1 /* 2 * Copyright (C) 2006 - 2007 Ivo van Doorn 3 * Copyright (C) 2007 Dmitry Torokhov 4 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/init.h> 23 #include <linux/workqueue.h> 24 #include <linux/capability.h> 25 #include <linux/list.h> 26 #include <linux/mutex.h> 27 #include <linux/rfkill.h> 28 #include <linux/sched.h> 29 #include <linux/spinlock.h> 30 #include <linux/device.h> 31 #include <linux/miscdevice.h> 32 #include <linux/wait.h> 33 #include <linux/poll.h> 34 #include <linux/fs.h> 35 #include <linux/slab.h> 36 37 #include "rfkill.h" 38 39 #define POLL_INTERVAL (5 * HZ) 40 41 #define RFKILL_BLOCK_HW BIT(0) 42 #define RFKILL_BLOCK_SW BIT(1) 43 #define RFKILL_BLOCK_SW_PREV BIT(2) 44 #define RFKILL_BLOCK_ANY (RFKILL_BLOCK_HW |\ 45 RFKILL_BLOCK_SW |\ 46 RFKILL_BLOCK_SW_PREV) 47 #define RFKILL_BLOCK_SW_SETCALL BIT(31) 48 49 struct rfkill { 50 spinlock_t lock; 51 52 enum rfkill_type type; 53 54 unsigned long state; 55 56 u32 idx; 57 58 bool registered; 59 bool persistent; 60 bool polling_paused; 61 bool suspended; 62 63 const struct rfkill_ops *ops; 64 void *data; 65 66 #ifdef CONFIG_RFKILL_LEDS 67 struct led_trigger led_trigger; 68 const char *ledtrigname; 69 #endif 70 71 struct device dev; 72 struct list_head node; 73 74 struct delayed_work poll_work; 75 struct work_struct uevent_work; 76 struct work_struct sync_work; 77 char name[]; 78 }; 79 #define to_rfkill(d) container_of(d, struct rfkill, dev) 80 81 struct rfkill_int_event { 82 struct list_head list; 83 struct rfkill_event ev; 84 }; 85 86 struct rfkill_data { 87 struct list_head list; 88 struct list_head events; 89 struct mutex mtx; 90 wait_queue_head_t read_wait; 91 bool input_handler; 92 }; 93 94 95 MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>"); 96 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>"); 97 MODULE_DESCRIPTION("RF switch support"); 98 MODULE_LICENSE("GPL"); 99 100 101 /* 102 * The locking here should be made much smarter, we currently have 103 * a bit of a stupid situation because drivers might want to register 104 * the rfkill struct under their own lock, and take this lock during 105 * rfkill method calls -- which will cause an AB-BA deadlock situation. 106 * 107 * To fix that, we need to rework this code here to be mostly lock-free 108 * and only use the mutex for list manipulations, not to protect the 109 * various other global variables. Then we can avoid holding the mutex 110 * around driver operations, and all is happy. 111 */ 112 static LIST_HEAD(rfkill_list); /* list of registered rf switches */ 113 static DEFINE_MUTEX(rfkill_global_mutex); 114 static LIST_HEAD(rfkill_fds); /* list of open fds of /dev/rfkill */ 115 116 static unsigned int rfkill_default_state = 1; 117 module_param_named(default_state, rfkill_default_state, uint, 0444); 118 MODULE_PARM_DESC(default_state, 119 "Default initial state for all radio types, 0 = radio off"); 120 121 static struct { 122 bool cur, sav; 123 } rfkill_global_states[NUM_RFKILL_TYPES]; 124 125 static bool rfkill_epo_lock_active; 126 127 128 #ifdef CONFIG_RFKILL_LEDS 129 static void rfkill_led_trigger_event(struct rfkill *rfkill) 130 { 131 struct led_trigger *trigger; 132 133 if (!rfkill->registered) 134 return; 135 136 trigger = &rfkill->led_trigger; 137 138 if (rfkill->state & RFKILL_BLOCK_ANY) 139 led_trigger_event(trigger, LED_OFF); 140 else 141 led_trigger_event(trigger, LED_FULL); 142 } 143 144 static void rfkill_led_trigger_activate(struct led_classdev *led) 145 { 146 struct rfkill *rfkill; 147 148 rfkill = container_of(led->trigger, struct rfkill, led_trigger); 149 150 rfkill_led_trigger_event(rfkill); 151 } 152 153 const char *rfkill_get_led_trigger_name(struct rfkill *rfkill) 154 { 155 return rfkill->led_trigger.name; 156 } 157 EXPORT_SYMBOL(rfkill_get_led_trigger_name); 158 159 void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name) 160 { 161 BUG_ON(!rfkill); 162 163 rfkill->ledtrigname = name; 164 } 165 EXPORT_SYMBOL(rfkill_set_led_trigger_name); 166 167 static int rfkill_led_trigger_register(struct rfkill *rfkill) 168 { 169 rfkill->led_trigger.name = rfkill->ledtrigname 170 ? : dev_name(&rfkill->dev); 171 rfkill->led_trigger.activate = rfkill_led_trigger_activate; 172 return led_trigger_register(&rfkill->led_trigger); 173 } 174 175 static void rfkill_led_trigger_unregister(struct rfkill *rfkill) 176 { 177 led_trigger_unregister(&rfkill->led_trigger); 178 } 179 180 static struct led_trigger rfkill_any_led_trigger; 181 static struct led_trigger rfkill_none_led_trigger; 182 static struct work_struct rfkill_global_led_trigger_work; 183 184 static void rfkill_global_led_trigger_worker(struct work_struct *work) 185 { 186 enum led_brightness brightness = LED_OFF; 187 struct rfkill *rfkill; 188 189 mutex_lock(&rfkill_global_mutex); 190 list_for_each_entry(rfkill, &rfkill_list, node) { 191 if (!(rfkill->state & RFKILL_BLOCK_ANY)) { 192 brightness = LED_FULL; 193 break; 194 } 195 } 196 mutex_unlock(&rfkill_global_mutex); 197 198 led_trigger_event(&rfkill_any_led_trigger, brightness); 199 led_trigger_event(&rfkill_none_led_trigger, 200 brightness == LED_OFF ? LED_FULL : LED_OFF); 201 } 202 203 static void rfkill_global_led_trigger_event(void) 204 { 205 schedule_work(&rfkill_global_led_trigger_work); 206 } 207 208 static int rfkill_global_led_trigger_register(void) 209 { 210 int ret; 211 212 INIT_WORK(&rfkill_global_led_trigger_work, 213 rfkill_global_led_trigger_worker); 214 215 rfkill_any_led_trigger.name = "rfkill-any"; 216 ret = led_trigger_register(&rfkill_any_led_trigger); 217 if (ret) 218 return ret; 219 220 rfkill_none_led_trigger.name = "rfkill-none"; 221 ret = led_trigger_register(&rfkill_none_led_trigger); 222 if (ret) 223 led_trigger_unregister(&rfkill_any_led_trigger); 224 else 225 /* Delay activation until all global triggers are registered */ 226 rfkill_global_led_trigger_event(); 227 228 return ret; 229 } 230 231 static void rfkill_global_led_trigger_unregister(void) 232 { 233 led_trigger_unregister(&rfkill_none_led_trigger); 234 led_trigger_unregister(&rfkill_any_led_trigger); 235 cancel_work_sync(&rfkill_global_led_trigger_work); 236 } 237 #else 238 static void rfkill_led_trigger_event(struct rfkill *rfkill) 239 { 240 } 241 242 static inline int rfkill_led_trigger_register(struct rfkill *rfkill) 243 { 244 return 0; 245 } 246 247 static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill) 248 { 249 } 250 251 static void rfkill_global_led_trigger_event(void) 252 { 253 } 254 255 static int rfkill_global_led_trigger_register(void) 256 { 257 return 0; 258 } 259 260 static void rfkill_global_led_trigger_unregister(void) 261 { 262 } 263 #endif /* CONFIG_RFKILL_LEDS */ 264 265 static void rfkill_fill_event(struct rfkill_event *ev, struct rfkill *rfkill, 266 enum rfkill_operation op) 267 { 268 unsigned long flags; 269 270 ev->idx = rfkill->idx; 271 ev->type = rfkill->type; 272 ev->op = op; 273 274 spin_lock_irqsave(&rfkill->lock, flags); 275 ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW); 276 ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW | 277 RFKILL_BLOCK_SW_PREV)); 278 spin_unlock_irqrestore(&rfkill->lock, flags); 279 } 280 281 static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op) 282 { 283 struct rfkill_data *data; 284 struct rfkill_int_event *ev; 285 286 list_for_each_entry(data, &rfkill_fds, list) { 287 ev = kzalloc(sizeof(*ev), GFP_KERNEL); 288 if (!ev) 289 continue; 290 rfkill_fill_event(&ev->ev, rfkill, op); 291 mutex_lock(&data->mtx); 292 list_add_tail(&ev->list, &data->events); 293 mutex_unlock(&data->mtx); 294 wake_up_interruptible(&data->read_wait); 295 } 296 } 297 298 static void rfkill_event(struct rfkill *rfkill) 299 { 300 if (!rfkill->registered) 301 return; 302 303 kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE); 304 305 /* also send event to /dev/rfkill */ 306 rfkill_send_events(rfkill, RFKILL_OP_CHANGE); 307 } 308 309 /** 310 * rfkill_set_block - wrapper for set_block method 311 * 312 * @rfkill: the rfkill struct to use 313 * @blocked: the new software state 314 * 315 * Calls the set_block method (when applicable) and handles notifications 316 * etc. as well. 317 */ 318 static void rfkill_set_block(struct rfkill *rfkill, bool blocked) 319 { 320 unsigned long flags; 321 bool prev, curr; 322 int err; 323 324 if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP)) 325 return; 326 327 /* 328 * Some platforms (...!) generate input events which affect the 329 * _hard_ kill state -- whenever something tries to change the 330 * current software state query the hardware state too. 331 */ 332 if (rfkill->ops->query) 333 rfkill->ops->query(rfkill, rfkill->data); 334 335 spin_lock_irqsave(&rfkill->lock, flags); 336 prev = rfkill->state & RFKILL_BLOCK_SW; 337 338 if (prev) 339 rfkill->state |= RFKILL_BLOCK_SW_PREV; 340 else 341 rfkill->state &= ~RFKILL_BLOCK_SW_PREV; 342 343 if (blocked) 344 rfkill->state |= RFKILL_BLOCK_SW; 345 else 346 rfkill->state &= ~RFKILL_BLOCK_SW; 347 348 rfkill->state |= RFKILL_BLOCK_SW_SETCALL; 349 spin_unlock_irqrestore(&rfkill->lock, flags); 350 351 err = rfkill->ops->set_block(rfkill->data, blocked); 352 353 spin_lock_irqsave(&rfkill->lock, flags); 354 if (err) { 355 /* 356 * Failed -- reset status to _PREV, which may be different 357 * from what we have set _PREV to earlier in this function 358 * if rfkill_set_sw_state was invoked. 359 */ 360 if (rfkill->state & RFKILL_BLOCK_SW_PREV) 361 rfkill->state |= RFKILL_BLOCK_SW; 362 else 363 rfkill->state &= ~RFKILL_BLOCK_SW; 364 } 365 rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL; 366 rfkill->state &= ~RFKILL_BLOCK_SW_PREV; 367 curr = rfkill->state & RFKILL_BLOCK_SW; 368 spin_unlock_irqrestore(&rfkill->lock, flags); 369 370 rfkill_led_trigger_event(rfkill); 371 rfkill_global_led_trigger_event(); 372 373 if (prev != curr) 374 rfkill_event(rfkill); 375 } 376 377 static void rfkill_update_global_state(enum rfkill_type type, bool blocked) 378 { 379 int i; 380 381 if (type != RFKILL_TYPE_ALL) { 382 rfkill_global_states[type].cur = blocked; 383 return; 384 } 385 386 for (i = 0; i < NUM_RFKILL_TYPES; i++) 387 rfkill_global_states[i].cur = blocked; 388 } 389 390 #ifdef CONFIG_RFKILL_INPUT 391 static atomic_t rfkill_input_disabled = ATOMIC_INIT(0); 392 393 /** 394 * __rfkill_switch_all - Toggle state of all switches of given type 395 * @type: type of interfaces to be affected 396 * @blocked: the new state 397 * 398 * This function sets the state of all switches of given type, 399 * unless a specific switch is suspended. 400 * 401 * Caller must have acquired rfkill_global_mutex. 402 */ 403 static void __rfkill_switch_all(const enum rfkill_type type, bool blocked) 404 { 405 struct rfkill *rfkill; 406 407 rfkill_update_global_state(type, blocked); 408 list_for_each_entry(rfkill, &rfkill_list, node) { 409 if (rfkill->type != type && type != RFKILL_TYPE_ALL) 410 continue; 411 412 rfkill_set_block(rfkill, blocked); 413 } 414 } 415 416 /** 417 * rfkill_switch_all - Toggle state of all switches of given type 418 * @type: type of interfaces to be affected 419 * @blocked: the new state 420 * 421 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state). 422 * Please refer to __rfkill_switch_all() for details. 423 * 424 * Does nothing if the EPO lock is active. 425 */ 426 void rfkill_switch_all(enum rfkill_type type, bool blocked) 427 { 428 if (atomic_read(&rfkill_input_disabled)) 429 return; 430 431 mutex_lock(&rfkill_global_mutex); 432 433 if (!rfkill_epo_lock_active) 434 __rfkill_switch_all(type, blocked); 435 436 mutex_unlock(&rfkill_global_mutex); 437 } 438 439 /** 440 * rfkill_epo - emergency power off all transmitters 441 * 442 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED, 443 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex. 444 * 445 * The global state before the EPO is saved and can be restored later 446 * using rfkill_restore_states(). 447 */ 448 void rfkill_epo(void) 449 { 450 struct rfkill *rfkill; 451 int i; 452 453 if (atomic_read(&rfkill_input_disabled)) 454 return; 455 456 mutex_lock(&rfkill_global_mutex); 457 458 rfkill_epo_lock_active = true; 459 list_for_each_entry(rfkill, &rfkill_list, node) 460 rfkill_set_block(rfkill, true); 461 462 for (i = 0; i < NUM_RFKILL_TYPES; i++) { 463 rfkill_global_states[i].sav = rfkill_global_states[i].cur; 464 rfkill_global_states[i].cur = true; 465 } 466 467 mutex_unlock(&rfkill_global_mutex); 468 } 469 470 /** 471 * rfkill_restore_states - restore global states 472 * 473 * Restore (and sync switches to) the global state from the 474 * states in rfkill_default_states. This can undo the effects of 475 * a call to rfkill_epo(). 476 */ 477 void rfkill_restore_states(void) 478 { 479 int i; 480 481 if (atomic_read(&rfkill_input_disabled)) 482 return; 483 484 mutex_lock(&rfkill_global_mutex); 485 486 rfkill_epo_lock_active = false; 487 for (i = 0; i < NUM_RFKILL_TYPES; i++) 488 __rfkill_switch_all(i, rfkill_global_states[i].sav); 489 mutex_unlock(&rfkill_global_mutex); 490 } 491 492 /** 493 * rfkill_remove_epo_lock - unlock state changes 494 * 495 * Used by rfkill-input manually unlock state changes, when 496 * the EPO switch is deactivated. 497 */ 498 void rfkill_remove_epo_lock(void) 499 { 500 if (atomic_read(&rfkill_input_disabled)) 501 return; 502 503 mutex_lock(&rfkill_global_mutex); 504 rfkill_epo_lock_active = false; 505 mutex_unlock(&rfkill_global_mutex); 506 } 507 508 /** 509 * rfkill_is_epo_lock_active - returns true EPO is active 510 * 511 * Returns 0 (false) if there is NOT an active EPO contidion, 512 * and 1 (true) if there is an active EPO contition, which 513 * locks all radios in one of the BLOCKED states. 514 * 515 * Can be called in atomic context. 516 */ 517 bool rfkill_is_epo_lock_active(void) 518 { 519 return rfkill_epo_lock_active; 520 } 521 522 /** 523 * rfkill_get_global_sw_state - returns global state for a type 524 * @type: the type to get the global state of 525 * 526 * Returns the current global state for a given wireless 527 * device type. 528 */ 529 bool rfkill_get_global_sw_state(const enum rfkill_type type) 530 { 531 return rfkill_global_states[type].cur; 532 } 533 #endif 534 535 bool rfkill_set_hw_state(struct rfkill *rfkill, bool blocked) 536 { 537 unsigned long flags; 538 bool ret, prev; 539 540 BUG_ON(!rfkill); 541 542 spin_lock_irqsave(&rfkill->lock, flags); 543 prev = !!(rfkill->state & RFKILL_BLOCK_HW); 544 if (blocked) 545 rfkill->state |= RFKILL_BLOCK_HW; 546 else 547 rfkill->state &= ~RFKILL_BLOCK_HW; 548 ret = !!(rfkill->state & RFKILL_BLOCK_ANY); 549 spin_unlock_irqrestore(&rfkill->lock, flags); 550 551 rfkill_led_trigger_event(rfkill); 552 rfkill_global_led_trigger_event(); 553 554 if (rfkill->registered && prev != blocked) 555 schedule_work(&rfkill->uevent_work); 556 557 return ret; 558 } 559 EXPORT_SYMBOL(rfkill_set_hw_state); 560 561 static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked) 562 { 563 u32 bit = RFKILL_BLOCK_SW; 564 565 /* if in a ops->set_block right now, use other bit */ 566 if (rfkill->state & RFKILL_BLOCK_SW_SETCALL) 567 bit = RFKILL_BLOCK_SW_PREV; 568 569 if (blocked) 570 rfkill->state |= bit; 571 else 572 rfkill->state &= ~bit; 573 } 574 575 bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked) 576 { 577 unsigned long flags; 578 bool prev, hwblock; 579 580 BUG_ON(!rfkill); 581 582 spin_lock_irqsave(&rfkill->lock, flags); 583 prev = !!(rfkill->state & RFKILL_BLOCK_SW); 584 __rfkill_set_sw_state(rfkill, blocked); 585 hwblock = !!(rfkill->state & RFKILL_BLOCK_HW); 586 blocked = blocked || hwblock; 587 spin_unlock_irqrestore(&rfkill->lock, flags); 588 589 if (!rfkill->registered) 590 return blocked; 591 592 if (prev != blocked && !hwblock) 593 schedule_work(&rfkill->uevent_work); 594 595 rfkill_led_trigger_event(rfkill); 596 rfkill_global_led_trigger_event(); 597 598 return blocked; 599 } 600 EXPORT_SYMBOL(rfkill_set_sw_state); 601 602 void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked) 603 { 604 unsigned long flags; 605 606 BUG_ON(!rfkill); 607 BUG_ON(rfkill->registered); 608 609 spin_lock_irqsave(&rfkill->lock, flags); 610 __rfkill_set_sw_state(rfkill, blocked); 611 rfkill->persistent = true; 612 spin_unlock_irqrestore(&rfkill->lock, flags); 613 } 614 EXPORT_SYMBOL(rfkill_init_sw_state); 615 616 void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw) 617 { 618 unsigned long flags; 619 bool swprev, hwprev; 620 621 BUG_ON(!rfkill); 622 623 spin_lock_irqsave(&rfkill->lock, flags); 624 625 /* 626 * No need to care about prev/setblock ... this is for uevent only 627 * and that will get triggered by rfkill_set_block anyway. 628 */ 629 swprev = !!(rfkill->state & RFKILL_BLOCK_SW); 630 hwprev = !!(rfkill->state & RFKILL_BLOCK_HW); 631 __rfkill_set_sw_state(rfkill, sw); 632 if (hw) 633 rfkill->state |= RFKILL_BLOCK_HW; 634 else 635 rfkill->state &= ~RFKILL_BLOCK_HW; 636 637 spin_unlock_irqrestore(&rfkill->lock, flags); 638 639 if (!rfkill->registered) { 640 rfkill->persistent = true; 641 } else { 642 if (swprev != sw || hwprev != hw) 643 schedule_work(&rfkill->uevent_work); 644 645 rfkill_led_trigger_event(rfkill); 646 rfkill_global_led_trigger_event(); 647 } 648 } 649 EXPORT_SYMBOL(rfkill_set_states); 650 651 static const char * const rfkill_types[] = { 652 NULL, /* RFKILL_TYPE_ALL */ 653 "wlan", 654 "bluetooth", 655 "ultrawideband", 656 "wimax", 657 "wwan", 658 "gps", 659 "fm", 660 "nfc", 661 }; 662 663 enum rfkill_type rfkill_find_type(const char *name) 664 { 665 int i; 666 667 BUILD_BUG_ON(ARRAY_SIZE(rfkill_types) != NUM_RFKILL_TYPES); 668 669 if (!name) 670 return RFKILL_TYPE_ALL; 671 672 for (i = 1; i < NUM_RFKILL_TYPES; i++) 673 if (!strcmp(name, rfkill_types[i])) 674 return i; 675 return RFKILL_TYPE_ALL; 676 } 677 EXPORT_SYMBOL(rfkill_find_type); 678 679 static ssize_t name_show(struct device *dev, struct device_attribute *attr, 680 char *buf) 681 { 682 struct rfkill *rfkill = to_rfkill(dev); 683 684 return sprintf(buf, "%s\n", rfkill->name); 685 } 686 static DEVICE_ATTR_RO(name); 687 688 static ssize_t type_show(struct device *dev, struct device_attribute *attr, 689 char *buf) 690 { 691 struct rfkill *rfkill = to_rfkill(dev); 692 693 return sprintf(buf, "%s\n", rfkill_types[rfkill->type]); 694 } 695 static DEVICE_ATTR_RO(type); 696 697 static ssize_t index_show(struct device *dev, struct device_attribute *attr, 698 char *buf) 699 { 700 struct rfkill *rfkill = to_rfkill(dev); 701 702 return sprintf(buf, "%d\n", rfkill->idx); 703 } 704 static DEVICE_ATTR_RO(index); 705 706 static ssize_t persistent_show(struct device *dev, 707 struct device_attribute *attr, char *buf) 708 { 709 struct rfkill *rfkill = to_rfkill(dev); 710 711 return sprintf(buf, "%d\n", rfkill->persistent); 712 } 713 static DEVICE_ATTR_RO(persistent); 714 715 static ssize_t hard_show(struct device *dev, struct device_attribute *attr, 716 char *buf) 717 { 718 struct rfkill *rfkill = to_rfkill(dev); 719 720 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 ); 721 } 722 static DEVICE_ATTR_RO(hard); 723 724 static ssize_t soft_show(struct device *dev, struct device_attribute *attr, 725 char *buf) 726 { 727 struct rfkill *rfkill = to_rfkill(dev); 728 729 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 ); 730 } 731 732 static ssize_t soft_store(struct device *dev, struct device_attribute *attr, 733 const char *buf, size_t count) 734 { 735 struct rfkill *rfkill = to_rfkill(dev); 736 unsigned long state; 737 int err; 738 739 if (!capable(CAP_NET_ADMIN)) 740 return -EPERM; 741 742 err = kstrtoul(buf, 0, &state); 743 if (err) 744 return err; 745 746 if (state > 1 ) 747 return -EINVAL; 748 749 mutex_lock(&rfkill_global_mutex); 750 rfkill_set_block(rfkill, state); 751 mutex_unlock(&rfkill_global_mutex); 752 753 return count; 754 } 755 static DEVICE_ATTR_RW(soft); 756 757 static u8 user_state_from_blocked(unsigned long state) 758 { 759 if (state & RFKILL_BLOCK_HW) 760 return RFKILL_USER_STATE_HARD_BLOCKED; 761 if (state & RFKILL_BLOCK_SW) 762 return RFKILL_USER_STATE_SOFT_BLOCKED; 763 764 return RFKILL_USER_STATE_UNBLOCKED; 765 } 766 767 static ssize_t state_show(struct device *dev, struct device_attribute *attr, 768 char *buf) 769 { 770 struct rfkill *rfkill = to_rfkill(dev); 771 772 return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state)); 773 } 774 775 static ssize_t state_store(struct device *dev, struct device_attribute *attr, 776 const char *buf, size_t count) 777 { 778 struct rfkill *rfkill = to_rfkill(dev); 779 unsigned long state; 780 int err; 781 782 if (!capable(CAP_NET_ADMIN)) 783 return -EPERM; 784 785 err = kstrtoul(buf, 0, &state); 786 if (err) 787 return err; 788 789 if (state != RFKILL_USER_STATE_SOFT_BLOCKED && 790 state != RFKILL_USER_STATE_UNBLOCKED) 791 return -EINVAL; 792 793 mutex_lock(&rfkill_global_mutex); 794 rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED); 795 mutex_unlock(&rfkill_global_mutex); 796 797 return count; 798 } 799 static DEVICE_ATTR_RW(state); 800 801 static struct attribute *rfkill_dev_attrs[] = { 802 &dev_attr_name.attr, 803 &dev_attr_type.attr, 804 &dev_attr_index.attr, 805 &dev_attr_persistent.attr, 806 &dev_attr_state.attr, 807 &dev_attr_soft.attr, 808 &dev_attr_hard.attr, 809 NULL, 810 }; 811 ATTRIBUTE_GROUPS(rfkill_dev); 812 813 static void rfkill_release(struct device *dev) 814 { 815 struct rfkill *rfkill = to_rfkill(dev); 816 817 kfree(rfkill); 818 } 819 820 static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env) 821 { 822 struct rfkill *rfkill = to_rfkill(dev); 823 unsigned long flags; 824 u32 state; 825 int error; 826 827 error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name); 828 if (error) 829 return error; 830 error = add_uevent_var(env, "RFKILL_TYPE=%s", 831 rfkill_types[rfkill->type]); 832 if (error) 833 return error; 834 spin_lock_irqsave(&rfkill->lock, flags); 835 state = rfkill->state; 836 spin_unlock_irqrestore(&rfkill->lock, flags); 837 error = add_uevent_var(env, "RFKILL_STATE=%d", 838 user_state_from_blocked(state)); 839 return error; 840 } 841 842 void rfkill_pause_polling(struct rfkill *rfkill) 843 { 844 BUG_ON(!rfkill); 845 846 if (!rfkill->ops->poll) 847 return; 848 849 rfkill->polling_paused = true; 850 cancel_delayed_work_sync(&rfkill->poll_work); 851 } 852 EXPORT_SYMBOL(rfkill_pause_polling); 853 854 void rfkill_resume_polling(struct rfkill *rfkill) 855 { 856 BUG_ON(!rfkill); 857 858 if (!rfkill->ops->poll) 859 return; 860 861 rfkill->polling_paused = false; 862 863 if (rfkill->suspended) 864 return; 865 866 queue_delayed_work(system_power_efficient_wq, 867 &rfkill->poll_work, 0); 868 } 869 EXPORT_SYMBOL(rfkill_resume_polling); 870 871 #ifdef CONFIG_PM_SLEEP 872 static int rfkill_suspend(struct device *dev) 873 { 874 struct rfkill *rfkill = to_rfkill(dev); 875 876 rfkill->suspended = true; 877 cancel_delayed_work_sync(&rfkill->poll_work); 878 879 return 0; 880 } 881 882 static int rfkill_resume(struct device *dev) 883 { 884 struct rfkill *rfkill = to_rfkill(dev); 885 bool cur; 886 887 rfkill->suspended = false; 888 889 if (!rfkill->persistent) { 890 cur = !!(rfkill->state & RFKILL_BLOCK_SW); 891 rfkill_set_block(rfkill, cur); 892 } 893 894 if (rfkill->ops->poll && !rfkill->polling_paused) 895 queue_delayed_work(system_power_efficient_wq, 896 &rfkill->poll_work, 0); 897 898 return 0; 899 } 900 901 static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume); 902 #define RFKILL_PM_OPS (&rfkill_pm_ops) 903 #else 904 #define RFKILL_PM_OPS NULL 905 #endif 906 907 static struct class rfkill_class = { 908 .name = "rfkill", 909 .dev_release = rfkill_release, 910 .dev_groups = rfkill_dev_groups, 911 .dev_uevent = rfkill_dev_uevent, 912 .pm = RFKILL_PM_OPS, 913 }; 914 915 bool rfkill_blocked(struct rfkill *rfkill) 916 { 917 unsigned long flags; 918 u32 state; 919 920 spin_lock_irqsave(&rfkill->lock, flags); 921 state = rfkill->state; 922 spin_unlock_irqrestore(&rfkill->lock, flags); 923 924 return !!(state & RFKILL_BLOCK_ANY); 925 } 926 EXPORT_SYMBOL(rfkill_blocked); 927 928 929 struct rfkill * __must_check rfkill_alloc(const char *name, 930 struct device *parent, 931 const enum rfkill_type type, 932 const struct rfkill_ops *ops, 933 void *ops_data) 934 { 935 struct rfkill *rfkill; 936 struct device *dev; 937 938 if (WARN_ON(!ops)) 939 return NULL; 940 941 if (WARN_ON(!ops->set_block)) 942 return NULL; 943 944 if (WARN_ON(!name)) 945 return NULL; 946 947 if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES)) 948 return NULL; 949 950 rfkill = kzalloc(sizeof(*rfkill) + strlen(name) + 1, GFP_KERNEL); 951 if (!rfkill) 952 return NULL; 953 954 spin_lock_init(&rfkill->lock); 955 INIT_LIST_HEAD(&rfkill->node); 956 rfkill->type = type; 957 strcpy(rfkill->name, name); 958 rfkill->ops = ops; 959 rfkill->data = ops_data; 960 961 dev = &rfkill->dev; 962 dev->class = &rfkill_class; 963 dev->parent = parent; 964 device_initialize(dev); 965 966 return rfkill; 967 } 968 EXPORT_SYMBOL(rfkill_alloc); 969 970 static void rfkill_poll(struct work_struct *work) 971 { 972 struct rfkill *rfkill; 973 974 rfkill = container_of(work, struct rfkill, poll_work.work); 975 976 /* 977 * Poll hardware state -- driver will use one of the 978 * rfkill_set{,_hw,_sw}_state functions and use its 979 * return value to update the current status. 980 */ 981 rfkill->ops->poll(rfkill, rfkill->data); 982 983 queue_delayed_work(system_power_efficient_wq, 984 &rfkill->poll_work, 985 round_jiffies_relative(POLL_INTERVAL)); 986 } 987 988 static void rfkill_uevent_work(struct work_struct *work) 989 { 990 struct rfkill *rfkill; 991 992 rfkill = container_of(work, struct rfkill, uevent_work); 993 994 mutex_lock(&rfkill_global_mutex); 995 rfkill_event(rfkill); 996 mutex_unlock(&rfkill_global_mutex); 997 } 998 999 static void rfkill_sync_work(struct work_struct *work) 1000 { 1001 struct rfkill *rfkill; 1002 bool cur; 1003 1004 rfkill = container_of(work, struct rfkill, sync_work); 1005 1006 mutex_lock(&rfkill_global_mutex); 1007 cur = rfkill_global_states[rfkill->type].cur; 1008 rfkill_set_block(rfkill, cur); 1009 mutex_unlock(&rfkill_global_mutex); 1010 } 1011 1012 int __must_check rfkill_register(struct rfkill *rfkill) 1013 { 1014 static unsigned long rfkill_no; 1015 struct device *dev = &rfkill->dev; 1016 int error; 1017 1018 BUG_ON(!rfkill); 1019 1020 mutex_lock(&rfkill_global_mutex); 1021 1022 if (rfkill->registered) { 1023 error = -EALREADY; 1024 goto unlock; 1025 } 1026 1027 rfkill->idx = rfkill_no; 1028 dev_set_name(dev, "rfkill%lu", rfkill_no); 1029 rfkill_no++; 1030 1031 list_add_tail(&rfkill->node, &rfkill_list); 1032 1033 error = device_add(dev); 1034 if (error) 1035 goto remove; 1036 1037 error = rfkill_led_trigger_register(rfkill); 1038 if (error) 1039 goto devdel; 1040 1041 rfkill->registered = true; 1042 1043 INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll); 1044 INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work); 1045 INIT_WORK(&rfkill->sync_work, rfkill_sync_work); 1046 1047 if (rfkill->ops->poll) 1048 queue_delayed_work(system_power_efficient_wq, 1049 &rfkill->poll_work, 1050 round_jiffies_relative(POLL_INTERVAL)); 1051 1052 if (!rfkill->persistent || rfkill_epo_lock_active) { 1053 schedule_work(&rfkill->sync_work); 1054 } else { 1055 #ifdef CONFIG_RFKILL_INPUT 1056 bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW); 1057 1058 if (!atomic_read(&rfkill_input_disabled)) 1059 __rfkill_switch_all(rfkill->type, soft_blocked); 1060 #endif 1061 } 1062 1063 rfkill_global_led_trigger_event(); 1064 rfkill_send_events(rfkill, RFKILL_OP_ADD); 1065 1066 mutex_unlock(&rfkill_global_mutex); 1067 return 0; 1068 1069 devdel: 1070 device_del(&rfkill->dev); 1071 remove: 1072 list_del_init(&rfkill->node); 1073 unlock: 1074 mutex_unlock(&rfkill_global_mutex); 1075 return error; 1076 } 1077 EXPORT_SYMBOL(rfkill_register); 1078 1079 void rfkill_unregister(struct rfkill *rfkill) 1080 { 1081 BUG_ON(!rfkill); 1082 1083 if (rfkill->ops->poll) 1084 cancel_delayed_work_sync(&rfkill->poll_work); 1085 1086 cancel_work_sync(&rfkill->uevent_work); 1087 cancel_work_sync(&rfkill->sync_work); 1088 1089 rfkill->registered = false; 1090 1091 device_del(&rfkill->dev); 1092 1093 mutex_lock(&rfkill_global_mutex); 1094 rfkill_send_events(rfkill, RFKILL_OP_DEL); 1095 list_del_init(&rfkill->node); 1096 rfkill_global_led_trigger_event(); 1097 mutex_unlock(&rfkill_global_mutex); 1098 1099 rfkill_led_trigger_unregister(rfkill); 1100 } 1101 EXPORT_SYMBOL(rfkill_unregister); 1102 1103 void rfkill_destroy(struct rfkill *rfkill) 1104 { 1105 if (rfkill) 1106 put_device(&rfkill->dev); 1107 } 1108 EXPORT_SYMBOL(rfkill_destroy); 1109 1110 static int rfkill_fop_open(struct inode *inode, struct file *file) 1111 { 1112 struct rfkill_data *data; 1113 struct rfkill *rfkill; 1114 struct rfkill_int_event *ev, *tmp; 1115 1116 data = kzalloc(sizeof(*data), GFP_KERNEL); 1117 if (!data) 1118 return -ENOMEM; 1119 1120 INIT_LIST_HEAD(&data->events); 1121 mutex_init(&data->mtx); 1122 init_waitqueue_head(&data->read_wait); 1123 1124 mutex_lock(&rfkill_global_mutex); 1125 mutex_lock(&data->mtx); 1126 /* 1127 * start getting events from elsewhere but hold mtx to get 1128 * startup events added first 1129 */ 1130 1131 list_for_each_entry(rfkill, &rfkill_list, node) { 1132 ev = kzalloc(sizeof(*ev), GFP_KERNEL); 1133 if (!ev) 1134 goto free; 1135 rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD); 1136 list_add_tail(&ev->list, &data->events); 1137 } 1138 list_add(&data->list, &rfkill_fds); 1139 mutex_unlock(&data->mtx); 1140 mutex_unlock(&rfkill_global_mutex); 1141 1142 file->private_data = data; 1143 1144 return nonseekable_open(inode, file); 1145 1146 free: 1147 mutex_unlock(&data->mtx); 1148 mutex_unlock(&rfkill_global_mutex); 1149 mutex_destroy(&data->mtx); 1150 list_for_each_entry_safe(ev, tmp, &data->events, list) 1151 kfree(ev); 1152 kfree(data); 1153 return -ENOMEM; 1154 } 1155 1156 static __poll_t rfkill_fop_poll(struct file *file, poll_table *wait) 1157 { 1158 struct rfkill_data *data = file->private_data; 1159 __poll_t res = EPOLLOUT | EPOLLWRNORM; 1160 1161 poll_wait(file, &data->read_wait, wait); 1162 1163 mutex_lock(&data->mtx); 1164 if (!list_empty(&data->events)) 1165 res = EPOLLIN | EPOLLRDNORM; 1166 mutex_unlock(&data->mtx); 1167 1168 return res; 1169 } 1170 1171 static ssize_t rfkill_fop_read(struct file *file, char __user *buf, 1172 size_t count, loff_t *pos) 1173 { 1174 struct rfkill_data *data = file->private_data; 1175 struct rfkill_int_event *ev; 1176 unsigned long sz; 1177 int ret; 1178 1179 mutex_lock(&data->mtx); 1180 1181 while (list_empty(&data->events)) { 1182 if (file->f_flags & O_NONBLOCK) { 1183 ret = -EAGAIN; 1184 goto out; 1185 } 1186 mutex_unlock(&data->mtx); 1187 /* since we re-check and it just compares pointers, 1188 * using !list_empty() without locking isn't a problem 1189 */ 1190 ret = wait_event_interruptible(data->read_wait, 1191 !list_empty(&data->events)); 1192 mutex_lock(&data->mtx); 1193 1194 if (ret) 1195 goto out; 1196 } 1197 1198 ev = list_first_entry(&data->events, struct rfkill_int_event, 1199 list); 1200 1201 sz = min_t(unsigned long, sizeof(ev->ev), count); 1202 ret = sz; 1203 if (copy_to_user(buf, &ev->ev, sz)) 1204 ret = -EFAULT; 1205 1206 list_del(&ev->list); 1207 kfree(ev); 1208 out: 1209 mutex_unlock(&data->mtx); 1210 return ret; 1211 } 1212 1213 static ssize_t rfkill_fop_write(struct file *file, const char __user *buf, 1214 size_t count, loff_t *pos) 1215 { 1216 struct rfkill *rfkill; 1217 struct rfkill_event ev; 1218 int ret; 1219 1220 /* we don't need the 'hard' variable but accept it */ 1221 if (count < RFKILL_EVENT_SIZE_V1 - 1) 1222 return -EINVAL; 1223 1224 /* 1225 * Copy as much data as we can accept into our 'ev' buffer, 1226 * but tell userspace how much we've copied so it can determine 1227 * our API version even in a write() call, if it cares. 1228 */ 1229 count = min(count, sizeof(ev)); 1230 if (copy_from_user(&ev, buf, count)) 1231 return -EFAULT; 1232 1233 if (ev.type >= NUM_RFKILL_TYPES) 1234 return -EINVAL; 1235 1236 mutex_lock(&rfkill_global_mutex); 1237 1238 switch (ev.op) { 1239 case RFKILL_OP_CHANGE_ALL: 1240 rfkill_update_global_state(ev.type, ev.soft); 1241 list_for_each_entry(rfkill, &rfkill_list, node) 1242 if (rfkill->type == ev.type || 1243 ev.type == RFKILL_TYPE_ALL) 1244 rfkill_set_block(rfkill, ev.soft); 1245 ret = 0; 1246 break; 1247 case RFKILL_OP_CHANGE: 1248 list_for_each_entry(rfkill, &rfkill_list, node) 1249 if (rfkill->idx == ev.idx && 1250 (rfkill->type == ev.type || 1251 ev.type == RFKILL_TYPE_ALL)) 1252 rfkill_set_block(rfkill, ev.soft); 1253 ret = 0; 1254 break; 1255 default: 1256 ret = -EINVAL; 1257 break; 1258 } 1259 1260 mutex_unlock(&rfkill_global_mutex); 1261 1262 return ret ?: count; 1263 } 1264 1265 static int rfkill_fop_release(struct inode *inode, struct file *file) 1266 { 1267 struct rfkill_data *data = file->private_data; 1268 struct rfkill_int_event *ev, *tmp; 1269 1270 mutex_lock(&rfkill_global_mutex); 1271 list_del(&data->list); 1272 mutex_unlock(&rfkill_global_mutex); 1273 1274 mutex_destroy(&data->mtx); 1275 list_for_each_entry_safe(ev, tmp, &data->events, list) 1276 kfree(ev); 1277 1278 #ifdef CONFIG_RFKILL_INPUT 1279 if (data->input_handler) 1280 if (atomic_dec_return(&rfkill_input_disabled) == 0) 1281 printk(KERN_DEBUG "rfkill: input handler enabled\n"); 1282 #endif 1283 1284 kfree(data); 1285 1286 return 0; 1287 } 1288 1289 #ifdef CONFIG_RFKILL_INPUT 1290 static long rfkill_fop_ioctl(struct file *file, unsigned int cmd, 1291 unsigned long arg) 1292 { 1293 struct rfkill_data *data = file->private_data; 1294 1295 if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC) 1296 return -ENOSYS; 1297 1298 if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT) 1299 return -ENOSYS; 1300 1301 mutex_lock(&data->mtx); 1302 1303 if (!data->input_handler) { 1304 if (atomic_inc_return(&rfkill_input_disabled) == 1) 1305 printk(KERN_DEBUG "rfkill: input handler disabled\n"); 1306 data->input_handler = true; 1307 } 1308 1309 mutex_unlock(&data->mtx); 1310 1311 return 0; 1312 } 1313 #endif 1314 1315 static const struct file_operations rfkill_fops = { 1316 .owner = THIS_MODULE, 1317 .open = rfkill_fop_open, 1318 .read = rfkill_fop_read, 1319 .write = rfkill_fop_write, 1320 .poll = rfkill_fop_poll, 1321 .release = rfkill_fop_release, 1322 #ifdef CONFIG_RFKILL_INPUT 1323 .unlocked_ioctl = rfkill_fop_ioctl, 1324 .compat_ioctl = rfkill_fop_ioctl, 1325 #endif 1326 .llseek = no_llseek, 1327 }; 1328 1329 static struct miscdevice rfkill_miscdev = { 1330 .name = "rfkill", 1331 .fops = &rfkill_fops, 1332 .minor = MISC_DYNAMIC_MINOR, 1333 }; 1334 1335 static int __init rfkill_init(void) 1336 { 1337 int error; 1338 1339 rfkill_update_global_state(RFKILL_TYPE_ALL, !rfkill_default_state); 1340 1341 error = class_register(&rfkill_class); 1342 if (error) 1343 goto error_class; 1344 1345 error = misc_register(&rfkill_miscdev); 1346 if (error) 1347 goto error_misc; 1348 1349 error = rfkill_global_led_trigger_register(); 1350 if (error) 1351 goto error_led_trigger; 1352 1353 #ifdef CONFIG_RFKILL_INPUT 1354 error = rfkill_handler_init(); 1355 if (error) 1356 goto error_input; 1357 #endif 1358 1359 return 0; 1360 1361 #ifdef CONFIG_RFKILL_INPUT 1362 error_input: 1363 rfkill_global_led_trigger_unregister(); 1364 #endif 1365 error_led_trigger: 1366 misc_deregister(&rfkill_miscdev); 1367 error_misc: 1368 class_unregister(&rfkill_class); 1369 error_class: 1370 return error; 1371 } 1372 subsys_initcall(rfkill_init); 1373 1374 static void __exit rfkill_exit(void) 1375 { 1376 #ifdef CONFIG_RFKILL_INPUT 1377 rfkill_handler_exit(); 1378 #endif 1379 rfkill_global_led_trigger_unregister(); 1380 misc_deregister(&rfkill_miscdev); 1381 class_unregister(&rfkill_class); 1382 } 1383 module_exit(rfkill_exit); 1384