xref: /openbmc/linux/net/rfkill/core.c (revision 4bdf0bb7)
1 /*
2  * Copyright (C) 2006 - 2007 Ivo van Doorn
3  * Copyright (C) 2007 Dmitry Torokhov
4  * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the
18  * Free Software Foundation, Inc.,
19  * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/init.h>
25 #include <linux/workqueue.h>
26 #include <linux/capability.h>
27 #include <linux/list.h>
28 #include <linux/mutex.h>
29 #include <linux/rfkill.h>
30 #include <linux/sched.h>
31 #include <linux/spinlock.h>
32 #include <linux/miscdevice.h>
33 #include <linux/wait.h>
34 #include <linux/poll.h>
35 #include <linux/fs.h>
36 
37 #include "rfkill.h"
38 
39 #define POLL_INTERVAL		(5 * HZ)
40 
41 #define RFKILL_BLOCK_HW		BIT(0)
42 #define RFKILL_BLOCK_SW		BIT(1)
43 #define RFKILL_BLOCK_SW_PREV	BIT(2)
44 #define RFKILL_BLOCK_ANY	(RFKILL_BLOCK_HW |\
45 				 RFKILL_BLOCK_SW |\
46 				 RFKILL_BLOCK_SW_PREV)
47 #define RFKILL_BLOCK_SW_SETCALL	BIT(31)
48 
49 struct rfkill {
50 	spinlock_t		lock;
51 
52 	const char		*name;
53 	enum rfkill_type	type;
54 
55 	unsigned long		state;
56 
57 	u32			idx;
58 
59 	bool			registered;
60 	bool			persistent;
61 
62 	const struct rfkill_ops	*ops;
63 	void			*data;
64 
65 #ifdef CONFIG_RFKILL_LEDS
66 	struct led_trigger	led_trigger;
67 	const char		*ledtrigname;
68 #endif
69 
70 	struct device		dev;
71 	struct list_head	node;
72 
73 	struct delayed_work	poll_work;
74 	struct work_struct	uevent_work;
75 	struct work_struct	sync_work;
76 };
77 #define to_rfkill(d)	container_of(d, struct rfkill, dev)
78 
79 struct rfkill_int_event {
80 	struct list_head	list;
81 	struct rfkill_event	ev;
82 };
83 
84 struct rfkill_data {
85 	struct list_head	list;
86 	struct list_head	events;
87 	struct mutex		mtx;
88 	wait_queue_head_t	read_wait;
89 	bool			input_handler;
90 };
91 
92 
93 MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
94 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
95 MODULE_DESCRIPTION("RF switch support");
96 MODULE_LICENSE("GPL");
97 
98 
99 /*
100  * The locking here should be made much smarter, we currently have
101  * a bit of a stupid situation because drivers might want to register
102  * the rfkill struct under their own lock, and take this lock during
103  * rfkill method calls -- which will cause an AB-BA deadlock situation.
104  *
105  * To fix that, we need to rework this code here to be mostly lock-free
106  * and only use the mutex for list manipulations, not to protect the
107  * various other global variables. Then we can avoid holding the mutex
108  * around driver operations, and all is happy.
109  */
110 static LIST_HEAD(rfkill_list);	/* list of registered rf switches */
111 static DEFINE_MUTEX(rfkill_global_mutex);
112 static LIST_HEAD(rfkill_fds);	/* list of open fds of /dev/rfkill */
113 
114 static unsigned int rfkill_default_state = 1;
115 module_param_named(default_state, rfkill_default_state, uint, 0444);
116 MODULE_PARM_DESC(default_state,
117 		 "Default initial state for all radio types, 0 = radio off");
118 
119 static struct {
120 	bool cur, sav;
121 } rfkill_global_states[NUM_RFKILL_TYPES];
122 
123 static bool rfkill_epo_lock_active;
124 
125 
126 #ifdef CONFIG_RFKILL_LEDS
127 static void rfkill_led_trigger_event(struct rfkill *rfkill)
128 {
129 	struct led_trigger *trigger;
130 
131 	if (!rfkill->registered)
132 		return;
133 
134 	trigger = &rfkill->led_trigger;
135 
136 	if (rfkill->state & RFKILL_BLOCK_ANY)
137 		led_trigger_event(trigger, LED_OFF);
138 	else
139 		led_trigger_event(trigger, LED_FULL);
140 }
141 
142 static void rfkill_led_trigger_activate(struct led_classdev *led)
143 {
144 	struct rfkill *rfkill;
145 
146 	rfkill = container_of(led->trigger, struct rfkill, led_trigger);
147 
148 	rfkill_led_trigger_event(rfkill);
149 }
150 
151 const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
152 {
153 	return rfkill->led_trigger.name;
154 }
155 EXPORT_SYMBOL(rfkill_get_led_trigger_name);
156 
157 void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
158 {
159 	BUG_ON(!rfkill);
160 
161 	rfkill->ledtrigname = name;
162 }
163 EXPORT_SYMBOL(rfkill_set_led_trigger_name);
164 
165 static int rfkill_led_trigger_register(struct rfkill *rfkill)
166 {
167 	rfkill->led_trigger.name = rfkill->ledtrigname
168 					? : dev_name(&rfkill->dev);
169 	rfkill->led_trigger.activate = rfkill_led_trigger_activate;
170 	return led_trigger_register(&rfkill->led_trigger);
171 }
172 
173 static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
174 {
175 	led_trigger_unregister(&rfkill->led_trigger);
176 }
177 #else
178 static void rfkill_led_trigger_event(struct rfkill *rfkill)
179 {
180 }
181 
182 static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
183 {
184 	return 0;
185 }
186 
187 static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
188 {
189 }
190 #endif /* CONFIG_RFKILL_LEDS */
191 
192 static void rfkill_fill_event(struct rfkill_event *ev, struct rfkill *rfkill,
193 			      enum rfkill_operation op)
194 {
195 	unsigned long flags;
196 
197 	ev->idx = rfkill->idx;
198 	ev->type = rfkill->type;
199 	ev->op = op;
200 
201 	spin_lock_irqsave(&rfkill->lock, flags);
202 	ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
203 	ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
204 					RFKILL_BLOCK_SW_PREV));
205 	spin_unlock_irqrestore(&rfkill->lock, flags);
206 }
207 
208 static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
209 {
210 	struct rfkill_data *data;
211 	struct rfkill_int_event *ev;
212 
213 	list_for_each_entry(data, &rfkill_fds, list) {
214 		ev = kzalloc(sizeof(*ev), GFP_KERNEL);
215 		if (!ev)
216 			continue;
217 		rfkill_fill_event(&ev->ev, rfkill, op);
218 		mutex_lock(&data->mtx);
219 		list_add_tail(&ev->list, &data->events);
220 		mutex_unlock(&data->mtx);
221 		wake_up_interruptible(&data->read_wait);
222 	}
223 }
224 
225 static void rfkill_event(struct rfkill *rfkill)
226 {
227 	if (!rfkill->registered)
228 		return;
229 
230 	kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
231 
232 	/* also send event to /dev/rfkill */
233 	rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
234 }
235 
236 static bool __rfkill_set_hw_state(struct rfkill *rfkill,
237 				  bool blocked, bool *change)
238 {
239 	unsigned long flags;
240 	bool prev, any;
241 
242 	BUG_ON(!rfkill);
243 
244 	spin_lock_irqsave(&rfkill->lock, flags);
245 	prev = !!(rfkill->state & RFKILL_BLOCK_HW);
246 	if (blocked)
247 		rfkill->state |= RFKILL_BLOCK_HW;
248 	else
249 		rfkill->state &= ~RFKILL_BLOCK_HW;
250 	*change = prev != blocked;
251 	any = rfkill->state & RFKILL_BLOCK_ANY;
252 	spin_unlock_irqrestore(&rfkill->lock, flags);
253 
254 	rfkill_led_trigger_event(rfkill);
255 
256 	return any;
257 }
258 
259 /**
260  * rfkill_set_block - wrapper for set_block method
261  *
262  * @rfkill: the rfkill struct to use
263  * @blocked: the new software state
264  *
265  * Calls the set_block method (when applicable) and handles notifications
266  * etc. as well.
267  */
268 static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
269 {
270 	unsigned long flags;
271 	int err;
272 
273 	if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
274 		return;
275 
276 	/*
277 	 * Some platforms (...!) generate input events which affect the
278 	 * _hard_ kill state -- whenever something tries to change the
279 	 * current software state query the hardware state too.
280 	 */
281 	if (rfkill->ops->query)
282 		rfkill->ops->query(rfkill, rfkill->data);
283 
284 	spin_lock_irqsave(&rfkill->lock, flags);
285 	if (rfkill->state & RFKILL_BLOCK_SW)
286 		rfkill->state |= RFKILL_BLOCK_SW_PREV;
287 	else
288 		rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
289 
290 	if (blocked)
291 		rfkill->state |= RFKILL_BLOCK_SW;
292 	else
293 		rfkill->state &= ~RFKILL_BLOCK_SW;
294 
295 	rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
296 	spin_unlock_irqrestore(&rfkill->lock, flags);
297 
298 	err = rfkill->ops->set_block(rfkill->data, blocked);
299 
300 	spin_lock_irqsave(&rfkill->lock, flags);
301 	if (err) {
302 		/*
303 		 * Failed -- reset status to _prev, this may be different
304 		 * from what set set _PREV to earlier in this function
305 		 * if rfkill_set_sw_state was invoked.
306 		 */
307 		if (rfkill->state & RFKILL_BLOCK_SW_PREV)
308 			rfkill->state |= RFKILL_BLOCK_SW;
309 		else
310 			rfkill->state &= ~RFKILL_BLOCK_SW;
311 	}
312 	rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
313 	rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
314 	spin_unlock_irqrestore(&rfkill->lock, flags);
315 
316 	rfkill_led_trigger_event(rfkill);
317 	rfkill_event(rfkill);
318 }
319 
320 #ifdef CONFIG_RFKILL_INPUT
321 static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
322 
323 /**
324  * __rfkill_switch_all - Toggle state of all switches of given type
325  * @type: type of interfaces to be affected
326  * @state: the new state
327  *
328  * This function sets the state of all switches of given type,
329  * unless a specific switch is claimed by userspace (in which case,
330  * that switch is left alone) or suspended.
331  *
332  * Caller must have acquired rfkill_global_mutex.
333  */
334 static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
335 {
336 	struct rfkill *rfkill;
337 
338 	rfkill_global_states[type].cur = blocked;
339 	list_for_each_entry(rfkill, &rfkill_list, node) {
340 		if (rfkill->type != type)
341 			continue;
342 
343 		rfkill_set_block(rfkill, blocked);
344 	}
345 }
346 
347 /**
348  * rfkill_switch_all - Toggle state of all switches of given type
349  * @type: type of interfaces to be affected
350  * @state: the new state
351  *
352  * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
353  * Please refer to __rfkill_switch_all() for details.
354  *
355  * Does nothing if the EPO lock is active.
356  */
357 void rfkill_switch_all(enum rfkill_type type, bool blocked)
358 {
359 	if (atomic_read(&rfkill_input_disabled))
360 		return;
361 
362 	mutex_lock(&rfkill_global_mutex);
363 
364 	if (!rfkill_epo_lock_active)
365 		__rfkill_switch_all(type, blocked);
366 
367 	mutex_unlock(&rfkill_global_mutex);
368 }
369 
370 /**
371  * rfkill_epo - emergency power off all transmitters
372  *
373  * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
374  * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
375  *
376  * The global state before the EPO is saved and can be restored later
377  * using rfkill_restore_states().
378  */
379 void rfkill_epo(void)
380 {
381 	struct rfkill *rfkill;
382 	int i;
383 
384 	if (atomic_read(&rfkill_input_disabled))
385 		return;
386 
387 	mutex_lock(&rfkill_global_mutex);
388 
389 	rfkill_epo_lock_active = true;
390 	list_for_each_entry(rfkill, &rfkill_list, node)
391 		rfkill_set_block(rfkill, true);
392 
393 	for (i = 0; i < NUM_RFKILL_TYPES; i++) {
394 		rfkill_global_states[i].sav = rfkill_global_states[i].cur;
395 		rfkill_global_states[i].cur = true;
396 	}
397 
398 	mutex_unlock(&rfkill_global_mutex);
399 }
400 
401 /**
402  * rfkill_restore_states - restore global states
403  *
404  * Restore (and sync switches to) the global state from the
405  * states in rfkill_default_states.  This can undo the effects of
406  * a call to rfkill_epo().
407  */
408 void rfkill_restore_states(void)
409 {
410 	int i;
411 
412 	if (atomic_read(&rfkill_input_disabled))
413 		return;
414 
415 	mutex_lock(&rfkill_global_mutex);
416 
417 	rfkill_epo_lock_active = false;
418 	for (i = 0; i < NUM_RFKILL_TYPES; i++)
419 		__rfkill_switch_all(i, rfkill_global_states[i].sav);
420 	mutex_unlock(&rfkill_global_mutex);
421 }
422 
423 /**
424  * rfkill_remove_epo_lock - unlock state changes
425  *
426  * Used by rfkill-input manually unlock state changes, when
427  * the EPO switch is deactivated.
428  */
429 void rfkill_remove_epo_lock(void)
430 {
431 	if (atomic_read(&rfkill_input_disabled))
432 		return;
433 
434 	mutex_lock(&rfkill_global_mutex);
435 	rfkill_epo_lock_active = false;
436 	mutex_unlock(&rfkill_global_mutex);
437 }
438 
439 /**
440  * rfkill_is_epo_lock_active - returns true EPO is active
441  *
442  * Returns 0 (false) if there is NOT an active EPO contidion,
443  * and 1 (true) if there is an active EPO contition, which
444  * locks all radios in one of the BLOCKED states.
445  *
446  * Can be called in atomic context.
447  */
448 bool rfkill_is_epo_lock_active(void)
449 {
450 	return rfkill_epo_lock_active;
451 }
452 
453 /**
454  * rfkill_get_global_sw_state - returns global state for a type
455  * @type: the type to get the global state of
456  *
457  * Returns the current global state for a given wireless
458  * device type.
459  */
460 bool rfkill_get_global_sw_state(const enum rfkill_type type)
461 {
462 	return rfkill_global_states[type].cur;
463 }
464 #endif
465 
466 
467 bool rfkill_set_hw_state(struct rfkill *rfkill, bool blocked)
468 {
469 	bool ret, change;
470 
471 	ret = __rfkill_set_hw_state(rfkill, blocked, &change);
472 
473 	if (!rfkill->registered)
474 		return ret;
475 
476 	if (change)
477 		schedule_work(&rfkill->uevent_work);
478 
479 	return ret;
480 }
481 EXPORT_SYMBOL(rfkill_set_hw_state);
482 
483 static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
484 {
485 	u32 bit = RFKILL_BLOCK_SW;
486 
487 	/* if in a ops->set_block right now, use other bit */
488 	if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
489 		bit = RFKILL_BLOCK_SW_PREV;
490 
491 	if (blocked)
492 		rfkill->state |= bit;
493 	else
494 		rfkill->state &= ~bit;
495 }
496 
497 bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
498 {
499 	unsigned long flags;
500 	bool prev, hwblock;
501 
502 	BUG_ON(!rfkill);
503 
504 	spin_lock_irqsave(&rfkill->lock, flags);
505 	prev = !!(rfkill->state & RFKILL_BLOCK_SW);
506 	__rfkill_set_sw_state(rfkill, blocked);
507 	hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
508 	blocked = blocked || hwblock;
509 	spin_unlock_irqrestore(&rfkill->lock, flags);
510 
511 	if (!rfkill->registered)
512 		return blocked;
513 
514 	if (prev != blocked && !hwblock)
515 		schedule_work(&rfkill->uevent_work);
516 
517 	rfkill_led_trigger_event(rfkill);
518 
519 	return blocked;
520 }
521 EXPORT_SYMBOL(rfkill_set_sw_state);
522 
523 void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
524 {
525 	unsigned long flags;
526 
527 	BUG_ON(!rfkill);
528 	BUG_ON(rfkill->registered);
529 
530 	spin_lock_irqsave(&rfkill->lock, flags);
531 	__rfkill_set_sw_state(rfkill, blocked);
532 	rfkill->persistent = true;
533 	spin_unlock_irqrestore(&rfkill->lock, flags);
534 }
535 EXPORT_SYMBOL(rfkill_init_sw_state);
536 
537 void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
538 {
539 	unsigned long flags;
540 	bool swprev, hwprev;
541 
542 	BUG_ON(!rfkill);
543 
544 	spin_lock_irqsave(&rfkill->lock, flags);
545 
546 	/*
547 	 * No need to care about prev/setblock ... this is for uevent only
548 	 * and that will get triggered by rfkill_set_block anyway.
549 	 */
550 	swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
551 	hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
552 	__rfkill_set_sw_state(rfkill, sw);
553 	if (hw)
554 		rfkill->state |= RFKILL_BLOCK_HW;
555 	else
556 		rfkill->state &= ~RFKILL_BLOCK_HW;
557 
558 	spin_unlock_irqrestore(&rfkill->lock, flags);
559 
560 	if (!rfkill->registered) {
561 		rfkill->persistent = true;
562 	} else {
563 		if (swprev != sw || hwprev != hw)
564 			schedule_work(&rfkill->uevent_work);
565 
566 		rfkill_led_trigger_event(rfkill);
567 	}
568 }
569 EXPORT_SYMBOL(rfkill_set_states);
570 
571 static ssize_t rfkill_name_show(struct device *dev,
572 				struct device_attribute *attr,
573 				char *buf)
574 {
575 	struct rfkill *rfkill = to_rfkill(dev);
576 
577 	return sprintf(buf, "%s\n", rfkill->name);
578 }
579 
580 static const char *rfkill_get_type_str(enum rfkill_type type)
581 {
582 	switch (type) {
583 	case RFKILL_TYPE_WLAN:
584 		return "wlan";
585 	case RFKILL_TYPE_BLUETOOTH:
586 		return "bluetooth";
587 	case RFKILL_TYPE_UWB:
588 		return "ultrawideband";
589 	case RFKILL_TYPE_WIMAX:
590 		return "wimax";
591 	case RFKILL_TYPE_WWAN:
592 		return "wwan";
593 	case RFKILL_TYPE_GPS:
594 		return "gps";
595 	default:
596 		BUG();
597 	}
598 
599 	BUILD_BUG_ON(NUM_RFKILL_TYPES != RFKILL_TYPE_GPS + 1);
600 }
601 
602 static ssize_t rfkill_type_show(struct device *dev,
603 				struct device_attribute *attr,
604 				char *buf)
605 {
606 	struct rfkill *rfkill = to_rfkill(dev);
607 
608 	return sprintf(buf, "%s\n", rfkill_get_type_str(rfkill->type));
609 }
610 
611 static ssize_t rfkill_idx_show(struct device *dev,
612 			       struct device_attribute *attr,
613 			       char *buf)
614 {
615 	struct rfkill *rfkill = to_rfkill(dev);
616 
617 	return sprintf(buf, "%d\n", rfkill->idx);
618 }
619 
620 static ssize_t rfkill_persistent_show(struct device *dev,
621 			       struct device_attribute *attr,
622 			       char *buf)
623 {
624 	struct rfkill *rfkill = to_rfkill(dev);
625 
626 	return sprintf(buf, "%d\n", rfkill->persistent);
627 }
628 
629 static u8 user_state_from_blocked(unsigned long state)
630 {
631 	if (state & RFKILL_BLOCK_HW)
632 		return RFKILL_USER_STATE_HARD_BLOCKED;
633 	if (state & RFKILL_BLOCK_SW)
634 		return RFKILL_USER_STATE_SOFT_BLOCKED;
635 
636 	return RFKILL_USER_STATE_UNBLOCKED;
637 }
638 
639 static ssize_t rfkill_state_show(struct device *dev,
640 				 struct device_attribute *attr,
641 				 char *buf)
642 {
643 	struct rfkill *rfkill = to_rfkill(dev);
644 	unsigned long flags;
645 	u32 state;
646 
647 	spin_lock_irqsave(&rfkill->lock, flags);
648 	state = rfkill->state;
649 	spin_unlock_irqrestore(&rfkill->lock, flags);
650 
651 	return sprintf(buf, "%d\n", user_state_from_blocked(state));
652 }
653 
654 static ssize_t rfkill_state_store(struct device *dev,
655 				  struct device_attribute *attr,
656 				  const char *buf, size_t count)
657 {
658 	struct rfkill *rfkill = to_rfkill(dev);
659 	unsigned long state;
660 	int err;
661 
662 	if (!capable(CAP_NET_ADMIN))
663 		return -EPERM;
664 
665 	err = strict_strtoul(buf, 0, &state);
666 	if (err)
667 		return err;
668 
669 	if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
670 	    state != RFKILL_USER_STATE_UNBLOCKED)
671 		return -EINVAL;
672 
673 	mutex_lock(&rfkill_global_mutex);
674 	rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
675 	mutex_unlock(&rfkill_global_mutex);
676 
677 	return err ?: count;
678 }
679 
680 static ssize_t rfkill_claim_show(struct device *dev,
681 				 struct device_attribute *attr,
682 				 char *buf)
683 {
684 	return sprintf(buf, "%d\n", 0);
685 }
686 
687 static ssize_t rfkill_claim_store(struct device *dev,
688 				  struct device_attribute *attr,
689 				  const char *buf, size_t count)
690 {
691 	return -EOPNOTSUPP;
692 }
693 
694 static struct device_attribute rfkill_dev_attrs[] = {
695 	__ATTR(name, S_IRUGO, rfkill_name_show, NULL),
696 	__ATTR(type, S_IRUGO, rfkill_type_show, NULL),
697 	__ATTR(index, S_IRUGO, rfkill_idx_show, NULL),
698 	__ATTR(persistent, S_IRUGO, rfkill_persistent_show, NULL),
699 	__ATTR(state, S_IRUGO|S_IWUSR, rfkill_state_show, rfkill_state_store),
700 	__ATTR(claim, S_IRUGO|S_IWUSR, rfkill_claim_show, rfkill_claim_store),
701 	__ATTR_NULL
702 };
703 
704 static void rfkill_release(struct device *dev)
705 {
706 	struct rfkill *rfkill = to_rfkill(dev);
707 
708 	kfree(rfkill);
709 }
710 
711 static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
712 {
713 	struct rfkill *rfkill = to_rfkill(dev);
714 	unsigned long flags;
715 	u32 state;
716 	int error;
717 
718 	error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
719 	if (error)
720 		return error;
721 	error = add_uevent_var(env, "RFKILL_TYPE=%s",
722 			       rfkill_get_type_str(rfkill->type));
723 	if (error)
724 		return error;
725 	spin_lock_irqsave(&rfkill->lock, flags);
726 	state = rfkill->state;
727 	spin_unlock_irqrestore(&rfkill->lock, flags);
728 	error = add_uevent_var(env, "RFKILL_STATE=%d",
729 			       user_state_from_blocked(state));
730 	return error;
731 }
732 
733 void rfkill_pause_polling(struct rfkill *rfkill)
734 {
735 	BUG_ON(!rfkill);
736 
737 	if (!rfkill->ops->poll)
738 		return;
739 
740 	cancel_delayed_work_sync(&rfkill->poll_work);
741 }
742 EXPORT_SYMBOL(rfkill_pause_polling);
743 
744 void rfkill_resume_polling(struct rfkill *rfkill)
745 {
746 	BUG_ON(!rfkill);
747 
748 	if (!rfkill->ops->poll)
749 		return;
750 
751 	schedule_work(&rfkill->poll_work.work);
752 }
753 EXPORT_SYMBOL(rfkill_resume_polling);
754 
755 static int rfkill_suspend(struct device *dev, pm_message_t state)
756 {
757 	struct rfkill *rfkill = to_rfkill(dev);
758 
759 	rfkill_pause_polling(rfkill);
760 
761 	return 0;
762 }
763 
764 static int rfkill_resume(struct device *dev)
765 {
766 	struct rfkill *rfkill = to_rfkill(dev);
767 	bool cur;
768 
769 	if (!rfkill->persistent) {
770 		cur = !!(rfkill->state & RFKILL_BLOCK_SW);
771 		rfkill_set_block(rfkill, cur);
772 	}
773 
774 	rfkill_resume_polling(rfkill);
775 
776 	return 0;
777 }
778 
779 static struct class rfkill_class = {
780 	.name		= "rfkill",
781 	.dev_release	= rfkill_release,
782 	.dev_attrs	= rfkill_dev_attrs,
783 	.dev_uevent	= rfkill_dev_uevent,
784 	.suspend	= rfkill_suspend,
785 	.resume		= rfkill_resume,
786 };
787 
788 bool rfkill_blocked(struct rfkill *rfkill)
789 {
790 	unsigned long flags;
791 	u32 state;
792 
793 	spin_lock_irqsave(&rfkill->lock, flags);
794 	state = rfkill->state;
795 	spin_unlock_irqrestore(&rfkill->lock, flags);
796 
797 	return !!(state & RFKILL_BLOCK_ANY);
798 }
799 EXPORT_SYMBOL(rfkill_blocked);
800 
801 
802 struct rfkill * __must_check rfkill_alloc(const char *name,
803 					  struct device *parent,
804 					  const enum rfkill_type type,
805 					  const struct rfkill_ops *ops,
806 					  void *ops_data)
807 {
808 	struct rfkill *rfkill;
809 	struct device *dev;
810 
811 	if (WARN_ON(!ops))
812 		return NULL;
813 
814 	if (WARN_ON(!ops->set_block))
815 		return NULL;
816 
817 	if (WARN_ON(!name))
818 		return NULL;
819 
820 	if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
821 		return NULL;
822 
823 	rfkill = kzalloc(sizeof(*rfkill), GFP_KERNEL);
824 	if (!rfkill)
825 		return NULL;
826 
827 	spin_lock_init(&rfkill->lock);
828 	INIT_LIST_HEAD(&rfkill->node);
829 	rfkill->type = type;
830 	rfkill->name = name;
831 	rfkill->ops = ops;
832 	rfkill->data = ops_data;
833 
834 	dev = &rfkill->dev;
835 	dev->class = &rfkill_class;
836 	dev->parent = parent;
837 	device_initialize(dev);
838 
839 	return rfkill;
840 }
841 EXPORT_SYMBOL(rfkill_alloc);
842 
843 static void rfkill_poll(struct work_struct *work)
844 {
845 	struct rfkill *rfkill;
846 
847 	rfkill = container_of(work, struct rfkill, poll_work.work);
848 
849 	/*
850 	 * Poll hardware state -- driver will use one of the
851 	 * rfkill_set{,_hw,_sw}_state functions and use its
852 	 * return value to update the current status.
853 	 */
854 	rfkill->ops->poll(rfkill, rfkill->data);
855 
856 	schedule_delayed_work(&rfkill->poll_work,
857 		round_jiffies_relative(POLL_INTERVAL));
858 }
859 
860 static void rfkill_uevent_work(struct work_struct *work)
861 {
862 	struct rfkill *rfkill;
863 
864 	rfkill = container_of(work, struct rfkill, uevent_work);
865 
866 	mutex_lock(&rfkill_global_mutex);
867 	rfkill_event(rfkill);
868 	mutex_unlock(&rfkill_global_mutex);
869 }
870 
871 static void rfkill_sync_work(struct work_struct *work)
872 {
873 	struct rfkill *rfkill;
874 	bool cur;
875 
876 	rfkill = container_of(work, struct rfkill, sync_work);
877 
878 	mutex_lock(&rfkill_global_mutex);
879 	cur = rfkill_global_states[rfkill->type].cur;
880 	rfkill_set_block(rfkill, cur);
881 	mutex_unlock(&rfkill_global_mutex);
882 }
883 
884 int __must_check rfkill_register(struct rfkill *rfkill)
885 {
886 	static unsigned long rfkill_no;
887 	struct device *dev = &rfkill->dev;
888 	int error;
889 
890 	BUG_ON(!rfkill);
891 
892 	mutex_lock(&rfkill_global_mutex);
893 
894 	if (rfkill->registered) {
895 		error = -EALREADY;
896 		goto unlock;
897 	}
898 
899 	rfkill->idx = rfkill_no;
900 	dev_set_name(dev, "rfkill%lu", rfkill_no);
901 	rfkill_no++;
902 
903 	list_add_tail(&rfkill->node, &rfkill_list);
904 
905 	error = device_add(dev);
906 	if (error)
907 		goto remove;
908 
909 	error = rfkill_led_trigger_register(rfkill);
910 	if (error)
911 		goto devdel;
912 
913 	rfkill->registered = true;
914 
915 	INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
916 	INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
917 	INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
918 
919 	if (rfkill->ops->poll)
920 		schedule_delayed_work(&rfkill->poll_work,
921 			round_jiffies_relative(POLL_INTERVAL));
922 
923 	if (!rfkill->persistent || rfkill_epo_lock_active) {
924 		schedule_work(&rfkill->sync_work);
925 	} else {
926 #ifdef CONFIG_RFKILL_INPUT
927 		bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
928 
929 		if (!atomic_read(&rfkill_input_disabled))
930 			__rfkill_switch_all(rfkill->type, soft_blocked);
931 #endif
932 	}
933 
934 	rfkill_send_events(rfkill, RFKILL_OP_ADD);
935 
936 	mutex_unlock(&rfkill_global_mutex);
937 	return 0;
938 
939  devdel:
940 	device_del(&rfkill->dev);
941  remove:
942 	list_del_init(&rfkill->node);
943  unlock:
944 	mutex_unlock(&rfkill_global_mutex);
945 	return error;
946 }
947 EXPORT_SYMBOL(rfkill_register);
948 
949 void rfkill_unregister(struct rfkill *rfkill)
950 {
951 	BUG_ON(!rfkill);
952 
953 	if (rfkill->ops->poll)
954 		cancel_delayed_work_sync(&rfkill->poll_work);
955 
956 	cancel_work_sync(&rfkill->uevent_work);
957 	cancel_work_sync(&rfkill->sync_work);
958 
959 	rfkill->registered = false;
960 
961 	device_del(&rfkill->dev);
962 
963 	mutex_lock(&rfkill_global_mutex);
964 	rfkill_send_events(rfkill, RFKILL_OP_DEL);
965 	list_del_init(&rfkill->node);
966 	mutex_unlock(&rfkill_global_mutex);
967 
968 	rfkill_led_trigger_unregister(rfkill);
969 }
970 EXPORT_SYMBOL(rfkill_unregister);
971 
972 void rfkill_destroy(struct rfkill *rfkill)
973 {
974 	if (rfkill)
975 		put_device(&rfkill->dev);
976 }
977 EXPORT_SYMBOL(rfkill_destroy);
978 
979 static int rfkill_fop_open(struct inode *inode, struct file *file)
980 {
981 	struct rfkill_data *data;
982 	struct rfkill *rfkill;
983 	struct rfkill_int_event *ev, *tmp;
984 
985 	data = kzalloc(sizeof(*data), GFP_KERNEL);
986 	if (!data)
987 		return -ENOMEM;
988 
989 	INIT_LIST_HEAD(&data->events);
990 	mutex_init(&data->mtx);
991 	init_waitqueue_head(&data->read_wait);
992 
993 	mutex_lock(&rfkill_global_mutex);
994 	mutex_lock(&data->mtx);
995 	/*
996 	 * start getting events from elsewhere but hold mtx to get
997 	 * startup events added first
998 	 */
999 	list_add(&data->list, &rfkill_fds);
1000 
1001 	list_for_each_entry(rfkill, &rfkill_list, node) {
1002 		ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1003 		if (!ev)
1004 			goto free;
1005 		rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1006 		list_add_tail(&ev->list, &data->events);
1007 	}
1008 	mutex_unlock(&data->mtx);
1009 	mutex_unlock(&rfkill_global_mutex);
1010 
1011 	file->private_data = data;
1012 
1013 	return nonseekable_open(inode, file);
1014 
1015  free:
1016 	mutex_unlock(&data->mtx);
1017 	mutex_unlock(&rfkill_global_mutex);
1018 	mutex_destroy(&data->mtx);
1019 	list_for_each_entry_safe(ev, tmp, &data->events, list)
1020 		kfree(ev);
1021 	kfree(data);
1022 	return -ENOMEM;
1023 }
1024 
1025 static unsigned int rfkill_fop_poll(struct file *file, poll_table *wait)
1026 {
1027 	struct rfkill_data *data = file->private_data;
1028 	unsigned int res = POLLOUT | POLLWRNORM;
1029 
1030 	poll_wait(file, &data->read_wait, wait);
1031 
1032 	mutex_lock(&data->mtx);
1033 	if (!list_empty(&data->events))
1034 		res = POLLIN | POLLRDNORM;
1035 	mutex_unlock(&data->mtx);
1036 
1037 	return res;
1038 }
1039 
1040 static bool rfkill_readable(struct rfkill_data *data)
1041 {
1042 	bool r;
1043 
1044 	mutex_lock(&data->mtx);
1045 	r = !list_empty(&data->events);
1046 	mutex_unlock(&data->mtx);
1047 
1048 	return r;
1049 }
1050 
1051 static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1052 			       size_t count, loff_t *pos)
1053 {
1054 	struct rfkill_data *data = file->private_data;
1055 	struct rfkill_int_event *ev;
1056 	unsigned long sz;
1057 	int ret;
1058 
1059 	mutex_lock(&data->mtx);
1060 
1061 	while (list_empty(&data->events)) {
1062 		if (file->f_flags & O_NONBLOCK) {
1063 			ret = -EAGAIN;
1064 			goto out;
1065 		}
1066 		mutex_unlock(&data->mtx);
1067 		ret = wait_event_interruptible(data->read_wait,
1068 					       rfkill_readable(data));
1069 		mutex_lock(&data->mtx);
1070 
1071 		if (ret)
1072 			goto out;
1073 	}
1074 
1075 	ev = list_first_entry(&data->events, struct rfkill_int_event,
1076 				list);
1077 
1078 	sz = min_t(unsigned long, sizeof(ev->ev), count);
1079 	ret = sz;
1080 	if (copy_to_user(buf, &ev->ev, sz))
1081 		ret = -EFAULT;
1082 
1083 	list_del(&ev->list);
1084 	kfree(ev);
1085  out:
1086 	mutex_unlock(&data->mtx);
1087 	return ret;
1088 }
1089 
1090 static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1091 				size_t count, loff_t *pos)
1092 {
1093 	struct rfkill *rfkill;
1094 	struct rfkill_event ev;
1095 
1096 	/* we don't need the 'hard' variable but accept it */
1097 	if (count < RFKILL_EVENT_SIZE_V1 - 1)
1098 		return -EINVAL;
1099 
1100 	/*
1101 	 * Copy as much data as we can accept into our 'ev' buffer,
1102 	 * but tell userspace how much we've copied so it can determine
1103 	 * our API version even in a write() call, if it cares.
1104 	 */
1105 	count = min(count, sizeof(ev));
1106 	if (copy_from_user(&ev, buf, count))
1107 		return -EFAULT;
1108 
1109 	if (ev.op != RFKILL_OP_CHANGE && ev.op != RFKILL_OP_CHANGE_ALL)
1110 		return -EINVAL;
1111 
1112 	if (ev.type >= NUM_RFKILL_TYPES)
1113 		return -EINVAL;
1114 
1115 	mutex_lock(&rfkill_global_mutex);
1116 
1117 	if (ev.op == RFKILL_OP_CHANGE_ALL) {
1118 		if (ev.type == RFKILL_TYPE_ALL) {
1119 			enum rfkill_type i;
1120 			for (i = 0; i < NUM_RFKILL_TYPES; i++)
1121 				rfkill_global_states[i].cur = ev.soft;
1122 		} else {
1123 			rfkill_global_states[ev.type].cur = ev.soft;
1124 		}
1125 	}
1126 
1127 	list_for_each_entry(rfkill, &rfkill_list, node) {
1128 		if (rfkill->idx != ev.idx && ev.op != RFKILL_OP_CHANGE_ALL)
1129 			continue;
1130 
1131 		if (rfkill->type != ev.type && ev.type != RFKILL_TYPE_ALL)
1132 			continue;
1133 
1134 		rfkill_set_block(rfkill, ev.soft);
1135 	}
1136 	mutex_unlock(&rfkill_global_mutex);
1137 
1138 	return count;
1139 }
1140 
1141 static int rfkill_fop_release(struct inode *inode, struct file *file)
1142 {
1143 	struct rfkill_data *data = file->private_data;
1144 	struct rfkill_int_event *ev, *tmp;
1145 
1146 	mutex_lock(&rfkill_global_mutex);
1147 	list_del(&data->list);
1148 	mutex_unlock(&rfkill_global_mutex);
1149 
1150 	mutex_destroy(&data->mtx);
1151 	list_for_each_entry_safe(ev, tmp, &data->events, list)
1152 		kfree(ev);
1153 
1154 #ifdef CONFIG_RFKILL_INPUT
1155 	if (data->input_handler)
1156 		if (atomic_dec_return(&rfkill_input_disabled) == 0)
1157 			printk(KERN_DEBUG "rfkill: input handler enabled\n");
1158 #endif
1159 
1160 	kfree(data);
1161 
1162 	return 0;
1163 }
1164 
1165 #ifdef CONFIG_RFKILL_INPUT
1166 static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1167 			     unsigned long arg)
1168 {
1169 	struct rfkill_data *data = file->private_data;
1170 
1171 	if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1172 		return -ENOSYS;
1173 
1174 	if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT)
1175 		return -ENOSYS;
1176 
1177 	mutex_lock(&data->mtx);
1178 
1179 	if (!data->input_handler) {
1180 		if (atomic_inc_return(&rfkill_input_disabled) == 1)
1181 			printk(KERN_DEBUG "rfkill: input handler disabled\n");
1182 		data->input_handler = true;
1183 	}
1184 
1185 	mutex_unlock(&data->mtx);
1186 
1187 	return 0;
1188 }
1189 #endif
1190 
1191 static const struct file_operations rfkill_fops = {
1192 	.open		= rfkill_fop_open,
1193 	.read		= rfkill_fop_read,
1194 	.write		= rfkill_fop_write,
1195 	.poll		= rfkill_fop_poll,
1196 	.release	= rfkill_fop_release,
1197 #ifdef CONFIG_RFKILL_INPUT
1198 	.unlocked_ioctl	= rfkill_fop_ioctl,
1199 	.compat_ioctl	= rfkill_fop_ioctl,
1200 #endif
1201 };
1202 
1203 static struct miscdevice rfkill_miscdev = {
1204 	.name	= "rfkill",
1205 	.fops	= &rfkill_fops,
1206 	.minor	= MISC_DYNAMIC_MINOR,
1207 };
1208 
1209 static int __init rfkill_init(void)
1210 {
1211 	int error;
1212 	int i;
1213 
1214 	for (i = 0; i < NUM_RFKILL_TYPES; i++)
1215 		rfkill_global_states[i].cur = !rfkill_default_state;
1216 
1217 	error = class_register(&rfkill_class);
1218 	if (error)
1219 		goto out;
1220 
1221 	error = misc_register(&rfkill_miscdev);
1222 	if (error) {
1223 		class_unregister(&rfkill_class);
1224 		goto out;
1225 	}
1226 
1227 #ifdef CONFIG_RFKILL_INPUT
1228 	error = rfkill_handler_init();
1229 	if (error) {
1230 		misc_deregister(&rfkill_miscdev);
1231 		class_unregister(&rfkill_class);
1232 		goto out;
1233 	}
1234 #endif
1235 
1236  out:
1237 	return error;
1238 }
1239 subsys_initcall(rfkill_init);
1240 
1241 static void __exit rfkill_exit(void)
1242 {
1243 #ifdef CONFIG_RFKILL_INPUT
1244 	rfkill_handler_exit();
1245 #endif
1246 	misc_deregister(&rfkill_miscdev);
1247 	class_unregister(&rfkill_class);
1248 }
1249 module_exit(rfkill_exit);
1250