 schedule_work(&rfkill->uevent_work); 646 647 rfkill_led_trigger_event(rfkill); 648 rfkill_global_led_trigger_event(); 649 } 650 } 651 EXPORT_SYMBOL(rfkill_set_states); 652 653 static const char * const rfkill_types[] = { 654 NULL, /* RFKILL_TYPE_ALL */ 655 "wlan", 656 "bluetooth", 657 "ultrawideband", 658 "wimax", 659 "wwan", 660 "gps", 661 "fm", 662 "nfc", 663 }; 664 665 enum rfkill_type rfkill_find_type(const char *name) 666 { 667 int i; 668 669 BUILD_BUG_ON(ARRAY_SIZE(rfkill_types) != NUM_RFKILL_TYPES); 670 671 if (!name) 672 return RFKILL_TYPE_ALL; 673 674 for (i = 1; i < NUM_RFKILL_TYPES; i++) 675 if (!strcmp(name, rfkill_types[i])) 676 return i; 677 return RFKILL_TYPE_ALL; 678 } 679 EXPORT_SYMBOL(rfkill_find_type); 680 681 static ssize_t name_show(struct device *dev, struct device_attribute *attr, 682 char *buf) 683 { 684 struct rfkill *rfkill = to_rfkill(dev); 685 686 return sprintf(buf, "%s\n", rfkill->name); 687 } 688 static DEVICE_ATTR_RO(name); 689 690 static ssize_t type_show(struct device *dev, struct device_attribute *attr, 691 char *buf) 692 { 693 struct rfkill *rfkill = to_rfkill(dev); 694 695 return sprintf(buf, "%s\n", rfkill_types[rfkill->type]); 696 } 697 static DEVICE_ATTR_RO(type); 698 699 static ssize_t index_show(struct device *dev, struct device_attribute *attr, 700 char *buf) 701 { 702 struct rfkill *rfkill = to_rfkill(dev); 703 704 return sprintf(buf, "%d\n", rfkill->idx); 705 } 706 static DEVICE_ATTR_RO(index); 707 708 static ssize_t persistent_show(struct device *dev, 709 struct device_attribute *attr, char *buf) 710 { 711 struct rfkill *rfkill = to_rfkill(dev); 712 713 return sprintf(buf, "%d\n", rfkill->persistent); 714 } 715 static DEVICE_ATTR_RO(persistent); 716 717 static ssize_t hard_show(struct device *dev, struct device_attribute *attr, 718 char *buf) 719 { 720 struct rfkill *rfkill = to_rfkill(dev); 721 722 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 ); 723 } 724 static DEVICE_ATTR_RO(hard); 725 726 static ssize_t soft_show(struct device *dev, struct device_attribute *attr, 727 char *buf) 728 { 729 struct rfkill *rfkill = to_rfkill(dev); 730 731 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 ); 732 } 733 734 static ssize_t soft_store(struct device *dev, struct device_attribute *attr, 735 const char *buf, size_t count) 736 { 737 struct rfkill *rfkill = to_rfkill(dev); 738 unsigned long state; 739 int err; 740 741 if (!capable(CAP_NET_ADMIN)) 742 return -EPERM; 743 744 err = kstrtoul(buf, 0, &state); 745 if (err) 746 return err; 747 748 if (state > 1 ) 749 return -EINVAL; 750 751 mutex_lock(&rfkill_global_mutex); 752 rfkill_set_block(rfkill, state); 753 mutex_unlock(&rfkill_global_mutex); 754 755 return count; 756 } 757 static DEVICE_ATTR_RW(soft); 758 759 static u8 user_state_from_blocked(unsigned long state) 760 { 761 if (state & RFKILL_BLOCK_HW) 762 return RFKILL_USER_STATE_HARD_BLOCKED; 763 if (state & RFKILL_BLOCK_SW) 764 return RFKILL_USER_STATE_SOFT_BLOCKED; 765 766 return RFKILL_USER_STATE_UNBLOCKED; 767 } 768 769 static ssize_t state_show(struct device *dev, struct device_attribute *attr, 770 char *buf) 771 { 772 struct rfkill *rfkill = to_rfkill(dev); 773 774 return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state)); 775 } 776 777 static ssize_t state_store(struct device *dev, struct device_attribute *attr, 778 const char *buf, size_t count) 779 { 780 struct rfkill *rfkill = to_rfkill(dev); 781 unsigned long state; 782 int err; 783 784 if (!capable(CAP_NET_ADMIN)) 785 return -EPERM; 786 787 err = kstrtoul(buf, 0, &state); 788 if (err) 789 return err; 790 791 if (state != RFKILL_USER_STATE_SOFT_BLOCKED && 792 state != RFKILL_USER_STATE_UNBLOCKED) 793 return -EINVAL; 794 795 mutex_lock(&rfkill_global_mutex); 796 rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED); 797 mutex_unlock(&rfkill_global_mutex); 798 799 return count; 800 } 801 static DEVICE_ATTR_RW(state); 802 803 static struct attribute *rfkill_dev_attrs[] = { 804 &dev_attr_name.attr, 805 &dev_attr_type.attr, 806 &dev_attr_index.attr, 807 &dev_attr_persistent.attr, 808 &dev_attr_state.attr, 809 &dev_attr_soft.attr, 810 &dev_attr_hard.attr, 811 NULL, 812 }; 813 ATTRIBUTE_GROUPS(rfkill_dev); 814 815 static void rfkill_release(struct device *dev) 816 { 817 struct rfkill *rfkill = to_rfkill(dev); 818 819 kfree(rfkill); 820 } 821 822 static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env) 823 { 824 struct rfkill *rfkill = to_rfkill(dev); 825 unsigned long flags; 826 u32 state; 827 int error; 828 829 error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name); 830 if (error) 831 return error; 832 error = add_uevent_var(env, "RFKILL_TYPE=%s", 833 rfkill_types[rfkill->type]); 834 if (error) 835 return error; 836 spin_lock_irqsave(&rfkill->lock, flags); 837 state = rfkill->state; 838 spin_unlock_irqrestore(&rfkill->lock, flags); 839 error = add_uevent_var(env, "RFKILL_STATE=%d", 840 user_state_from_blocked(state)); 841 return error; 842 } 843 844 void rfkill_pause_polling(struct rfkill *rfkill) 845 { 846 BUG_ON(!rfkill); 847 848 if (!rfkill->ops->poll) 849 return; 850 851 rfkill->polling_paused = true; 852 cancel_delayed_work_sync(&rfkill->poll_work); 853 } 854 EXPORT_SYMBOL(rfkill_pause_polling); 855 856 void rfkill_resume_polling(struct rfkill *rfkill) 857 { 858 BUG_ON(!rfkill); 859 860 if (!rfkill->ops->poll) 861 return; 862 863 rfkill->polling_paused = false; 864 865 if (rfkill->suspended) 866 return; 867 868 queue_delayed_work(system_power_efficient_wq, 869 &rfkill->poll_work, 0); 870 } 871 EXPORT_SYMBOL(rfkill_resume_polling); 872 873 #ifdef CONFIG_PM_SLEEP 874 static int rfkill_suspend(struct device *dev) 875 { 876 struct rfkill *rfkill = to_rfkill(dev); 877 878 rfkill->suspended = true; 879 cancel_delayed_work_sync(&rfkill->poll_work); 880 881 return 0; 882 } 883 884 static int rfkill_resume(struct device *dev) 885 { 886 struct rfkill *rfkill = to_rfkill(dev); 887 bool cur; 888 889 rfkill->suspended = false; 890 891 if (!rfkill->persistent) { 892 cur = !!(rfkill->state & RFKILL_BLOCK_SW); 893 rfkill_set_block(rfkill, cur); 894 } 895 896 if (rfkill->ops->poll && !rfkill->polling_paused) 897 queue_delayed_work(system_power_efficient_wq, 898 &rfkill->poll_work, 0); 899 900 return 0; 901 } 902 903 static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume); 904 #define RFKILL_PM_OPS (&rfkill_pm_ops) 905 #else 906 #define RFKILL_PM_OPS NULL 907 #endif 908 909 static struct class rfkill_class = { 910 .name = "rfkill", 911 .dev_release = rfkill_release, 912 .dev_groups = rfkill_dev_groups, 913 .dev_uevent = rfkill_dev_uevent, 914 .pm = RFKILL_PM_OPS, 915 }; 916 917 bool rfkill_blocked(struct rfkill *rfkill) 918 { 919 unsigned long flags; 920 u32 state; 921 922 spin_lock_irqsave(&rfkill->lock, flags); 923 state = rfkill->state; 924 spin_unlock_irqrestore(&rfkill->lock, flags); 925 926 return !!(state & RFKILL_BLOCK_ANY); 927 } 928 EXPORT_SYMBOL(rfkill_blocked); 929 930 931 struct rfkill * __must_check rfkill_alloc(const char *name, 932 struct device *parent, 933 const enum rfkill_type type, 934 const struct rfkill_ops *ops, 935 void *ops_data) 936 { 937 struct rfkill *rfkill; 938 struct device *dev; 939 940 if (WARN_ON(!ops)) 941 return NULL; 942 943 if (WARN_ON(!ops->set_block)) 944 return NULL; 945 946 if (WARN_ON(!name)) 947 return NULL; 948 949 if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES)) 950 return NULL; 951 952 rfkill = kzalloc(sizeof(*rfkill) + strlen(name) + 1, GFP_KERNEL); 953 if (!rfkill) 954 return NULL; 955 956 spin_lock_init(&rfkill->lock); 957 INIT_LIST_HEAD(&rfkill->node); 958 rfkill->type = type; 959 strcpy(rfkill->name, name); 960 rfkill->ops = ops; 961 rfkill->data = ops_data; 962 963 dev = &rfkill->dev; 964 dev->class = &rfkill_class; 965 dev->parent = parent; 966 device_initialize(dev); 967 968 return rfkill; 969 } 970 EXPORT_SYMBOL(rfkill_alloc); 971 972 static void rfkill_poll(struct work_struct *work) 973 { 974 struct rfkill *rfkill; 975 976 rfkill = container_of(work, struct rfkill, poll_work.work); 977 978 /* 979 * Poll hardware state -- driver will use one of the 980 * rfkill_set{,_hw,_sw}_state functions and use its 981 * return value to update the current status. 982 */ 983 rfkill->ops->poll(rfkill, rfkill->data); 984 985 queue_delayed_work(system_power_efficient_wq, 986 &rfkill->poll_work, 987 round_jiffies_relative(POLL_INTERVAL)); 988 } 989 990 static void rfkill_uevent_work(struct work_struct *work) 991 { 992 struct rfkill *rfkill; 993 994 rfkill = container_of(work, struct rfkill, uevent_work); 995 996 mutex_lock(&rfkill_global_mutex); 997 rfkill_event(rfkill); 998 mutex_unlock(&rfkill_global_mutex); 999 } 1000 1001 static void rfkill_sync_work(struct work_struct *work) 1002 { 1003 struct rfkill *rfkill; 1004 bool cur; 1005 1006 rfkill = container_of(work, struct rfkill, sync_work); 1007 1008 mutex_lock(&rfkill_global_mutex); 1009 cur = rfkill_global_states[rfkill->type].cur; 1010 rfkill_set_block(rfkill, cur); 1011 mutex_unlock(&rfkill_global_mutex); 1012 } 1013 1014 int __must_check rfkill_register(struct rfkill *rfkill) 1015 { 1016 static unsigned long rfkill_no; 1017 struct device *dev = &rfkill->dev; 1018 int error; 1019 1020 BUG_ON(!rfkill); 1021 1022 mutex_lock(&rfkill_global_mutex); 1023 1024 if (rfkill->registered) { 1025 error = -EALREADY; 1026 goto unlock; 1027 } 1028 1029 rfkill->idx = rfkill_no; 1030 dev_set_name(dev, "rfkill%lu", rfkill_no); 1031 rfkill_no++; 1032 1033 list_add_tail(&rfkill->node, &rfkill_list); 1034 1035 error = device_add(dev); 1036 if (error) 1037 goto remove; 1038 1039 error = rfkill_led_trigger_register(rfkill); 1040 if (error) 1041 goto devdel; 1042 1043 rfkill->registered = true; 1044 1045 INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll); 1046 INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work); 1047 INIT_WORK(&rfkill->sync_work, rfkill_sync_work); 1048 1049 if (rfkill->ops->poll) 1050 queue_delayed_work(system_power_efficient_wq, 1051 &rfkill->poll_work, 1052 round_jiffies_relative(POLL_INTERVAL)); 1053 1054 if (!rfkill->persistent || rfkill_epo_lock_active) { 1055 schedule_work(&rfkill->sync_work); 1056 } else { 1057 #ifdef CONFIG_RFKILL_INPUT 1058 bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW); 1059 1060 if (!atomic_read(&rfkill_input_disabled)) 1061 __rfkill_switch_all(rfkill->type, soft_blocked); 1062 #endif 1063 } 1064 1065 rfkill_global_led_trigger_event(); 1066 rfkill_send_events(rfkill, RFKILL_OP_ADD); 1067 1068 mutex_unlock(&rfkill_global_mutex); 1069 return 0; 1070 1071 devdel: 1072 device_del(&rfkill->dev); 1073 remove: 1074 list_del_init(&rfkill->node); 1075 unlock: 1076 mutex_unlock(&rfkill_global_mutex); 1077 return error; 1078 } 1079 EXPORT_SYMBOL(rfkill_register); 1080 1081 void rfkill_unregister(struct rfkill *rfkill) 1082 { 1083 BUG_ON(!rfkill); 1084 1085 if (rfkill->ops->poll) 1086 cancel_delayed_work_sync(&rfkill->poll_work); 1087 1088 cancel_work_sync(&rfkill->uevent_work); 1089 cancel_work_sync(&rfkill->sync_work); 1090 1091 rfkill->registered = false; 1092 1093 device_del(&rfkill->dev); 1094 1095 mutex_lock(&rfkill_global_mutex); 1096 rfkill_send_events(rfkill, RFKILL_OP_DEL); 1097 list_del_init(&rfkill->node); 1098 rfkill_global_led_trigger_event(); 1099 mutex_unlock(&rfkill_global_mutex); 1100 1101 rfkill_led_trigger_unregister(rfkill); 1102 } 1103 EXPORT_SYMBOL(rfkill_unregister); 1104 1105 void rfkill_destroy(struct rfkill *rfkill) 1106 { 1107 if (rfkill) 1108 put_device(&rfkill->dev); 1109 } 1110 EXPORT_SYMBOL(rfkill_destroy); 1111 1112 static int rfkill_fop_open(struct inode *inode, struct file *file) 1113 { 1114 struct rfkill_data *data; 1115 struct rfkill *rfkill; 1116 struct rfkill_int_event *ev, *tmp; 1117 1118 data = kzalloc(sizeof(*data), GFP_KERNEL); 1119 if (!data) 1120 return -ENOMEM; 1121 1122 INIT_LIST_HEAD(&data->events); 1123 mutex_init(&data->mtx); 1124 init_waitqueue_head(&data->read_wait); 1125 1126 mutex_lock(&rfkill_global_mutex); 1127 mutex_lock(&data->mtx); 1128 /* 1129 * start getting events from elsewhere but hold mtx to get 1130 * startup events added first 1131 */ 1132 1133 list_for_each_entry(rfkill, &rfkill_list, node) { 1134 ev = kzalloc(sizeof(*ev), GFP_KERNEL); 1135 if (!ev) 1136 goto free; 1137 rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD); 1138 list_add_tail(&ev->list, &data->events); 1139 } 1140 list_add(&data->list, &rfkill_fds); 1141 mutex_unlock(&data->mtx); 1142 mutex_unlock(&rfkill_global_mutex); 1143 1144 file->private_data = data; 1145 1146 return nonseekable_open(inode, file); 1147 1148 free: 1149 mutex_unlock(&data->mtx); 1150 mutex_unlock(&rfkill_global_mutex); 1151 mutex_destroy(&data->mtx); 1152 list_for_each_entry_safe(ev, tmp, &data->events, list) 1153 kfree(ev); 1154 kfree(data); 1155 return -ENOMEM; 1156 } 1157 1158 static __poll_t rfkill_fop_poll(struct file *file, poll_table *wait) 1159 { 1160 struct rfkill_data *data = file->private_data; 1161 __poll_t res = EPOLLOUT | EPOLLWRNORM; 1162 1163 poll_wait(file, &data->read_wait, wait); 1164 1165 mutex_lock(&data->mtx); 1166 if (!list_empty(&data->events)) 1167 res = EPOLLIN | EPOLLRDNORM; 1168 mutex_unlock(&data->mtx); 1169 1170 return res; 1171 } 1172 1173 static ssize_t rfkill_fop_read(struct file *file, char __user *buf, 1174 size_t count, loff_t *pos) 1175 { 1176 struct rfkill_data *data = file->private_data; 1177 struct rfkill_int_event *ev; 1178 unsigned long sz; 1179 int ret; 1180 1181 mutex_lock(&data->mtx); 1182 1183 while (list_empty(&data->events)) { 1184 if (file->f_flags & O_NONBLOCK) { 1185 ret = -EAGAIN; 1186 goto out; 1187 } 1188 mutex_unlock(&data->mtx); 1189 /* since we re-check and it just compares pointers, 1190 * using !list_empty() without locking isn't a problem 1191 */ 1192 ret = wait_event_interruptible(data->read_wait, 1193 !list_empty(&data->events)); 1194 mutex_lock(&data->mtx); 1195 1196 if (ret) 1197 goto out; 1198 } 1199 1200 ev = list_first_entry(&data->events, struct rfkill_int_event, 1201 list); 1202 1203 sz = min_t(unsigned long, sizeof(ev->ev), count); 1204 ret = sz; 1205 if (copy_to_user(buf, &ev->ev, sz)) 1206 ret = -EFAULT; 1207 1208 list_del(&ev->list); 1209 kfree(ev); 1210 out: 1211 mutex_unlock(&data->mtx); 1212 return ret; 1213 } 1214 1215 static ssize_t rfkill_fop_write(struct file *file, const char __user *buf, 1216 size_t count, loff_t *pos) 1217 { 1218 struct rfkill *rfkill; 1219 struct rfkill_event ev; 1220 int ret; 1221 1222 /* we don't need the 'hard' variable but accept it */ 1223 if (count < RFKILL_EVENT_SIZE_V1 - 1) 1224 return -EINVAL; 1225 1226 /* 1227 * Copy as much data as we can accept into our 'ev' buffer, 1228 * but tell userspace how much we've copied so it can determine 1229 * our API version even in a write() call, if it cares. 1230 */ 1231 count = min(count, sizeof(ev)); 1232 if (copy_from_user(&ev, buf, count)) 1233 return -EFAULT; 1234 1235 if (ev.type >= NUM_RFKILL_TYPES) 1236 return -EINVAL; 1237 1238 mutex_lock(&rfkill_global_mutex); 1239 1240 switch (ev.op) { 1241 case RFKILL_OP_CHANGE_ALL: 1242 rfkill_update_global_state(ev.type, ev.soft); 1243 list_for_each_entry(rfkill, &rfkill_list, node) 1244 if (rfkill->type == ev.type || 1245 ev.type == RFKILL_TYPE_ALL) 1246 rfkill_set_block(rfkill, ev.soft); 1247 ret = 0; 1248 break; 1249 case RFKILL_OP_CHANGE: 1250 list_for_each_entry(rfkill, &rfkill_list, node) 1251 if (rfkill->idx == ev.idx && 1252 (rfkill->type == ev.type || 1253 ev.type == RFKILL_TYPE_ALL)) 1254 rfkill_set_block(rfkill, ev.soft); 1255 ret = 0; 1256 break; 1257 default: 1258 ret = -EINVAL; 1259 break; 1260 } 1261 1262 mutex_unlock(&rfkill_global_mutex); 1263 1264 return ret ?: count; 1265 } 1266 1267 static int rfkill_fop_release(struct inode *inode, struct file *file) 1268 { 1269 struct rfkill_data *data = file->private_data; 1270 struct rfkill_int_event *ev, *tmp; 1271 1272 mutex_lock(&rfkill_global_mutex); 1273 list_del(&data->list); 1274 mutex_unlock(&rfkill_global_mutex); 1275 1276 mutex_destroy(&data->mtx); 1277 list_for_each_entry_safe(ev, tmp, &data->events, list) 1278 kfree(ev); 1279 1280 #ifdef CONFIG_RFKILL_INPUT 1281 if (data->input_handler) 1282 if (atomic_dec_return(&rfkill_input_disabled) == 0) 1283 printk(KERN_DEBUG "rfkill: input handler enabled\n"); 1284 #endif 1285 1286 kfree(data); 1287 1288 return 0; 1289 } 1290 1291 #ifdef CONFIG_RFKILL_INPUT 1292 static long rfkill_fop_ioctl(struct file *file, unsigned int cmd, 1293 unsigned long arg) 1294 { 1295 struct rfkill_data *data = file->private_data; 1296 1297 if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC) 1298 return -ENOSYS; 1299 1300 if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT) 1301 return -ENOSYS; 1302 1303 mutex_lock(&data->mtx); 1304 1305 if (!data->input_handler) { 1306 if (atomic_inc_return(&rfkill_input_disabled) == 1) 1307 printk(KERN_DEBUG "rfkill: input handler disabled\n"); 1308 data->input_handler = true; 1309 } 1310 1311 mutex_unlock(&data->mtx); 1312 1313 return 0; 1314 } 1315 #endif 1316 1317 static const struct file_operations rfkill_fops = { 1318 .owner = THIS_MODULE, 1319 .open = rfkill_fop_open, 1320 .read = rfkill_fop_read, 1321 .write = rfkill_fop_write, 1322 .poll = rfkill_fop_poll, 1323 .release = rfkill_fop_release, 1324 #ifdef CONFIG_RFKILL_INPUT 1325 .unlocked_ioctl = rfkill_fop_ioctl, 1326 .compat_ioctl = rfkill_fop_ioctl, 1327 #endif 1328 .llseek = no_llseek, 1329 }; 1330 1331 static struct miscdevice rfkill_miscdev = { 1332 .name = "rfkill", 1333 .fops = &rfkill_fops, 1334 .minor = MISC_DYNAMIC_MINOR, 1335 }; 1336 1337 static int __init rfkill_init(void) 1338 { 1339 int error; 1340 1341 rfkill_update_global_state(RFKILL_TYPE_ALL, !rfkill_default_state); 1342 1343 error = class_register(&rfkill_class); 1344 if (error) 1345 goto error_class; 1346 1347 error = misc_register(&rfkill_miscdev); 1348 if (error) 1349 goto error_misc; 1350 1351 error = rfkill_global_led_trigger_register(); 1352 if (error) 1353 goto error_led_trigger; 1354 1355 #ifdef CONFIG_RFKILL_INPUT 1356 error = rfkill_handler_init(); 1357 if (error) 1358 goto error_input; 1359 #endif 1360 1361 return 0; 1362 1363 #ifdef CONFIG_RFKILL_INPUT 1364 error_input: 1365 rfkill_global_led_trigger_unregister(); 1366 #endif 1367 error_led_trigger: 1368 misc_deregister(&rfkill_miscdev); 1369 error_misc: 1370 class_unregister(&rfkill_class); 1371 error_class: 1372 return error; 1373 } 1374 subsys_initcall(rfkill_init); 1375 1376 static void __exit rfkill_exit(void) 1377 { 1378 #ifdef CONFIG_RFKILL_INPUT 1379 rfkill_handler_exit(); 1380 #endif 1381 rfkill_global_led_trigger_unregister(); 1382 misc_deregister(&rfkill_miscdev); 1383 class_unregister(&rfkill_class); 1384 } 1385 module_exit(rfkill_exit); 1386