1 /* 2 * Copyright (C) 2006 - 2007 Ivo van Doorn 3 * Copyright (C) 2007 Dmitry Torokhov 4 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the 18 * Free Software Foundation, Inc., 19 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/init.h> 25 #include <linux/workqueue.h> 26 #include <linux/capability.h> 27 #include <linux/list.h> 28 #include <linux/mutex.h> 29 #include <linux/rfkill.h> 30 #include <linux/sched.h> 31 #include <linux/spinlock.h> 32 #include <linux/device.h> 33 #include <linux/miscdevice.h> 34 #include <linux/wait.h> 35 #include <linux/poll.h> 36 #include <linux/fs.h> 37 #include <linux/slab.h> 38 39 #include "rfkill.h" 40 41 #define POLL_INTERVAL (5 * HZ) 42 43 #define RFKILL_BLOCK_HW BIT(0) 44 #define RFKILL_BLOCK_SW BIT(1) 45 #define RFKILL_BLOCK_SW_PREV BIT(2) 46 #define RFKILL_BLOCK_ANY (RFKILL_BLOCK_HW |\ 47 RFKILL_BLOCK_SW |\ 48 RFKILL_BLOCK_SW_PREV) 49 #define RFKILL_BLOCK_SW_SETCALL BIT(31) 50 51 struct rfkill { 52 spinlock_t lock; 53 54 const char *name; 55 enum rfkill_type type; 56 57 unsigned long state; 58 59 u32 idx; 60 61 bool registered; 62 bool persistent; 63 64 const struct rfkill_ops *ops; 65 void *data; 66 67 #ifdef CONFIG_RFKILL_LEDS 68 struct led_trigger led_trigger; 69 const char *ledtrigname; 70 #endif 71 72 struct device dev; 73 struct list_head node; 74 75 struct delayed_work poll_work; 76 struct work_struct uevent_work; 77 struct work_struct sync_work; 78 }; 79 #define to_rfkill(d) container_of(d, struct rfkill, dev) 80 81 struct rfkill_int_event { 82 struct list_head list; 83 struct rfkill_event ev; 84 }; 85 86 struct rfkill_data { 87 struct list_head list; 88 struct list_head events; 89 struct mutex mtx; 90 wait_queue_head_t read_wait; 91 bool input_handler; 92 }; 93 94 95 MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>"); 96 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>"); 97 MODULE_DESCRIPTION("RF switch support"); 98 MODULE_LICENSE("GPL"); 99 100 101 /* 102 * The locking here should be made much smarter, we currently have 103 * a bit of a stupid situation because drivers might want to register 104 * the rfkill struct under their own lock, and take this lock during 105 * rfkill method calls -- which will cause an AB-BA deadlock situation. 106 * 107 * To fix that, we need to rework this code here to be mostly lock-free 108 * and only use the mutex for list manipulations, not to protect the 109 * various other global variables. Then we can avoid holding the mutex 110 * around driver operations, and all is happy. 111 */ 112 static LIST_HEAD(rfkill_list); /* list of registered rf switches */ 113 static DEFINE_MUTEX(rfkill_global_mutex); 114 static LIST_HEAD(rfkill_fds); /* list of open fds of /dev/rfkill */ 115 116 static unsigned int rfkill_default_state = 1; 117 module_param_named(default_state, rfkill_default_state, uint, 0444); 118 MODULE_PARM_DESC(default_state, 119 "Default initial state for all radio types, 0 = radio off"); 120 121 static struct { 122 bool cur, sav; 123 } rfkill_global_states[NUM_RFKILL_TYPES]; 124 125 static bool rfkill_epo_lock_active; 126 127 128 #ifdef CONFIG_RFKILL_LEDS 129 static void rfkill_led_trigger_event(struct rfkill *rfkill) 130 { 131 struct led_trigger *trigger; 132 133 if (!rfkill->registered) 134 return; 135 136 trigger = &rfkill->led_trigger; 137 138 if (rfkill->state & RFKILL_BLOCK_ANY) 139 led_trigger_event(trigger, LED_OFF); 140 else 141 led_trigger_event(trigger, LED_FULL); 142 } 143 144 static void rfkill_led_trigger_activate(struct led_classdev *led) 145 { 146 struct rfkill *rfkill; 147 148 rfkill = container_of(led->trigger, struct rfkill, led_trigger); 149 150 rfkill_led_trigger_event(rfkill); 151 } 152 153 const char *rfkill_get_led_trigger_name(struct rfkill *rfkill) 154 { 155 return rfkill->led_trigger.name; 156 } 157 EXPORT_SYMBOL(rfkill_get_led_trigger_name); 158 159 void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name) 160 { 161 BUG_ON(!rfkill); 162 163 rfkill->ledtrigname = name; 164 } 165 EXPORT_SYMBOL(rfkill_set_led_trigger_name); 166 167 static int rfkill_led_trigger_register(struct rfkill *rfkill) 168 { 169 rfkill->led_trigger.name = rfkill->ledtrigname 170 ? : dev_name(&rfkill->dev); 171 rfkill->led_trigger.activate = rfkill_led_trigger_activate; 172 return led_trigger_register(&rfkill->led_trigger); 173 } 174 175 static void rfkill_led_trigger_unregister(struct rfkill *rfkill) 176 { 177 led_trigger_unregister(&rfkill->led_trigger); 178 } 179 #else 180 static void rfkill_led_trigger_event(struct rfkill *rfkill) 181 { 182 } 183 184 static inline int rfkill_led_trigger_register(struct rfkill *rfkill) 185 { 186 return 0; 187 } 188 189 static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill) 190 { 191 } 192 #endif /* CONFIG_RFKILL_LEDS */ 193 194 static void rfkill_fill_event(struct rfkill_event *ev, struct rfkill *rfkill, 195 enum rfkill_operation op) 196 { 197 unsigned long flags; 198 199 ev->idx = rfkill->idx; 200 ev->type = rfkill->type; 201 ev->op = op; 202 203 spin_lock_irqsave(&rfkill->lock, flags); 204 ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW); 205 ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW | 206 RFKILL_BLOCK_SW_PREV)); 207 spin_unlock_irqrestore(&rfkill->lock, flags); 208 } 209 210 static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op) 211 { 212 struct rfkill_data *data; 213 struct rfkill_int_event *ev; 214 215 list_for_each_entry(data, &rfkill_fds, list) { 216 ev = kzalloc(sizeof(*ev), GFP_KERNEL); 217 if (!ev) 218 continue; 219 rfkill_fill_event(&ev->ev, rfkill, op); 220 mutex_lock(&data->mtx); 221 list_add_tail(&ev->list, &data->events); 222 mutex_unlock(&data->mtx); 223 wake_up_interruptible(&data->read_wait); 224 } 225 } 226 227 static void rfkill_event(struct rfkill *rfkill) 228 { 229 if (!rfkill->registered) 230 return; 231 232 kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE); 233 234 /* also send event to /dev/rfkill */ 235 rfkill_send_events(rfkill, RFKILL_OP_CHANGE); 236 } 237 238 static bool __rfkill_set_hw_state(struct rfkill *rfkill, 239 bool blocked, bool *change) 240 { 241 unsigned long flags; 242 bool prev, any; 243 244 BUG_ON(!rfkill); 245 246 spin_lock_irqsave(&rfkill->lock, flags); 247 prev = !!(rfkill->state & RFKILL_BLOCK_HW); 248 if (blocked) 249 rfkill->state |= RFKILL_BLOCK_HW; 250 else 251 rfkill->state &= ~RFKILL_BLOCK_HW; 252 *change = prev != blocked; 253 any = !!(rfkill->state & RFKILL_BLOCK_ANY); 254 spin_unlock_irqrestore(&rfkill->lock, flags); 255 256 rfkill_led_trigger_event(rfkill); 257 258 return any; 259 } 260 261 /** 262 * rfkill_set_block - wrapper for set_block method 263 * 264 * @rfkill: the rfkill struct to use 265 * @blocked: the new software state 266 * 267 * Calls the set_block method (when applicable) and handles notifications 268 * etc. as well. 269 */ 270 static void rfkill_set_block(struct rfkill *rfkill, bool blocked) 271 { 272 unsigned long flags; 273 bool prev, curr; 274 int err; 275 276 if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP)) 277 return; 278 279 /* 280 * Some platforms (...!) generate input events which affect the 281 * _hard_ kill state -- whenever something tries to change the 282 * current software state query the hardware state too. 283 */ 284 if (rfkill->ops->query) 285 rfkill->ops->query(rfkill, rfkill->data); 286 287 spin_lock_irqsave(&rfkill->lock, flags); 288 prev = rfkill->state & RFKILL_BLOCK_SW; 289 290 if (rfkill->state & RFKILL_BLOCK_SW) 291 rfkill->state |= RFKILL_BLOCK_SW_PREV; 292 else 293 rfkill->state &= ~RFKILL_BLOCK_SW_PREV; 294 295 if (blocked) 296 rfkill->state |= RFKILL_BLOCK_SW; 297 else 298 rfkill->state &= ~RFKILL_BLOCK_SW; 299 300 rfkill->state |= RFKILL_BLOCK_SW_SETCALL; 301 spin_unlock_irqrestore(&rfkill->lock, flags); 302 303 err = rfkill->ops->set_block(rfkill->data, blocked); 304 305 spin_lock_irqsave(&rfkill->lock, flags); 306 if (err) { 307 /* 308 * Failed -- reset status to _prev, this may be different 309 * from what set set _PREV to earlier in this function 310 * if rfkill_set_sw_state was invoked. 311 */ 312 if (rfkill->state & RFKILL_BLOCK_SW_PREV) 313 rfkill->state |= RFKILL_BLOCK_SW; 314 else 315 rfkill->state &= ~RFKILL_BLOCK_SW; 316 } 317 rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL; 318 rfkill->state &= ~RFKILL_BLOCK_SW_PREV; 319 curr = rfkill->state & RFKILL_BLOCK_SW; 320 spin_unlock_irqrestore(&rfkill->lock, flags); 321 322 rfkill_led_trigger_event(rfkill); 323 324 if (prev != curr) 325 rfkill_event(rfkill); 326 } 327 328 #ifdef CONFIG_RFKILL_INPUT 329 static atomic_t rfkill_input_disabled = ATOMIC_INIT(0); 330 331 /** 332 * __rfkill_switch_all - Toggle state of all switches of given type 333 * @type: type of interfaces to be affected 334 * @state: the new state 335 * 336 * This function sets the state of all switches of given type, 337 * unless a specific switch is claimed by userspace (in which case, 338 * that switch is left alone) or suspended. 339 * 340 * Caller must have acquired rfkill_global_mutex. 341 */ 342 static void __rfkill_switch_all(const enum rfkill_type type, bool blocked) 343 { 344 struct rfkill *rfkill; 345 346 rfkill_global_states[type].cur = blocked; 347 list_for_each_entry(rfkill, &rfkill_list, node) { 348 if (rfkill->type != type && type != RFKILL_TYPE_ALL) 349 continue; 350 351 rfkill_set_block(rfkill, blocked); 352 } 353 } 354 355 /** 356 * rfkill_switch_all - Toggle state of all switches of given type 357 * @type: type of interfaces to be affected 358 * @state: the new state 359 * 360 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state). 361 * Please refer to __rfkill_switch_all() for details. 362 * 363 * Does nothing if the EPO lock is active. 364 */ 365 void rfkill_switch_all(enum rfkill_type type, bool blocked) 366 { 367 if (atomic_read(&rfkill_input_disabled)) 368 return; 369 370 mutex_lock(&rfkill_global_mutex); 371 372 if (!rfkill_epo_lock_active) 373 __rfkill_switch_all(type, blocked); 374 375 mutex_unlock(&rfkill_global_mutex); 376 } 377 378 /** 379 * rfkill_epo - emergency power off all transmitters 380 * 381 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED, 382 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex. 383 * 384 * The global state before the EPO is saved and can be restored later 385 * using rfkill_restore_states(). 386 */ 387 void rfkill_epo(void) 388 { 389 struct rfkill *rfkill; 390 int i; 391 392 if (atomic_read(&rfkill_input_disabled)) 393 return; 394 395 mutex_lock(&rfkill_global_mutex); 396 397 rfkill_epo_lock_active = true; 398 list_for_each_entry(rfkill, &rfkill_list, node) 399 rfkill_set_block(rfkill, true); 400 401 for (i = 0; i < NUM_RFKILL_TYPES; i++) { 402 rfkill_global_states[i].sav = rfkill_global_states[i].cur; 403 rfkill_global_states[i].cur = true; 404 } 405 406 mutex_unlock(&rfkill_global_mutex); 407 } 408 409 /** 410 * rfkill_restore_states - restore global states 411 * 412 * Restore (and sync switches to) the global state from the 413 * states in rfkill_default_states. This can undo the effects of 414 * a call to rfkill_epo(). 415 */ 416 void rfkill_restore_states(void) 417 { 418 int i; 419 420 if (atomic_read(&rfkill_input_disabled)) 421 return; 422 423 mutex_lock(&rfkill_global_mutex); 424 425 rfkill_epo_lock_active = false; 426 for (i = 0; i < NUM_RFKILL_TYPES; i++) 427 __rfkill_switch_all(i, rfkill_global_states[i].sav); 428 mutex_unlock(&rfkill_global_mutex); 429 } 430 431 /** 432 * rfkill_remove_epo_lock - unlock state changes 433 * 434 * Used by rfkill-input manually unlock state changes, when 435 * the EPO switch is deactivated. 436 */ 437 void rfkill_remove_epo_lock(void) 438 { 439 if (atomic_read(&rfkill_input_disabled)) 440 return; 441 442 mutex_lock(&rfkill_global_mutex); 443 rfkill_epo_lock_active = false; 444 mutex_unlock(&rfkill_global_mutex); 445 } 446 447 /** 448 * rfkill_is_epo_lock_active - returns true EPO is active 449 * 450 * Returns 0 (false) if there is NOT an active EPO contidion, 451 * and 1 (true) if there is an active EPO contition, which 452 * locks all radios in one of the BLOCKED states. 453 * 454 * Can be called in atomic context. 455 */ 456 bool rfkill_is_epo_lock_active(void) 457 { 458 return rfkill_epo_lock_active; 459 } 460 461 /** 462 * rfkill_get_global_sw_state - returns global state for a type 463 * @type: the type to get the global state of 464 * 465 * Returns the current global state for a given wireless 466 * device type. 467 */ 468 bool rfkill_get_global_sw_state(const enum rfkill_type type) 469 { 470 return rfkill_global_states[type].cur; 471 } 472 #endif 473 474 475 bool rfkill_set_hw_state(struct rfkill *rfkill, bool blocked) 476 { 477 bool ret, change; 478 479 ret = __rfkill_set_hw_state(rfkill, blocked, &change); 480 481 if (!rfkill->registered) 482 return ret; 483 484 if (change) 485 schedule_work(&rfkill->uevent_work); 486 487 return ret; 488 } 489 EXPORT_SYMBOL(rfkill_set_hw_state); 490 491 static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked) 492 { 493 u32 bit = RFKILL_BLOCK_SW; 494 495 /* if in a ops->set_block right now, use other bit */ 496 if (rfkill->state & RFKILL_BLOCK_SW_SETCALL) 497 bit = RFKILL_BLOCK_SW_PREV; 498 499 if (blocked) 500 rfkill->state |= bit; 501 else 502 rfkill->state &= ~bit; 503 } 504 505 bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked) 506 { 507 unsigned long flags; 508 bool prev, hwblock; 509 510 BUG_ON(!rfkill); 511 512 spin_lock_irqsave(&rfkill->lock, flags); 513 prev = !!(rfkill->state & RFKILL_BLOCK_SW); 514 __rfkill_set_sw_state(rfkill, blocked); 515 hwblock = !!(rfkill->state & RFKILL_BLOCK_HW); 516 blocked = blocked || hwblock; 517 spin_unlock_irqrestore(&rfkill->lock, flags); 518 519 if (!rfkill->registered) 520 return blocked; 521 522 if (prev != blocked && !hwblock) 523 schedule_work(&rfkill->uevent_work); 524 525 rfkill_led_trigger_event(rfkill); 526 527 return blocked; 528 } 529 EXPORT_SYMBOL(rfkill_set_sw_state); 530 531 void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked) 532 { 533 unsigned long flags; 534 535 BUG_ON(!rfkill); 536 BUG_ON(rfkill->registered); 537 538 spin_lock_irqsave(&rfkill->lock, flags); 539 __rfkill_set_sw_state(rfkill, blocked); 540 rfkill->persistent = true; 541 spin_unlock_irqrestore(&rfkill->lock, flags); 542 } 543 EXPORT_SYMBOL(rfkill_init_sw_state); 544 545 void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw) 546 { 547 unsigned long flags; 548 bool swprev, hwprev; 549 550 BUG_ON(!rfkill); 551 552 spin_lock_irqsave(&rfkill->lock, flags); 553 554 /* 555 * No need to care about prev/setblock ... this is for uevent only 556 * and that will get triggered by rfkill_set_block anyway. 557 */ 558 swprev = !!(rfkill->state & RFKILL_BLOCK_SW); 559 hwprev = !!(rfkill->state & RFKILL_BLOCK_HW); 560 __rfkill_set_sw_state(rfkill, sw); 561 if (hw) 562 rfkill->state |= RFKILL_BLOCK_HW; 563 else 564 rfkill->state &= ~RFKILL_BLOCK_HW; 565 566 spin_unlock_irqrestore(&rfkill->lock, flags); 567 568 if (!rfkill->registered) { 569 rfkill->persistent = true; 570 } else { 571 if (swprev != sw || hwprev != hw) 572 schedule_work(&rfkill->uevent_work); 573 574 rfkill_led_trigger_event(rfkill); 575 } 576 } 577 EXPORT_SYMBOL(rfkill_set_states); 578 579 static ssize_t name_show(struct device *dev, struct device_attribute *attr, 580 char *buf) 581 { 582 struct rfkill *rfkill = to_rfkill(dev); 583 584 return sprintf(buf, "%s\n", rfkill->name); 585 } 586 static DEVICE_ATTR_RO(name); 587 588 static const char *rfkill_get_type_str(enum rfkill_type type) 589 { 590 BUILD_BUG_ON(NUM_RFKILL_TYPES != RFKILL_TYPE_NFC + 1); 591 592 switch (type) { 593 case RFKILL_TYPE_WLAN: 594 return "wlan"; 595 case RFKILL_TYPE_BLUETOOTH: 596 return "bluetooth"; 597 case RFKILL_TYPE_UWB: 598 return "ultrawideband"; 599 case RFKILL_TYPE_WIMAX: 600 return "wimax"; 601 case RFKILL_TYPE_WWAN: 602 return "wwan"; 603 case RFKILL_TYPE_GPS: 604 return "gps"; 605 case RFKILL_TYPE_FM: 606 return "fm"; 607 case RFKILL_TYPE_NFC: 608 return "nfc"; 609 default: 610 BUG(); 611 } 612 } 613 614 static ssize_t type_show(struct device *dev, struct device_attribute *attr, 615 char *buf) 616 { 617 struct rfkill *rfkill = to_rfkill(dev); 618 619 return sprintf(buf, "%s\n", rfkill_get_type_str(rfkill->type)); 620 } 621 static DEVICE_ATTR_RO(type); 622 623 static ssize_t index_show(struct device *dev, struct device_attribute *attr, 624 char *buf) 625 { 626 struct rfkill *rfkill = to_rfkill(dev); 627 628 return sprintf(buf, "%d\n", rfkill->idx); 629 } 630 static DEVICE_ATTR_RO(index); 631 632 static ssize_t persistent_show(struct device *dev, 633 struct device_attribute *attr, char *buf) 634 { 635 struct rfkill *rfkill = to_rfkill(dev); 636 637 return sprintf(buf, "%d\n", rfkill->persistent); 638 } 639 static DEVICE_ATTR_RO(persistent); 640 641 static ssize_t hard_show(struct device *dev, struct device_attribute *attr, 642 char *buf) 643 { 644 struct rfkill *rfkill = to_rfkill(dev); 645 646 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 ); 647 } 648 static DEVICE_ATTR_RO(hard); 649 650 static ssize_t soft_show(struct device *dev, struct device_attribute *attr, 651 char *buf) 652 { 653 struct rfkill *rfkill = to_rfkill(dev); 654 655 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 ); 656 } 657 658 static ssize_t soft_store(struct device *dev, struct device_attribute *attr, 659 const char *buf, size_t count) 660 { 661 struct rfkill *rfkill = to_rfkill(dev); 662 unsigned long state; 663 int err; 664 665 if (!capable(CAP_NET_ADMIN)) 666 return -EPERM; 667 668 err = kstrtoul(buf, 0, &state); 669 if (err) 670 return err; 671 672 if (state > 1 ) 673 return -EINVAL; 674 675 mutex_lock(&rfkill_global_mutex); 676 rfkill_set_block(rfkill, state); 677 mutex_unlock(&rfkill_global_mutex); 678 679 return count; 680 } 681 static DEVICE_ATTR_RW(soft); 682 683 static u8 user_state_from_blocked(unsigned long state) 684 { 685 if (state & RFKILL_BLOCK_HW) 686 return RFKILL_USER_STATE_HARD_BLOCKED; 687 if (state & RFKILL_BLOCK_SW) 688 return RFKILL_USER_STATE_SOFT_BLOCKED; 689 690 return RFKILL_USER_STATE_UNBLOCKED; 691 } 692 693 static ssize_t state_show(struct device *dev, struct device_attribute *attr, 694 char *buf) 695 { 696 struct rfkill *rfkill = to_rfkill(dev); 697 698 return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state)); 699 } 700 701 static ssize_t state_store(struct device *dev, struct device_attribute *attr, 702 const char *buf, size_t count) 703 { 704 struct rfkill *rfkill = to_rfkill(dev); 705 unsigned long state; 706 int err; 707 708 if (!capable(CAP_NET_ADMIN)) 709 return -EPERM; 710 711 err = kstrtoul(buf, 0, &state); 712 if (err) 713 return err; 714 715 if (state != RFKILL_USER_STATE_SOFT_BLOCKED && 716 state != RFKILL_USER_STATE_UNBLOCKED) 717 return -EINVAL; 718 719 mutex_lock(&rfkill_global_mutex); 720 rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED); 721 mutex_unlock(&rfkill_global_mutex); 722 723 return count; 724 } 725 static DEVICE_ATTR_RW(state); 726 727 static ssize_t claim_show(struct device *dev, struct device_attribute *attr, 728 char *buf) 729 { 730 return sprintf(buf, "%d\n", 0); 731 } 732 static DEVICE_ATTR_RO(claim); 733 734 static struct attribute *rfkill_dev_attrs[] = { 735 &dev_attr_name.attr, 736 &dev_attr_type.attr, 737 &dev_attr_index.attr, 738 &dev_attr_persistent.attr, 739 &dev_attr_state.attr, 740 &dev_attr_claim.attr, 741 &dev_attr_soft.attr, 742 &dev_attr_hard.attr, 743 NULL, 744 }; 745 ATTRIBUTE_GROUPS(rfkill_dev); 746 747 static void rfkill_release(struct device *dev) 748 { 749 struct rfkill *rfkill = to_rfkill(dev); 750 751 kfree(rfkill); 752 } 753 754 static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env) 755 { 756 struct rfkill *rfkill = to_rfkill(dev); 757 unsigned long flags; 758 u32 state; 759 int error; 760 761 error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name); 762 if (error) 763 return error; 764 error = add_uevent_var(env, "RFKILL_TYPE=%s", 765 rfkill_get_type_str(rfkill->type)); 766 if (error) 767 return error; 768 spin_lock_irqsave(&rfkill->lock, flags); 769 state = rfkill->state; 770 spin_unlock_irqrestore(&rfkill->lock, flags); 771 error = add_uevent_var(env, "RFKILL_STATE=%d", 772 user_state_from_blocked(state)); 773 return error; 774 } 775 776 void rfkill_pause_polling(struct rfkill *rfkill) 777 { 778 BUG_ON(!rfkill); 779 780 if (!rfkill->ops->poll) 781 return; 782 783 cancel_delayed_work_sync(&rfkill->poll_work); 784 } 785 EXPORT_SYMBOL(rfkill_pause_polling); 786 787 void rfkill_resume_polling(struct rfkill *rfkill) 788 { 789 BUG_ON(!rfkill); 790 791 if (!rfkill->ops->poll) 792 return; 793 794 schedule_work(&rfkill->poll_work.work); 795 } 796 EXPORT_SYMBOL(rfkill_resume_polling); 797 798 static int rfkill_suspend(struct device *dev, pm_message_t state) 799 { 800 struct rfkill *rfkill = to_rfkill(dev); 801 802 rfkill_pause_polling(rfkill); 803 804 return 0; 805 } 806 807 static int rfkill_resume(struct device *dev) 808 { 809 struct rfkill *rfkill = to_rfkill(dev); 810 bool cur; 811 812 if (!rfkill->persistent) { 813 cur = !!(rfkill->state & RFKILL_BLOCK_SW); 814 rfkill_set_block(rfkill, cur); 815 } 816 817 rfkill_resume_polling(rfkill); 818 819 return 0; 820 } 821 822 static struct class rfkill_class = { 823 .name = "rfkill", 824 .dev_release = rfkill_release, 825 .dev_groups = rfkill_dev_groups, 826 .dev_uevent = rfkill_dev_uevent, 827 .suspend = rfkill_suspend, 828 .resume = rfkill_resume, 829 }; 830 831 bool rfkill_blocked(struct rfkill *rfkill) 832 { 833 unsigned long flags; 834 u32 state; 835 836 spin_lock_irqsave(&rfkill->lock, flags); 837 state = rfkill->state; 838 spin_unlock_irqrestore(&rfkill->lock, flags); 839 840 return !!(state & RFKILL_BLOCK_ANY); 841 } 842 EXPORT_SYMBOL(rfkill_blocked); 843 844 845 struct rfkill * __must_check rfkill_alloc(const char *name, 846 struct device *parent, 847 const enum rfkill_type type, 848 const struct rfkill_ops *ops, 849 void *ops_data) 850 { 851 struct rfkill *rfkill; 852 struct device *dev; 853 854 if (WARN_ON(!ops)) 855 return NULL; 856 857 if (WARN_ON(!ops->set_block)) 858 return NULL; 859 860 if (WARN_ON(!name)) 861 return NULL; 862 863 if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES)) 864 return NULL; 865 866 rfkill = kzalloc(sizeof(*rfkill), GFP_KERNEL); 867 if (!rfkill) 868 return NULL; 869 870 spin_lock_init(&rfkill->lock); 871 INIT_LIST_HEAD(&rfkill->node); 872 rfkill->type = type; 873 rfkill->name = name; 874 rfkill->ops = ops; 875 rfkill->data = ops_data; 876 877 dev = &rfkill->dev; 878 dev->class = &rfkill_class; 879 dev->parent = parent; 880 device_initialize(dev); 881 882 return rfkill; 883 } 884 EXPORT_SYMBOL(rfkill_alloc); 885 886 static void rfkill_poll(struct work_struct *work) 887 { 888 struct rfkill *rfkill; 889 890 rfkill = container_of(work, struct rfkill, poll_work.work); 891 892 /* 893 * Poll hardware state -- driver will use one of the 894 * rfkill_set{,_hw,_sw}_state functions and use its 895 * return value to update the current status. 896 */ 897 rfkill->ops->poll(rfkill, rfkill->data); 898 899 schedule_delayed_work(&rfkill->poll_work, 900 round_jiffies_relative(POLL_INTERVAL)); 901 } 902 903 static void rfkill_uevent_work(struct work_struct *work) 904 { 905 struct rfkill *rfkill; 906 907 rfkill = container_of(work, struct rfkill, uevent_work); 908 909 mutex_lock(&rfkill_global_mutex); 910 rfkill_event(rfkill); 911 mutex_unlock(&rfkill_global_mutex); 912 } 913 914 static void rfkill_sync_work(struct work_struct *work) 915 { 916 struct rfkill *rfkill; 917 bool cur; 918 919 rfkill = container_of(work, struct rfkill, sync_work); 920 921 mutex_lock(&rfkill_global_mutex); 922 cur = rfkill_global_states[rfkill->type].cur; 923 rfkill_set_block(rfkill, cur); 924 mutex_unlock(&rfkill_global_mutex); 925 } 926 927 int __must_check rfkill_register(struct rfkill *rfkill) 928 { 929 static unsigned long rfkill_no; 930 struct device *dev = &rfkill->dev; 931 int error; 932 933 BUG_ON(!rfkill); 934 935 mutex_lock(&rfkill_global_mutex); 936 937 if (rfkill->registered) { 938 error = -EALREADY; 939 goto unlock; 940 } 941 942 rfkill->idx = rfkill_no; 943 dev_set_name(dev, "rfkill%lu", rfkill_no); 944 rfkill_no++; 945 946 list_add_tail(&rfkill->node, &rfkill_list); 947 948 error = device_add(dev); 949 if (error) 950 goto remove; 951 952 error = rfkill_led_trigger_register(rfkill); 953 if (error) 954 goto devdel; 955 956 rfkill->registered = true; 957 958 INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll); 959 INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work); 960 INIT_WORK(&rfkill->sync_work, rfkill_sync_work); 961 962 if (rfkill->ops->poll) 963 schedule_delayed_work(&rfkill->poll_work, 964 round_jiffies_relative(POLL_INTERVAL)); 965 966 if (!rfkill->persistent || rfkill_epo_lock_active) { 967 schedule_work(&rfkill->sync_work); 968 } else { 969 #ifdef CONFIG_RFKILL_INPUT 970 bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW); 971 972 if (!atomic_read(&rfkill_input_disabled)) 973 __rfkill_switch_all(rfkill->type, soft_blocked); 974 #endif 975 } 976 977 rfkill_send_events(rfkill, RFKILL_OP_ADD); 978 979 mutex_unlock(&rfkill_global_mutex); 980 return 0; 981 982 devdel: 983 device_del(&rfkill->dev); 984 remove: 985 list_del_init(&rfkill->node); 986 unlock: 987 mutex_unlock(&rfkill_global_mutex); 988 return error; 989 } 990 EXPORT_SYMBOL(rfkill_register); 991 992 void rfkill_unregister(struct rfkill *rfkill) 993 { 994 BUG_ON(!rfkill); 995 996 if (rfkill->ops->poll) 997 cancel_delayed_work_sync(&rfkill->poll_work); 998 999 cancel_work_sync(&rfkill->uevent_work); 1000 cancel_work_sync(&rfkill->sync_work); 1001 1002 rfkill->registered = false; 1003 1004 device_del(&rfkill->dev); 1005 1006 mutex_lock(&rfkill_global_mutex); 1007 rfkill_send_events(rfkill, RFKILL_OP_DEL); 1008 list_del_init(&rfkill->node); 1009 mutex_unlock(&rfkill_global_mutex); 1010 1011 rfkill_led_trigger_unregister(rfkill); 1012 } 1013 EXPORT_SYMBOL(rfkill_unregister); 1014 1015 void rfkill_destroy(struct rfkill *rfkill) 1016 { 1017 if (rfkill) 1018 put_device(&rfkill->dev); 1019 } 1020 EXPORT_SYMBOL(rfkill_destroy); 1021 1022 static int rfkill_fop_open(struct inode *inode, struct file *file) 1023 { 1024 struct rfkill_data *data; 1025 struct rfkill *rfkill; 1026 struct rfkill_int_event *ev, *tmp; 1027 1028 data = kzalloc(sizeof(*data), GFP_KERNEL); 1029 if (!data) 1030 return -ENOMEM; 1031 1032 INIT_LIST_HEAD(&data->events); 1033 mutex_init(&data->mtx); 1034 init_waitqueue_head(&data->read_wait); 1035 1036 mutex_lock(&rfkill_global_mutex); 1037 mutex_lock(&data->mtx); 1038 /* 1039 * start getting events from elsewhere but hold mtx to get 1040 * startup events added first 1041 */ 1042 1043 list_for_each_entry(rfkill, &rfkill_list, node) { 1044 ev = kzalloc(sizeof(*ev), GFP_KERNEL); 1045 if (!ev) 1046 goto free; 1047 rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD); 1048 list_add_tail(&ev->list, &data->events); 1049 } 1050 list_add(&data->list, &rfkill_fds); 1051 mutex_unlock(&data->mtx); 1052 mutex_unlock(&rfkill_global_mutex); 1053 1054 file->private_data = data; 1055 1056 return nonseekable_open(inode, file); 1057 1058 free: 1059 mutex_unlock(&data->mtx); 1060 mutex_unlock(&rfkill_global_mutex); 1061 mutex_destroy(&data->mtx); 1062 list_for_each_entry_safe(ev, tmp, &data->events, list) 1063 kfree(ev); 1064 kfree(data); 1065 return -ENOMEM; 1066 } 1067 1068 static unsigned int rfkill_fop_poll(struct file *file, poll_table *wait) 1069 { 1070 struct rfkill_data *data = file->private_data; 1071 unsigned int res = POLLOUT | POLLWRNORM; 1072 1073 poll_wait(file, &data->read_wait, wait); 1074 1075 mutex_lock(&data->mtx); 1076 if (!list_empty(&data->events)) 1077 res = POLLIN | POLLRDNORM; 1078 mutex_unlock(&data->mtx); 1079 1080 return res; 1081 } 1082 1083 static bool rfkill_readable(struct rfkill_data *data) 1084 { 1085 bool r; 1086 1087 mutex_lock(&data->mtx); 1088 r = !list_empty(&data->events); 1089 mutex_unlock(&data->mtx); 1090 1091 return r; 1092 } 1093 1094 static ssize_t rfkill_fop_read(struct file *file, char __user *buf, 1095 size_t count, loff_t *pos) 1096 { 1097 struct rfkill_data *data = file->private_data; 1098 struct rfkill_int_event *ev; 1099 unsigned long sz; 1100 int ret; 1101 1102 mutex_lock(&data->mtx); 1103 1104 while (list_empty(&data->events)) { 1105 if (file->f_flags & O_NONBLOCK) { 1106 ret = -EAGAIN; 1107 goto out; 1108 } 1109 mutex_unlock(&data->mtx); 1110 ret = wait_event_interruptible(data->read_wait, 1111 rfkill_readable(data)); 1112 mutex_lock(&data->mtx); 1113 1114 if (ret) 1115 goto out; 1116 } 1117 1118 ev = list_first_entry(&data->events, struct rfkill_int_event, 1119 list); 1120 1121 sz = min_t(unsigned long, sizeof(ev->ev), count); 1122 ret = sz; 1123 if (copy_to_user(buf, &ev->ev, sz)) 1124 ret = -EFAULT; 1125 1126 list_del(&ev->list); 1127 kfree(ev); 1128 out: 1129 mutex_unlock(&data->mtx); 1130 return ret; 1131 } 1132 1133 static ssize_t rfkill_fop_write(struct file *file, const char __user *buf, 1134 size_t count, loff_t *pos) 1135 { 1136 struct rfkill *rfkill; 1137 struct rfkill_event ev; 1138 1139 /* we don't need the 'hard' variable but accept it */ 1140 if (count < RFKILL_EVENT_SIZE_V1 - 1) 1141 return -EINVAL; 1142 1143 /* 1144 * Copy as much data as we can accept into our 'ev' buffer, 1145 * but tell userspace how much we've copied so it can determine 1146 * our API version even in a write() call, if it cares. 1147 */ 1148 count = min(count, sizeof(ev)); 1149 if (copy_from_user(&ev, buf, count)) 1150 return -EFAULT; 1151 1152 if (ev.op != RFKILL_OP_CHANGE && ev.op != RFKILL_OP_CHANGE_ALL) 1153 return -EINVAL; 1154 1155 if (ev.type >= NUM_RFKILL_TYPES) 1156 return -EINVAL; 1157 1158 mutex_lock(&rfkill_global_mutex); 1159 1160 if (ev.op == RFKILL_OP_CHANGE_ALL) { 1161 if (ev.type == RFKILL_TYPE_ALL) { 1162 enum rfkill_type i; 1163 for (i = 0; i < NUM_RFKILL_TYPES; i++) 1164 rfkill_global_states[i].cur = ev.soft; 1165 } else { 1166 rfkill_global_states[ev.type].cur = ev.soft; 1167 } 1168 } 1169 1170 list_for_each_entry(rfkill, &rfkill_list, node) { 1171 if (rfkill->idx != ev.idx && ev.op != RFKILL_OP_CHANGE_ALL) 1172 continue; 1173 1174 if (rfkill->type != ev.type && ev.type != RFKILL_TYPE_ALL) 1175 continue; 1176 1177 rfkill_set_block(rfkill, ev.soft); 1178 } 1179 mutex_unlock(&rfkill_global_mutex); 1180 1181 return count; 1182 } 1183 1184 static int rfkill_fop_release(struct inode *inode, struct file *file) 1185 { 1186 struct rfkill_data *data = file->private_data; 1187 struct rfkill_int_event *ev, *tmp; 1188 1189 mutex_lock(&rfkill_global_mutex); 1190 list_del(&data->list); 1191 mutex_unlock(&rfkill_global_mutex); 1192 1193 mutex_destroy(&data->mtx); 1194 list_for_each_entry_safe(ev, tmp, &data->events, list) 1195 kfree(ev); 1196 1197 #ifdef CONFIG_RFKILL_INPUT 1198 if (data->input_handler) 1199 if (atomic_dec_return(&rfkill_input_disabled) == 0) 1200 printk(KERN_DEBUG "rfkill: input handler enabled\n"); 1201 #endif 1202 1203 kfree(data); 1204 1205 return 0; 1206 } 1207 1208 #ifdef CONFIG_RFKILL_INPUT 1209 static long rfkill_fop_ioctl(struct file *file, unsigned int cmd, 1210 unsigned long arg) 1211 { 1212 struct rfkill_data *data = file->private_data; 1213 1214 if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC) 1215 return -ENOSYS; 1216 1217 if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT) 1218 return -ENOSYS; 1219 1220 mutex_lock(&data->mtx); 1221 1222 if (!data->input_handler) { 1223 if (atomic_inc_return(&rfkill_input_disabled) == 1) 1224 printk(KERN_DEBUG "rfkill: input handler disabled\n"); 1225 data->input_handler = true; 1226 } 1227 1228 mutex_unlock(&data->mtx); 1229 1230 return 0; 1231 } 1232 #endif 1233 1234 static const struct file_operations rfkill_fops = { 1235 .owner = THIS_MODULE, 1236 .open = rfkill_fop_open, 1237 .read = rfkill_fop_read, 1238 .write = rfkill_fop_write, 1239 .poll = rfkill_fop_poll, 1240 .release = rfkill_fop_release, 1241 #ifdef CONFIG_RFKILL_INPUT 1242 .unlocked_ioctl = rfkill_fop_ioctl, 1243 .compat_ioctl = rfkill_fop_ioctl, 1244 #endif 1245 .llseek = no_llseek, 1246 }; 1247 1248 static struct miscdevice rfkill_miscdev = { 1249 .name = "rfkill", 1250 .fops = &rfkill_fops, 1251 .minor = MISC_DYNAMIC_MINOR, 1252 }; 1253 1254 static int __init rfkill_init(void) 1255 { 1256 int error; 1257 int i; 1258 1259 for (i = 0; i < NUM_RFKILL_TYPES; i++) 1260 rfkill_global_states[i].cur = !rfkill_default_state; 1261 1262 error = class_register(&rfkill_class); 1263 if (error) 1264 goto out; 1265 1266 error = misc_register(&rfkill_miscdev); 1267 if (error) { 1268 class_unregister(&rfkill_class); 1269 goto out; 1270 } 1271 1272 #ifdef CONFIG_RFKILL_INPUT 1273 error = rfkill_handler_init(); 1274 if (error) { 1275 misc_deregister(&rfkill_miscdev); 1276 class_unregister(&rfkill_class); 1277 goto out; 1278 } 1279 #endif 1280 1281 out: 1282 return error; 1283 } 1284 subsys_initcall(rfkill_init); 1285 1286 static void __exit rfkill_exit(void) 1287 { 1288 #ifdef CONFIG_RFKILL_INPUT 1289 rfkill_handler_exit(); 1290 #endif 1291 misc_deregister(&rfkill_miscdev); 1292 class_unregister(&rfkill_class); 1293 } 1294 module_exit(rfkill_exit); 1295