xref: /openbmc/linux/net/rds/tcp.c (revision f97769fd)
1 /*
2  * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/in.h>
36 #include <linux/module.h>
37 #include <net/tcp.h>
38 #include <net/net_namespace.h>
39 #include <net/netns/generic.h>
40 #include <net/addrconf.h>
41 
42 #include "rds.h"
43 #include "tcp.h"
44 
45 /* only for info exporting */
46 static DEFINE_SPINLOCK(rds_tcp_tc_list_lock);
47 static LIST_HEAD(rds_tcp_tc_list);
48 
49 /* rds_tcp_tc_count counts only IPv4 connections.
50  * rds6_tcp_tc_count counts both IPv4 and IPv6 connections.
51  */
52 static unsigned int rds_tcp_tc_count;
53 #if IS_ENABLED(CONFIG_IPV6)
54 static unsigned int rds6_tcp_tc_count;
55 #endif
56 
57 /* Track rds_tcp_connection structs so they can be cleaned up */
58 static DEFINE_SPINLOCK(rds_tcp_conn_lock);
59 static LIST_HEAD(rds_tcp_conn_list);
60 static atomic_t rds_tcp_unloading = ATOMIC_INIT(0);
61 
62 static struct kmem_cache *rds_tcp_conn_slab;
63 
64 static int rds_tcp_skbuf_handler(struct ctl_table *ctl, int write,
65 				 void *buffer, size_t *lenp, loff_t *fpos);
66 
67 static int rds_tcp_min_sndbuf = SOCK_MIN_SNDBUF;
68 static int rds_tcp_min_rcvbuf = SOCK_MIN_RCVBUF;
69 
70 static struct ctl_table rds_tcp_sysctl_table[] = {
71 #define	RDS_TCP_SNDBUF	0
72 	{
73 		.procname       = "rds_tcp_sndbuf",
74 		/* data is per-net pointer */
75 		.maxlen         = sizeof(int),
76 		.mode           = 0644,
77 		.proc_handler   = rds_tcp_skbuf_handler,
78 		.extra1		= &rds_tcp_min_sndbuf,
79 	},
80 #define	RDS_TCP_RCVBUF	1
81 	{
82 		.procname       = "rds_tcp_rcvbuf",
83 		/* data is per-net pointer */
84 		.maxlen         = sizeof(int),
85 		.mode           = 0644,
86 		.proc_handler   = rds_tcp_skbuf_handler,
87 		.extra1		= &rds_tcp_min_rcvbuf,
88 	},
89 	{ }
90 };
91 
92 u32 rds_tcp_write_seq(struct rds_tcp_connection *tc)
93 {
94 	/* seq# of the last byte of data in tcp send buffer */
95 	return tcp_sk(tc->t_sock->sk)->write_seq;
96 }
97 
98 u32 rds_tcp_snd_una(struct rds_tcp_connection *tc)
99 {
100 	return tcp_sk(tc->t_sock->sk)->snd_una;
101 }
102 
103 void rds_tcp_restore_callbacks(struct socket *sock,
104 			       struct rds_tcp_connection *tc)
105 {
106 	rdsdebug("restoring sock %p callbacks from tc %p\n", sock, tc);
107 	write_lock_bh(&sock->sk->sk_callback_lock);
108 
109 	/* done under the callback_lock to serialize with write_space */
110 	spin_lock(&rds_tcp_tc_list_lock);
111 	list_del_init(&tc->t_list_item);
112 #if IS_ENABLED(CONFIG_IPV6)
113 	rds6_tcp_tc_count--;
114 #endif
115 	if (!tc->t_cpath->cp_conn->c_isv6)
116 		rds_tcp_tc_count--;
117 	spin_unlock(&rds_tcp_tc_list_lock);
118 
119 	tc->t_sock = NULL;
120 
121 	sock->sk->sk_write_space = tc->t_orig_write_space;
122 	sock->sk->sk_data_ready = tc->t_orig_data_ready;
123 	sock->sk->sk_state_change = tc->t_orig_state_change;
124 	sock->sk->sk_user_data = NULL;
125 
126 	write_unlock_bh(&sock->sk->sk_callback_lock);
127 }
128 
129 /*
130  * rds_tcp_reset_callbacks() switches the to the new sock and
131  * returns the existing tc->t_sock.
132  *
133  * The only functions that set tc->t_sock are rds_tcp_set_callbacks
134  * and rds_tcp_reset_callbacks.  Send and receive trust that
135  * it is set.  The absence of RDS_CONN_UP bit protects those paths
136  * from being called while it isn't set.
137  */
138 void rds_tcp_reset_callbacks(struct socket *sock,
139 			     struct rds_conn_path *cp)
140 {
141 	struct rds_tcp_connection *tc = cp->cp_transport_data;
142 	struct socket *osock = tc->t_sock;
143 
144 	if (!osock)
145 		goto newsock;
146 
147 	/* Need to resolve a duelling SYN between peers.
148 	 * We have an outstanding SYN to this peer, which may
149 	 * potentially have transitioned to the RDS_CONN_UP state,
150 	 * so we must quiesce any send threads before resetting
151 	 * cp_transport_data. We quiesce these threads by setting
152 	 * cp_state to something other than RDS_CONN_UP, and then
153 	 * waiting for any existing threads in rds_send_xmit to
154 	 * complete release_in_xmit(). (Subsequent threads entering
155 	 * rds_send_xmit() will bail on !rds_conn_up().
156 	 *
157 	 * However an incoming syn-ack at this point would end up
158 	 * marking the conn as RDS_CONN_UP, and would again permit
159 	 * rds_send_xmi() threads through, so ideally we would
160 	 * synchronize on RDS_CONN_UP after lock_sock(), but cannot
161 	 * do that: waiting on !RDS_IN_XMIT after lock_sock() may
162 	 * end up deadlocking with tcp_sendmsg(), and the RDS_IN_XMIT
163 	 * would not get set. As a result, we set c_state to
164 	 * RDS_CONN_RESETTTING, to ensure that rds_tcp_state_change
165 	 * cannot mark rds_conn_path_up() in the window before lock_sock()
166 	 */
167 	atomic_set(&cp->cp_state, RDS_CONN_RESETTING);
168 	wait_event(cp->cp_waitq, !test_bit(RDS_IN_XMIT, &cp->cp_flags));
169 	lock_sock(osock->sk);
170 	/* reset receive side state for rds_tcp_data_recv() for osock  */
171 	cancel_delayed_work_sync(&cp->cp_send_w);
172 	cancel_delayed_work_sync(&cp->cp_recv_w);
173 	if (tc->t_tinc) {
174 		rds_inc_put(&tc->t_tinc->ti_inc);
175 		tc->t_tinc = NULL;
176 	}
177 	tc->t_tinc_hdr_rem = sizeof(struct rds_header);
178 	tc->t_tinc_data_rem = 0;
179 	rds_tcp_restore_callbacks(osock, tc);
180 	release_sock(osock->sk);
181 	sock_release(osock);
182 newsock:
183 	rds_send_path_reset(cp);
184 	lock_sock(sock->sk);
185 	rds_tcp_set_callbacks(sock, cp);
186 	release_sock(sock->sk);
187 }
188 
189 /* Add tc to rds_tcp_tc_list and set tc->t_sock. See comments
190  * above rds_tcp_reset_callbacks for notes about synchronization
191  * with data path
192  */
193 void rds_tcp_set_callbacks(struct socket *sock, struct rds_conn_path *cp)
194 {
195 	struct rds_tcp_connection *tc = cp->cp_transport_data;
196 
197 	rdsdebug("setting sock %p callbacks to tc %p\n", sock, tc);
198 	write_lock_bh(&sock->sk->sk_callback_lock);
199 
200 	/* done under the callback_lock to serialize with write_space */
201 	spin_lock(&rds_tcp_tc_list_lock);
202 	list_add_tail(&tc->t_list_item, &rds_tcp_tc_list);
203 #if IS_ENABLED(CONFIG_IPV6)
204 	rds6_tcp_tc_count++;
205 #endif
206 	if (!tc->t_cpath->cp_conn->c_isv6)
207 		rds_tcp_tc_count++;
208 	spin_unlock(&rds_tcp_tc_list_lock);
209 
210 	/* accepted sockets need our listen data ready undone */
211 	if (sock->sk->sk_data_ready == rds_tcp_listen_data_ready)
212 		sock->sk->sk_data_ready = sock->sk->sk_user_data;
213 
214 	tc->t_sock = sock;
215 	tc->t_cpath = cp;
216 	tc->t_orig_data_ready = sock->sk->sk_data_ready;
217 	tc->t_orig_write_space = sock->sk->sk_write_space;
218 	tc->t_orig_state_change = sock->sk->sk_state_change;
219 
220 	sock->sk->sk_user_data = cp;
221 	sock->sk->sk_data_ready = rds_tcp_data_ready;
222 	sock->sk->sk_write_space = rds_tcp_write_space;
223 	sock->sk->sk_state_change = rds_tcp_state_change;
224 
225 	write_unlock_bh(&sock->sk->sk_callback_lock);
226 }
227 
228 /* Handle RDS_INFO_TCP_SOCKETS socket option.  It only returns IPv4
229  * connections for backward compatibility.
230  */
231 static void rds_tcp_tc_info(struct socket *rds_sock, unsigned int len,
232 			    struct rds_info_iterator *iter,
233 			    struct rds_info_lengths *lens)
234 {
235 	struct rds_info_tcp_socket tsinfo;
236 	struct rds_tcp_connection *tc;
237 	unsigned long flags;
238 
239 	spin_lock_irqsave(&rds_tcp_tc_list_lock, flags);
240 
241 	if (len / sizeof(tsinfo) < rds_tcp_tc_count)
242 		goto out;
243 
244 	list_for_each_entry(tc, &rds_tcp_tc_list, t_list_item) {
245 		struct inet_sock *inet = inet_sk(tc->t_sock->sk);
246 
247 		if (tc->t_cpath->cp_conn->c_isv6)
248 			continue;
249 
250 		tsinfo.local_addr = inet->inet_saddr;
251 		tsinfo.local_port = inet->inet_sport;
252 		tsinfo.peer_addr = inet->inet_daddr;
253 		tsinfo.peer_port = inet->inet_dport;
254 
255 		tsinfo.hdr_rem = tc->t_tinc_hdr_rem;
256 		tsinfo.data_rem = tc->t_tinc_data_rem;
257 		tsinfo.last_sent_nxt = tc->t_last_sent_nxt;
258 		tsinfo.last_expected_una = tc->t_last_expected_una;
259 		tsinfo.last_seen_una = tc->t_last_seen_una;
260 		tsinfo.tos = tc->t_cpath->cp_conn->c_tos;
261 
262 		rds_info_copy(iter, &tsinfo, sizeof(tsinfo));
263 	}
264 
265 out:
266 	lens->nr = rds_tcp_tc_count;
267 	lens->each = sizeof(tsinfo);
268 
269 	spin_unlock_irqrestore(&rds_tcp_tc_list_lock, flags);
270 }
271 
272 #if IS_ENABLED(CONFIG_IPV6)
273 /* Handle RDS6_INFO_TCP_SOCKETS socket option. It returns both IPv4 and
274  * IPv6 connections. IPv4 connection address is returned in an IPv4 mapped
275  * address.
276  */
277 static void rds6_tcp_tc_info(struct socket *sock, unsigned int len,
278 			     struct rds_info_iterator *iter,
279 			     struct rds_info_lengths *lens)
280 {
281 	struct rds6_info_tcp_socket tsinfo6;
282 	struct rds_tcp_connection *tc;
283 	unsigned long flags;
284 
285 	spin_lock_irqsave(&rds_tcp_tc_list_lock, flags);
286 
287 	if (len / sizeof(tsinfo6) < rds6_tcp_tc_count)
288 		goto out;
289 
290 	list_for_each_entry(tc, &rds_tcp_tc_list, t_list_item) {
291 		struct sock *sk = tc->t_sock->sk;
292 		struct inet_sock *inet = inet_sk(sk);
293 
294 		tsinfo6.local_addr = sk->sk_v6_rcv_saddr;
295 		tsinfo6.local_port = inet->inet_sport;
296 		tsinfo6.peer_addr = sk->sk_v6_daddr;
297 		tsinfo6.peer_port = inet->inet_dport;
298 
299 		tsinfo6.hdr_rem = tc->t_tinc_hdr_rem;
300 		tsinfo6.data_rem = tc->t_tinc_data_rem;
301 		tsinfo6.last_sent_nxt = tc->t_last_sent_nxt;
302 		tsinfo6.last_expected_una = tc->t_last_expected_una;
303 		tsinfo6.last_seen_una = tc->t_last_seen_una;
304 
305 		rds_info_copy(iter, &tsinfo6, sizeof(tsinfo6));
306 	}
307 
308 out:
309 	lens->nr = rds6_tcp_tc_count;
310 	lens->each = sizeof(tsinfo6);
311 
312 	spin_unlock_irqrestore(&rds_tcp_tc_list_lock, flags);
313 }
314 #endif
315 
316 static int rds_tcp_laddr_check(struct net *net, const struct in6_addr *addr,
317 			       __u32 scope_id)
318 {
319 	struct net_device *dev = NULL;
320 #if IS_ENABLED(CONFIG_IPV6)
321 	int ret;
322 #endif
323 
324 	if (ipv6_addr_v4mapped(addr)) {
325 		if (inet_addr_type(net, addr->s6_addr32[3]) == RTN_LOCAL)
326 			return 0;
327 		return -EADDRNOTAVAIL;
328 	}
329 
330 	/* If the scope_id is specified, check only those addresses
331 	 * hosted on the specified interface.
332 	 */
333 	if (scope_id != 0) {
334 		rcu_read_lock();
335 		dev = dev_get_by_index_rcu(net, scope_id);
336 		/* scope_id is not valid... */
337 		if (!dev) {
338 			rcu_read_unlock();
339 			return -EADDRNOTAVAIL;
340 		}
341 		rcu_read_unlock();
342 	}
343 #if IS_ENABLED(CONFIG_IPV6)
344 	ret = ipv6_chk_addr(net, addr, dev, 0);
345 	if (ret)
346 		return 0;
347 #endif
348 	return -EADDRNOTAVAIL;
349 }
350 
351 static void rds_tcp_conn_free(void *arg)
352 {
353 	struct rds_tcp_connection *tc = arg;
354 	unsigned long flags;
355 
356 	rdsdebug("freeing tc %p\n", tc);
357 
358 	spin_lock_irqsave(&rds_tcp_conn_lock, flags);
359 	if (!tc->t_tcp_node_detached)
360 		list_del(&tc->t_tcp_node);
361 	spin_unlock_irqrestore(&rds_tcp_conn_lock, flags);
362 
363 	kmem_cache_free(rds_tcp_conn_slab, tc);
364 }
365 
366 static int rds_tcp_conn_alloc(struct rds_connection *conn, gfp_t gfp)
367 {
368 	struct rds_tcp_connection *tc;
369 	int i, j;
370 	int ret = 0;
371 
372 	for (i = 0; i < RDS_MPATH_WORKERS; i++) {
373 		tc = kmem_cache_alloc(rds_tcp_conn_slab, gfp);
374 		if (!tc) {
375 			ret = -ENOMEM;
376 			goto fail;
377 		}
378 		mutex_init(&tc->t_conn_path_lock);
379 		tc->t_sock = NULL;
380 		tc->t_tinc = NULL;
381 		tc->t_tinc_hdr_rem = sizeof(struct rds_header);
382 		tc->t_tinc_data_rem = 0;
383 
384 		conn->c_path[i].cp_transport_data = tc;
385 		tc->t_cpath = &conn->c_path[i];
386 		tc->t_tcp_node_detached = true;
387 
388 		rdsdebug("rds_conn_path [%d] tc %p\n", i,
389 			 conn->c_path[i].cp_transport_data);
390 	}
391 	spin_lock_irq(&rds_tcp_conn_lock);
392 	for (i = 0; i < RDS_MPATH_WORKERS; i++) {
393 		tc = conn->c_path[i].cp_transport_data;
394 		tc->t_tcp_node_detached = false;
395 		list_add_tail(&tc->t_tcp_node, &rds_tcp_conn_list);
396 	}
397 	spin_unlock_irq(&rds_tcp_conn_lock);
398 fail:
399 	if (ret) {
400 		for (j = 0; j < i; j++)
401 			rds_tcp_conn_free(conn->c_path[j].cp_transport_data);
402 	}
403 	return ret;
404 }
405 
406 static bool list_has_conn(struct list_head *list, struct rds_connection *conn)
407 {
408 	struct rds_tcp_connection *tc, *_tc;
409 
410 	list_for_each_entry_safe(tc, _tc, list, t_tcp_node) {
411 		if (tc->t_cpath->cp_conn == conn)
412 			return true;
413 	}
414 	return false;
415 }
416 
417 static void rds_tcp_set_unloading(void)
418 {
419 	atomic_set(&rds_tcp_unloading, 1);
420 }
421 
422 static bool rds_tcp_is_unloading(struct rds_connection *conn)
423 {
424 	return atomic_read(&rds_tcp_unloading) != 0;
425 }
426 
427 static void rds_tcp_destroy_conns(void)
428 {
429 	struct rds_tcp_connection *tc, *_tc;
430 	LIST_HEAD(tmp_list);
431 
432 	/* avoid calling conn_destroy with irqs off */
433 	spin_lock_irq(&rds_tcp_conn_lock);
434 	list_for_each_entry_safe(tc, _tc, &rds_tcp_conn_list, t_tcp_node) {
435 		if (!list_has_conn(&tmp_list, tc->t_cpath->cp_conn))
436 			list_move_tail(&tc->t_tcp_node, &tmp_list);
437 	}
438 	spin_unlock_irq(&rds_tcp_conn_lock);
439 
440 	list_for_each_entry_safe(tc, _tc, &tmp_list, t_tcp_node)
441 		rds_conn_destroy(tc->t_cpath->cp_conn);
442 }
443 
444 static void rds_tcp_exit(void);
445 
446 static u8 rds_tcp_get_tos_map(u8 tos)
447 {
448 	/* all user tos mapped to default 0 for TCP transport */
449 	return 0;
450 }
451 
452 struct rds_transport rds_tcp_transport = {
453 	.laddr_check		= rds_tcp_laddr_check,
454 	.xmit_path_prepare	= rds_tcp_xmit_path_prepare,
455 	.xmit_path_complete	= rds_tcp_xmit_path_complete,
456 	.xmit			= rds_tcp_xmit,
457 	.recv_path		= rds_tcp_recv_path,
458 	.conn_alloc		= rds_tcp_conn_alloc,
459 	.conn_free		= rds_tcp_conn_free,
460 	.conn_path_connect	= rds_tcp_conn_path_connect,
461 	.conn_path_shutdown	= rds_tcp_conn_path_shutdown,
462 	.inc_copy_to_user	= rds_tcp_inc_copy_to_user,
463 	.inc_free		= rds_tcp_inc_free,
464 	.stats_info_copy	= rds_tcp_stats_info_copy,
465 	.exit			= rds_tcp_exit,
466 	.get_tos_map		= rds_tcp_get_tos_map,
467 	.t_owner		= THIS_MODULE,
468 	.t_name			= "tcp",
469 	.t_type			= RDS_TRANS_TCP,
470 	.t_prefer_loopback	= 1,
471 	.t_mp_capable		= 1,
472 	.t_unloading		= rds_tcp_is_unloading,
473 };
474 
475 static unsigned int rds_tcp_netid;
476 
477 /* per-network namespace private data for this module */
478 struct rds_tcp_net {
479 	struct socket *rds_tcp_listen_sock;
480 	struct work_struct rds_tcp_accept_w;
481 	struct ctl_table_header *rds_tcp_sysctl;
482 	struct ctl_table *ctl_table;
483 	int sndbuf_size;
484 	int rcvbuf_size;
485 };
486 
487 /* All module specific customizations to the RDS-TCP socket should be done in
488  * rds_tcp_tune() and applied after socket creation.
489  */
490 void rds_tcp_tune(struct socket *sock)
491 {
492 	struct sock *sk = sock->sk;
493 	struct net *net = sock_net(sk);
494 	struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid);
495 
496 	tcp_sock_set_nodelay(sock->sk);
497 	lock_sock(sk);
498 	if (rtn->sndbuf_size > 0) {
499 		sk->sk_sndbuf = rtn->sndbuf_size;
500 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
501 	}
502 	if (rtn->rcvbuf_size > 0) {
503 		sk->sk_sndbuf = rtn->rcvbuf_size;
504 		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
505 	}
506 	release_sock(sk);
507 }
508 
509 static void rds_tcp_accept_worker(struct work_struct *work)
510 {
511 	struct rds_tcp_net *rtn = container_of(work,
512 					       struct rds_tcp_net,
513 					       rds_tcp_accept_w);
514 
515 	while (rds_tcp_accept_one(rtn->rds_tcp_listen_sock) == 0)
516 		cond_resched();
517 }
518 
519 void rds_tcp_accept_work(struct sock *sk)
520 {
521 	struct net *net = sock_net(sk);
522 	struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid);
523 
524 	queue_work(rds_wq, &rtn->rds_tcp_accept_w);
525 }
526 
527 static __net_init int rds_tcp_init_net(struct net *net)
528 {
529 	struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid);
530 	struct ctl_table *tbl;
531 	int err = 0;
532 
533 	memset(rtn, 0, sizeof(*rtn));
534 
535 	/* {snd, rcv}buf_size default to 0, which implies we let the
536 	 * stack pick the value, and permit auto-tuning of buffer size.
537 	 */
538 	if (net == &init_net) {
539 		tbl = rds_tcp_sysctl_table;
540 	} else {
541 		tbl = kmemdup(rds_tcp_sysctl_table,
542 			      sizeof(rds_tcp_sysctl_table), GFP_KERNEL);
543 		if (!tbl) {
544 			pr_warn("could not set allocate sysctl table\n");
545 			return -ENOMEM;
546 		}
547 		rtn->ctl_table = tbl;
548 	}
549 	tbl[RDS_TCP_SNDBUF].data = &rtn->sndbuf_size;
550 	tbl[RDS_TCP_RCVBUF].data = &rtn->rcvbuf_size;
551 	rtn->rds_tcp_sysctl = register_net_sysctl(net, "net/rds/tcp", tbl);
552 	if (!rtn->rds_tcp_sysctl) {
553 		pr_warn("could not register sysctl\n");
554 		err = -ENOMEM;
555 		goto fail;
556 	}
557 
558 #if IS_ENABLED(CONFIG_IPV6)
559 	rtn->rds_tcp_listen_sock = rds_tcp_listen_init(net, true);
560 #else
561 	rtn->rds_tcp_listen_sock = rds_tcp_listen_init(net, false);
562 #endif
563 	if (!rtn->rds_tcp_listen_sock) {
564 		pr_warn("could not set up IPv6 listen sock\n");
565 
566 #if IS_ENABLED(CONFIG_IPV6)
567 		/* Try IPv4 as some systems disable IPv6 */
568 		rtn->rds_tcp_listen_sock = rds_tcp_listen_init(net, false);
569 		if (!rtn->rds_tcp_listen_sock) {
570 #endif
571 			unregister_net_sysctl_table(rtn->rds_tcp_sysctl);
572 			rtn->rds_tcp_sysctl = NULL;
573 			err = -EAFNOSUPPORT;
574 			goto fail;
575 #if IS_ENABLED(CONFIG_IPV6)
576 		}
577 #endif
578 	}
579 	INIT_WORK(&rtn->rds_tcp_accept_w, rds_tcp_accept_worker);
580 	return 0;
581 
582 fail:
583 	if (net != &init_net)
584 		kfree(tbl);
585 	return err;
586 }
587 
588 static void rds_tcp_kill_sock(struct net *net)
589 {
590 	struct rds_tcp_connection *tc, *_tc;
591 	LIST_HEAD(tmp_list);
592 	struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid);
593 	struct socket *lsock = rtn->rds_tcp_listen_sock;
594 
595 	rtn->rds_tcp_listen_sock = NULL;
596 	rds_tcp_listen_stop(lsock, &rtn->rds_tcp_accept_w);
597 	spin_lock_irq(&rds_tcp_conn_lock);
598 	list_for_each_entry_safe(tc, _tc, &rds_tcp_conn_list, t_tcp_node) {
599 		struct net *c_net = read_pnet(&tc->t_cpath->cp_conn->c_net);
600 
601 		if (net != c_net)
602 			continue;
603 		if (!list_has_conn(&tmp_list, tc->t_cpath->cp_conn)) {
604 			list_move_tail(&tc->t_tcp_node, &tmp_list);
605 		} else {
606 			list_del(&tc->t_tcp_node);
607 			tc->t_tcp_node_detached = true;
608 		}
609 	}
610 	spin_unlock_irq(&rds_tcp_conn_lock);
611 	list_for_each_entry_safe(tc, _tc, &tmp_list, t_tcp_node)
612 		rds_conn_destroy(tc->t_cpath->cp_conn);
613 }
614 
615 static void __net_exit rds_tcp_exit_net(struct net *net)
616 {
617 	struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid);
618 
619 	rds_tcp_kill_sock(net);
620 
621 	if (rtn->rds_tcp_sysctl)
622 		unregister_net_sysctl_table(rtn->rds_tcp_sysctl);
623 
624 	if (net != &init_net)
625 		kfree(rtn->ctl_table);
626 }
627 
628 static struct pernet_operations rds_tcp_net_ops = {
629 	.init = rds_tcp_init_net,
630 	.exit = rds_tcp_exit_net,
631 	.id = &rds_tcp_netid,
632 	.size = sizeof(struct rds_tcp_net),
633 };
634 
635 void *rds_tcp_listen_sock_def_readable(struct net *net)
636 {
637 	struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid);
638 	struct socket *lsock = rtn->rds_tcp_listen_sock;
639 
640 	if (!lsock)
641 		return NULL;
642 
643 	return lsock->sk->sk_user_data;
644 }
645 
646 /* when sysctl is used to modify some kernel socket parameters,this
647  * function  resets the RDS connections in that netns  so that we can
648  * restart with new parameters.  The assumption is that such reset
649  * events are few and far-between.
650  */
651 static void rds_tcp_sysctl_reset(struct net *net)
652 {
653 	struct rds_tcp_connection *tc, *_tc;
654 
655 	spin_lock_irq(&rds_tcp_conn_lock);
656 	list_for_each_entry_safe(tc, _tc, &rds_tcp_conn_list, t_tcp_node) {
657 		struct net *c_net = read_pnet(&tc->t_cpath->cp_conn->c_net);
658 
659 		if (net != c_net || !tc->t_sock)
660 			continue;
661 
662 		/* reconnect with new parameters */
663 		rds_conn_path_drop(tc->t_cpath, false);
664 	}
665 	spin_unlock_irq(&rds_tcp_conn_lock);
666 }
667 
668 static int rds_tcp_skbuf_handler(struct ctl_table *ctl, int write,
669 				 void *buffer, size_t *lenp, loff_t *fpos)
670 {
671 	struct net *net = current->nsproxy->net_ns;
672 	int err;
673 
674 	err = proc_dointvec_minmax(ctl, write, buffer, lenp, fpos);
675 	if (err < 0) {
676 		pr_warn("Invalid input. Must be >= %d\n",
677 			*(int *)(ctl->extra1));
678 		return err;
679 	}
680 	if (write)
681 		rds_tcp_sysctl_reset(net);
682 	return 0;
683 }
684 
685 static void rds_tcp_exit(void)
686 {
687 	rds_tcp_set_unloading();
688 	synchronize_rcu();
689 	rds_info_deregister_func(RDS_INFO_TCP_SOCKETS, rds_tcp_tc_info);
690 #if IS_ENABLED(CONFIG_IPV6)
691 	rds_info_deregister_func(RDS6_INFO_TCP_SOCKETS, rds6_tcp_tc_info);
692 #endif
693 	unregister_pernet_device(&rds_tcp_net_ops);
694 	rds_tcp_destroy_conns();
695 	rds_trans_unregister(&rds_tcp_transport);
696 	rds_tcp_recv_exit();
697 	kmem_cache_destroy(rds_tcp_conn_slab);
698 }
699 module_exit(rds_tcp_exit);
700 
701 static int rds_tcp_init(void)
702 {
703 	int ret;
704 
705 	rds_tcp_conn_slab = kmem_cache_create("rds_tcp_connection",
706 					      sizeof(struct rds_tcp_connection),
707 					      0, 0, NULL);
708 	if (!rds_tcp_conn_slab) {
709 		ret = -ENOMEM;
710 		goto out;
711 	}
712 
713 	ret = rds_tcp_recv_init();
714 	if (ret)
715 		goto out_slab;
716 
717 	ret = register_pernet_device(&rds_tcp_net_ops);
718 	if (ret)
719 		goto out_recv;
720 
721 	rds_trans_register(&rds_tcp_transport);
722 
723 	rds_info_register_func(RDS_INFO_TCP_SOCKETS, rds_tcp_tc_info);
724 #if IS_ENABLED(CONFIG_IPV6)
725 	rds_info_register_func(RDS6_INFO_TCP_SOCKETS, rds6_tcp_tc_info);
726 #endif
727 
728 	goto out;
729 out_recv:
730 	rds_tcp_recv_exit();
731 out_slab:
732 	kmem_cache_destroy(rds_tcp_conn_slab);
733 out:
734 	return ret;
735 }
736 module_init(rds_tcp_init);
737 
738 MODULE_AUTHOR("Oracle Corporation <rds-devel@oss.oracle.com>");
739 MODULE_DESCRIPTION("RDS: TCP transport");
740 MODULE_LICENSE("Dual BSD/GPL");
741