xref: /openbmc/linux/net/rds/tcp_listen.c (revision 2874c5fd)
1 /*
2  * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/gfp.h>
35 #include <linux/in.h>
36 #include <net/tcp.h>
37 
38 #include "rds.h"
39 #include "tcp.h"
40 
41 int rds_tcp_keepalive(struct socket *sock)
42 {
43 	/* values below based on xs_udp_default_timeout */
44 	int keepidle = 5; /* send a probe 'keepidle' secs after last data */
45 	int keepcnt = 5; /* number of unack'ed probes before declaring dead */
46 	int keepalive = 1;
47 	int ret = 0;
48 
49 	ret = kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE,
50 				(char *)&keepalive, sizeof(keepalive));
51 	if (ret < 0)
52 		goto bail;
53 
54 	ret = kernel_setsockopt(sock, IPPROTO_TCP, TCP_KEEPCNT,
55 				(char *)&keepcnt, sizeof(keepcnt));
56 	if (ret < 0)
57 		goto bail;
58 
59 	ret = kernel_setsockopt(sock, IPPROTO_TCP, TCP_KEEPIDLE,
60 				(char *)&keepidle, sizeof(keepidle));
61 	if (ret < 0)
62 		goto bail;
63 
64 	/* KEEPINTVL is the interval between successive probes. We follow
65 	 * the model in xs_tcp_finish_connecting() and re-use keepidle.
66 	 */
67 	ret = kernel_setsockopt(sock, IPPROTO_TCP, TCP_KEEPINTVL,
68 				(char *)&keepidle, sizeof(keepidle));
69 bail:
70 	return ret;
71 }
72 
73 /* rds_tcp_accept_one_path(): if accepting on cp_index > 0, make sure the
74  * client's ipaddr < server's ipaddr. Otherwise, close the accepted
75  * socket and force a reconneect from smaller -> larger ip addr. The reason
76  * we special case cp_index 0 is to allow the rds probe ping itself to itself
77  * get through efficiently.
78  * Since reconnects are only initiated from the node with the numerically
79  * smaller ip address, we recycle conns in RDS_CONN_ERROR on the passive side
80  * by moving them to CONNECTING in this function.
81  */
82 static
83 struct rds_tcp_connection *rds_tcp_accept_one_path(struct rds_connection *conn)
84 {
85 	int i;
86 	int npaths = max_t(int, 1, conn->c_npaths);
87 
88 	/* for mprds, all paths MUST be initiated by the peer
89 	 * with the smaller address.
90 	 */
91 	if (rds_addr_cmp(&conn->c_faddr, &conn->c_laddr) >= 0) {
92 		/* Make sure we initiate at least one path if this
93 		 * has not already been done; rds_start_mprds() will
94 		 * take care of additional paths, if necessary.
95 		 */
96 		if (npaths == 1)
97 			rds_conn_path_connect_if_down(&conn->c_path[0]);
98 		return NULL;
99 	}
100 
101 	for (i = 0; i < npaths; i++) {
102 		struct rds_conn_path *cp = &conn->c_path[i];
103 
104 		if (rds_conn_path_transition(cp, RDS_CONN_DOWN,
105 					     RDS_CONN_CONNECTING) ||
106 		    rds_conn_path_transition(cp, RDS_CONN_ERROR,
107 					     RDS_CONN_CONNECTING)) {
108 			return cp->cp_transport_data;
109 		}
110 	}
111 	return NULL;
112 }
113 
114 void rds_tcp_set_linger(struct socket *sock)
115 {
116 	struct linger no_linger = {
117 		.l_onoff = 1,
118 		.l_linger = 0,
119 	};
120 
121 	kernel_setsockopt(sock, SOL_SOCKET, SO_LINGER,
122 			  (char *)&no_linger, sizeof(no_linger));
123 }
124 
125 int rds_tcp_accept_one(struct socket *sock)
126 {
127 	struct socket *new_sock = NULL;
128 	struct rds_connection *conn;
129 	int ret;
130 	struct inet_sock *inet;
131 	struct rds_tcp_connection *rs_tcp = NULL;
132 	int conn_state;
133 	struct rds_conn_path *cp;
134 	struct in6_addr *my_addr, *peer_addr;
135 #if !IS_ENABLED(CONFIG_IPV6)
136 	struct in6_addr saddr, daddr;
137 #endif
138 	int dev_if = 0;
139 
140 	if (!sock) /* module unload or netns delete in progress */
141 		return -ENETUNREACH;
142 
143 	ret = sock_create_lite(sock->sk->sk_family,
144 			       sock->sk->sk_type, sock->sk->sk_protocol,
145 			       &new_sock);
146 	if (ret)
147 		goto out;
148 
149 	ret = sock->ops->accept(sock, new_sock, O_NONBLOCK, true);
150 	if (ret < 0)
151 		goto out;
152 
153 	/* sock_create_lite() does not get a hold on the owner module so we
154 	 * need to do it here.  Note that sock_release() uses sock->ops to
155 	 * determine if it needs to decrement the reference count.  So set
156 	 * sock->ops after calling accept() in case that fails.  And there's
157 	 * no need to do try_module_get() as the listener should have a hold
158 	 * already.
159 	 */
160 	new_sock->ops = sock->ops;
161 	__module_get(new_sock->ops->owner);
162 
163 	ret = rds_tcp_keepalive(new_sock);
164 	if (ret < 0)
165 		goto out;
166 
167 	rds_tcp_tune(new_sock);
168 
169 	inet = inet_sk(new_sock->sk);
170 
171 #if IS_ENABLED(CONFIG_IPV6)
172 	my_addr = &new_sock->sk->sk_v6_rcv_saddr;
173 	peer_addr = &new_sock->sk->sk_v6_daddr;
174 #else
175 	ipv6_addr_set_v4mapped(inet->inet_saddr, &saddr);
176 	ipv6_addr_set_v4mapped(inet->inet_daddr, &daddr);
177 	my_addr = &saddr;
178 	peer_addr = &daddr;
179 #endif
180 	rdsdebug("accepted family %d tcp %pI6c:%u -> %pI6c:%u\n",
181 		 sock->sk->sk_family,
182 		 my_addr, ntohs(inet->inet_sport),
183 		 peer_addr, ntohs(inet->inet_dport));
184 
185 #if IS_ENABLED(CONFIG_IPV6)
186 	/* sk_bound_dev_if is not set if the peer address is not link local
187 	 * address.  In this case, it happens that mcast_oif is set.  So
188 	 * just use it.
189 	 */
190 	if ((ipv6_addr_type(my_addr) & IPV6_ADDR_LINKLOCAL) &&
191 	    !(ipv6_addr_type(peer_addr) & IPV6_ADDR_LINKLOCAL)) {
192 		struct ipv6_pinfo *inet6;
193 
194 		inet6 = inet6_sk(new_sock->sk);
195 		dev_if = inet6->mcast_oif;
196 	} else {
197 		dev_if = new_sock->sk->sk_bound_dev_if;
198 	}
199 #endif
200 
201 	conn = rds_conn_create(sock_net(sock->sk),
202 			       my_addr, peer_addr,
203 			       &rds_tcp_transport, 0, GFP_KERNEL, dev_if);
204 
205 	if (IS_ERR(conn)) {
206 		ret = PTR_ERR(conn);
207 		goto out;
208 	}
209 	/* An incoming SYN request came in, and TCP just accepted it.
210 	 *
211 	 * If the client reboots, this conn will need to be cleaned up.
212 	 * rds_tcp_state_change() will do that cleanup
213 	 */
214 	rs_tcp = rds_tcp_accept_one_path(conn);
215 	if (!rs_tcp)
216 		goto rst_nsk;
217 	mutex_lock(&rs_tcp->t_conn_path_lock);
218 	cp = rs_tcp->t_cpath;
219 	conn_state = rds_conn_path_state(cp);
220 	WARN_ON(conn_state == RDS_CONN_UP);
221 	if (conn_state != RDS_CONN_CONNECTING && conn_state != RDS_CONN_ERROR)
222 		goto rst_nsk;
223 	if (rs_tcp->t_sock) {
224 		/* Duelling SYN has been handled in rds_tcp_accept_one() */
225 		rds_tcp_reset_callbacks(new_sock, cp);
226 		/* rds_connect_path_complete() marks RDS_CONN_UP */
227 		rds_connect_path_complete(cp, RDS_CONN_RESETTING);
228 	} else {
229 		rds_tcp_set_callbacks(new_sock, cp);
230 		rds_connect_path_complete(cp, RDS_CONN_CONNECTING);
231 	}
232 	new_sock = NULL;
233 	ret = 0;
234 	if (conn->c_npaths == 0)
235 		rds_send_ping(cp->cp_conn, cp->cp_index);
236 	goto out;
237 rst_nsk:
238 	/* reset the newly returned accept sock and bail.
239 	 * It is safe to set linger on new_sock because the RDS connection
240 	 * has not been brought up on new_sock, so no RDS-level data could
241 	 * be pending on it. By setting linger, we achieve the side-effect
242 	 * of avoiding TIME_WAIT state on new_sock.
243 	 */
244 	rds_tcp_set_linger(new_sock);
245 	kernel_sock_shutdown(new_sock, SHUT_RDWR);
246 	ret = 0;
247 out:
248 	if (rs_tcp)
249 		mutex_unlock(&rs_tcp->t_conn_path_lock);
250 	if (new_sock)
251 		sock_release(new_sock);
252 	return ret;
253 }
254 
255 void rds_tcp_listen_data_ready(struct sock *sk)
256 {
257 	void (*ready)(struct sock *sk);
258 
259 	rdsdebug("listen data ready sk %p\n", sk);
260 
261 	read_lock_bh(&sk->sk_callback_lock);
262 	ready = sk->sk_user_data;
263 	if (!ready) { /* check for teardown race */
264 		ready = sk->sk_data_ready;
265 		goto out;
266 	}
267 
268 	/*
269 	 * ->sk_data_ready is also called for a newly established child socket
270 	 * before it has been accepted and the accepter has set up their
271 	 * data_ready.. we only want to queue listen work for our listening
272 	 * socket
273 	 *
274 	 * (*ready)() may be null if we are racing with netns delete, and
275 	 * the listen socket is being torn down.
276 	 */
277 	if (sk->sk_state == TCP_LISTEN)
278 		rds_tcp_accept_work(sk);
279 	else
280 		ready = rds_tcp_listen_sock_def_readable(sock_net(sk));
281 
282 out:
283 	read_unlock_bh(&sk->sk_callback_lock);
284 	if (ready)
285 		ready(sk);
286 }
287 
288 struct socket *rds_tcp_listen_init(struct net *net, bool isv6)
289 {
290 	struct socket *sock = NULL;
291 	struct sockaddr_storage ss;
292 	struct sockaddr_in6 *sin6;
293 	struct sockaddr_in *sin;
294 	int addr_len;
295 	int ret;
296 
297 	ret = sock_create_kern(net, isv6 ? PF_INET6 : PF_INET, SOCK_STREAM,
298 			       IPPROTO_TCP, &sock);
299 	if (ret < 0) {
300 		rdsdebug("could not create %s listener socket: %d\n",
301 			 isv6 ? "IPv6" : "IPv4", ret);
302 		goto out;
303 	}
304 
305 	sock->sk->sk_reuse = SK_CAN_REUSE;
306 	rds_tcp_nonagle(sock);
307 
308 	write_lock_bh(&sock->sk->sk_callback_lock);
309 	sock->sk->sk_user_data = sock->sk->sk_data_ready;
310 	sock->sk->sk_data_ready = rds_tcp_listen_data_ready;
311 	write_unlock_bh(&sock->sk->sk_callback_lock);
312 
313 	if (isv6) {
314 		sin6 = (struct sockaddr_in6 *)&ss;
315 		sin6->sin6_family = PF_INET6;
316 		sin6->sin6_addr = in6addr_any;
317 		sin6->sin6_port = (__force u16)htons(RDS_TCP_PORT);
318 		sin6->sin6_scope_id = 0;
319 		sin6->sin6_flowinfo = 0;
320 		addr_len = sizeof(*sin6);
321 	} else {
322 		sin = (struct sockaddr_in *)&ss;
323 		sin->sin_family = PF_INET;
324 		sin->sin_addr.s_addr = INADDR_ANY;
325 		sin->sin_port = (__force u16)htons(RDS_TCP_PORT);
326 		addr_len = sizeof(*sin);
327 	}
328 
329 	ret = sock->ops->bind(sock, (struct sockaddr *)&ss, addr_len);
330 	if (ret < 0) {
331 		rdsdebug("could not bind %s listener socket: %d\n",
332 			 isv6 ? "IPv6" : "IPv4", ret);
333 		goto out;
334 	}
335 
336 	ret = sock->ops->listen(sock, 64);
337 	if (ret < 0)
338 		goto out;
339 
340 	return sock;
341 out:
342 	if (sock)
343 		sock_release(sock);
344 	return NULL;
345 }
346 
347 void rds_tcp_listen_stop(struct socket *sock, struct work_struct *acceptor)
348 {
349 	struct sock *sk;
350 
351 	if (!sock)
352 		return;
353 
354 	sk = sock->sk;
355 
356 	/* serialize with and prevent further callbacks */
357 	lock_sock(sk);
358 	write_lock_bh(&sk->sk_callback_lock);
359 	if (sk->sk_user_data) {
360 		sk->sk_data_ready = sk->sk_user_data;
361 		sk->sk_user_data = NULL;
362 	}
363 	write_unlock_bh(&sk->sk_callback_lock);
364 	release_sock(sk);
365 
366 	/* wait for accepts to stop and close the socket */
367 	flush_workqueue(rds_wq);
368 	flush_work(acceptor);
369 	sock_release(sock);
370 }
371