xref: /openbmc/linux/net/rds/tcp.c (revision e983940270f10fe8551baf0098be76ea478294a3)
1 /*
2  * Copyright (c) 2006 Oracle.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/in.h>
36 #include <linux/module.h>
37 #include <net/tcp.h>
38 #include <net/net_namespace.h>
39 #include <net/netns/generic.h>
40 
41 #include "rds.h"
42 #include "tcp.h"
43 
44 /* only for info exporting */
45 static DEFINE_SPINLOCK(rds_tcp_tc_list_lock);
46 static LIST_HEAD(rds_tcp_tc_list);
47 static unsigned int rds_tcp_tc_count;
48 
49 /* Track rds_tcp_connection structs so they can be cleaned up */
50 static DEFINE_SPINLOCK(rds_tcp_conn_lock);
51 static LIST_HEAD(rds_tcp_conn_list);
52 
53 static struct kmem_cache *rds_tcp_conn_slab;
54 
55 static int rds_tcp_skbuf_handler(struct ctl_table *ctl, int write,
56 				 void __user *buffer, size_t *lenp,
57 				 loff_t *fpos);
58 
59 static int rds_tcp_min_sndbuf = SOCK_MIN_SNDBUF;
60 static int rds_tcp_min_rcvbuf = SOCK_MIN_RCVBUF;
61 
62 static struct ctl_table rds_tcp_sysctl_table[] = {
63 #define	RDS_TCP_SNDBUF	0
64 	{
65 		.procname       = "rds_tcp_sndbuf",
66 		/* data is per-net pointer */
67 		.maxlen         = sizeof(int),
68 		.mode           = 0644,
69 		.proc_handler   = rds_tcp_skbuf_handler,
70 		.extra1		= &rds_tcp_min_sndbuf,
71 	},
72 #define	RDS_TCP_RCVBUF	1
73 	{
74 		.procname       = "rds_tcp_rcvbuf",
75 		/* data is per-net pointer */
76 		.maxlen         = sizeof(int),
77 		.mode           = 0644,
78 		.proc_handler   = rds_tcp_skbuf_handler,
79 		.extra1		= &rds_tcp_min_rcvbuf,
80 	},
81 	{ }
82 };
83 
84 /* doing it this way avoids calling tcp_sk() */
85 void rds_tcp_nonagle(struct socket *sock)
86 {
87 	mm_segment_t oldfs = get_fs();
88 	int val = 1;
89 
90 	set_fs(KERNEL_DS);
91 	sock->ops->setsockopt(sock, SOL_TCP, TCP_NODELAY, (char __user *)&val,
92 			      sizeof(val));
93 	set_fs(oldfs);
94 }
95 
96 u32 rds_tcp_snd_nxt(struct rds_tcp_connection *tc)
97 {
98 	return tcp_sk(tc->t_sock->sk)->snd_nxt;
99 }
100 
101 u32 rds_tcp_snd_una(struct rds_tcp_connection *tc)
102 {
103 	return tcp_sk(tc->t_sock->sk)->snd_una;
104 }
105 
106 void rds_tcp_restore_callbacks(struct socket *sock,
107 			       struct rds_tcp_connection *tc)
108 {
109 	rdsdebug("restoring sock %p callbacks from tc %p\n", sock, tc);
110 	write_lock_bh(&sock->sk->sk_callback_lock);
111 
112 	/* done under the callback_lock to serialize with write_space */
113 	spin_lock(&rds_tcp_tc_list_lock);
114 	list_del_init(&tc->t_list_item);
115 	rds_tcp_tc_count--;
116 	spin_unlock(&rds_tcp_tc_list_lock);
117 
118 	tc->t_sock = NULL;
119 
120 	sock->sk->sk_write_space = tc->t_orig_write_space;
121 	sock->sk->sk_data_ready = tc->t_orig_data_ready;
122 	sock->sk->sk_state_change = tc->t_orig_state_change;
123 	sock->sk->sk_user_data = NULL;
124 
125 	write_unlock_bh(&sock->sk->sk_callback_lock);
126 }
127 
128 /*
129  * rds_tcp_reset_callbacks() switches the to the new sock and
130  * returns the existing tc->t_sock.
131  *
132  * The only functions that set tc->t_sock are rds_tcp_set_callbacks
133  * and rds_tcp_reset_callbacks.  Send and receive trust that
134  * it is set.  The absence of RDS_CONN_UP bit protects those paths
135  * from being called while it isn't set.
136  */
137 void rds_tcp_reset_callbacks(struct socket *sock,
138 			     struct rds_conn_path *cp)
139 {
140 	struct rds_tcp_connection *tc = cp->cp_transport_data;
141 	struct socket *osock = tc->t_sock;
142 
143 	if (!osock)
144 		goto newsock;
145 
146 	/* Need to resolve a duelling SYN between peers.
147 	 * We have an outstanding SYN to this peer, which may
148 	 * potentially have transitioned to the RDS_CONN_UP state,
149 	 * so we must quiesce any send threads before resetting
150 	 * cp_transport_data. We quiesce these threads by setting
151 	 * cp_state to something other than RDS_CONN_UP, and then
152 	 * waiting for any existing threads in rds_send_xmit to
153 	 * complete release_in_xmit(). (Subsequent threads entering
154 	 * rds_send_xmit() will bail on !rds_conn_up().
155 	 *
156 	 * However an incoming syn-ack at this point would end up
157 	 * marking the conn as RDS_CONN_UP, and would again permit
158 	 * rds_send_xmi() threads through, so ideally we would
159 	 * synchronize on RDS_CONN_UP after lock_sock(), but cannot
160 	 * do that: waiting on !RDS_IN_XMIT after lock_sock() may
161 	 * end up deadlocking with tcp_sendmsg(), and the RDS_IN_XMIT
162 	 * would not get set. As a result, we set c_state to
163 	 * RDS_CONN_RESETTTING, to ensure that rds_tcp_state_change
164 	 * cannot mark rds_conn_path_up() in the window before lock_sock()
165 	 */
166 	atomic_set(&cp->cp_state, RDS_CONN_RESETTING);
167 	wait_event(cp->cp_waitq, !test_bit(RDS_IN_XMIT, &cp->cp_flags));
168 	lock_sock(osock->sk);
169 	/* reset receive side state for rds_tcp_data_recv() for osock  */
170 	cancel_delayed_work_sync(&cp->cp_send_w);
171 	cancel_delayed_work_sync(&cp->cp_recv_w);
172 	if (tc->t_tinc) {
173 		rds_inc_put(&tc->t_tinc->ti_inc);
174 		tc->t_tinc = NULL;
175 	}
176 	tc->t_tinc_hdr_rem = sizeof(struct rds_header);
177 	tc->t_tinc_data_rem = 0;
178 	rds_tcp_restore_callbacks(osock, tc);
179 	release_sock(osock->sk);
180 	sock_release(osock);
181 newsock:
182 	rds_send_path_reset(cp);
183 	lock_sock(sock->sk);
184 	rds_tcp_set_callbacks(sock, cp);
185 	release_sock(sock->sk);
186 }
187 
188 /* Add tc to rds_tcp_tc_list and set tc->t_sock. See comments
189  * above rds_tcp_reset_callbacks for notes about synchronization
190  * with data path
191  */
192 void rds_tcp_set_callbacks(struct socket *sock, struct rds_conn_path *cp)
193 {
194 	struct rds_tcp_connection *tc = cp->cp_transport_data;
195 
196 	rdsdebug("setting sock %p callbacks to tc %p\n", sock, tc);
197 	write_lock_bh(&sock->sk->sk_callback_lock);
198 
199 	/* done under the callback_lock to serialize with write_space */
200 	spin_lock(&rds_tcp_tc_list_lock);
201 	list_add_tail(&tc->t_list_item, &rds_tcp_tc_list);
202 	rds_tcp_tc_count++;
203 	spin_unlock(&rds_tcp_tc_list_lock);
204 
205 	/* accepted sockets need our listen data ready undone */
206 	if (sock->sk->sk_data_ready == rds_tcp_listen_data_ready)
207 		sock->sk->sk_data_ready = sock->sk->sk_user_data;
208 
209 	tc->t_sock = sock;
210 	tc->t_cpath = cp;
211 	tc->t_orig_data_ready = sock->sk->sk_data_ready;
212 	tc->t_orig_write_space = sock->sk->sk_write_space;
213 	tc->t_orig_state_change = sock->sk->sk_state_change;
214 
215 	sock->sk->sk_user_data = cp;
216 	sock->sk->sk_data_ready = rds_tcp_data_ready;
217 	sock->sk->sk_write_space = rds_tcp_write_space;
218 	sock->sk->sk_state_change = rds_tcp_state_change;
219 
220 	write_unlock_bh(&sock->sk->sk_callback_lock);
221 }
222 
223 static void rds_tcp_tc_info(struct socket *sock, unsigned int len,
224 			    struct rds_info_iterator *iter,
225 			    struct rds_info_lengths *lens)
226 {
227 	struct rds_info_tcp_socket tsinfo;
228 	struct rds_tcp_connection *tc;
229 	unsigned long flags;
230 	struct sockaddr_in sin;
231 	int sinlen;
232 
233 	spin_lock_irqsave(&rds_tcp_tc_list_lock, flags);
234 
235 	if (len / sizeof(tsinfo) < rds_tcp_tc_count)
236 		goto out;
237 
238 	list_for_each_entry(tc, &rds_tcp_tc_list, t_list_item) {
239 
240 		sock->ops->getname(sock, (struct sockaddr *)&sin, &sinlen, 0);
241 		tsinfo.local_addr = sin.sin_addr.s_addr;
242 		tsinfo.local_port = sin.sin_port;
243 		sock->ops->getname(sock, (struct sockaddr *)&sin, &sinlen, 1);
244 		tsinfo.peer_addr = sin.sin_addr.s_addr;
245 		tsinfo.peer_port = sin.sin_port;
246 
247 		tsinfo.hdr_rem = tc->t_tinc_hdr_rem;
248 		tsinfo.data_rem = tc->t_tinc_data_rem;
249 		tsinfo.last_sent_nxt = tc->t_last_sent_nxt;
250 		tsinfo.last_expected_una = tc->t_last_expected_una;
251 		tsinfo.last_seen_una = tc->t_last_seen_una;
252 
253 		rds_info_copy(iter, &tsinfo, sizeof(tsinfo));
254 	}
255 
256 out:
257 	lens->nr = rds_tcp_tc_count;
258 	lens->each = sizeof(tsinfo);
259 
260 	spin_unlock_irqrestore(&rds_tcp_tc_list_lock, flags);
261 }
262 
263 static int rds_tcp_laddr_check(struct net *net, __be32 addr)
264 {
265 	if (inet_addr_type(net, addr) == RTN_LOCAL)
266 		return 0;
267 	return -EADDRNOTAVAIL;
268 }
269 
270 static int rds_tcp_conn_alloc(struct rds_connection *conn, gfp_t gfp)
271 {
272 	struct rds_tcp_connection *tc;
273 	int i;
274 
275 	for (i = 0; i < RDS_MPATH_WORKERS; i++) {
276 		tc = kmem_cache_alloc(rds_tcp_conn_slab, gfp);
277 		if (!tc)
278 			return -ENOMEM;
279 
280 		mutex_init(&tc->t_conn_path_lock);
281 		tc->t_sock = NULL;
282 		tc->t_tinc = NULL;
283 		tc->t_tinc_hdr_rem = sizeof(struct rds_header);
284 		tc->t_tinc_data_rem = 0;
285 
286 		conn->c_path[i].cp_transport_data = tc;
287 		tc->t_cpath = &conn->c_path[i];
288 
289 		spin_lock_irq(&rds_tcp_conn_lock);
290 		list_add_tail(&tc->t_tcp_node, &rds_tcp_conn_list);
291 		spin_unlock_irq(&rds_tcp_conn_lock);
292 		rdsdebug("rds_conn_path [%d] tc %p\n", i,
293 			 conn->c_path[i].cp_transport_data);
294 	}
295 
296 	return 0;
297 }
298 
299 static void rds_tcp_conn_free(void *arg)
300 {
301 	struct rds_tcp_connection *tc = arg;
302 	unsigned long flags;
303 	rdsdebug("freeing tc %p\n", tc);
304 
305 	spin_lock_irqsave(&rds_tcp_conn_lock, flags);
306 	list_del(&tc->t_tcp_node);
307 	spin_unlock_irqrestore(&rds_tcp_conn_lock, flags);
308 
309 	kmem_cache_free(rds_tcp_conn_slab, tc);
310 }
311 
312 static bool list_has_conn(struct list_head *list, struct rds_connection *conn)
313 {
314 	struct rds_tcp_connection *tc, *_tc;
315 
316 	list_for_each_entry_safe(tc, _tc, list, t_tcp_node) {
317 		if (tc->t_cpath->cp_conn == conn)
318 			return true;
319 	}
320 	return false;
321 }
322 
323 static void rds_tcp_destroy_conns(void)
324 {
325 	struct rds_tcp_connection *tc, *_tc;
326 	LIST_HEAD(tmp_list);
327 
328 	/* avoid calling conn_destroy with irqs off */
329 	spin_lock_irq(&rds_tcp_conn_lock);
330 	list_for_each_entry_safe(tc, _tc, &rds_tcp_conn_list, t_tcp_node) {
331 		if (!list_has_conn(&tmp_list, tc->t_cpath->cp_conn))
332 			list_move_tail(&tc->t_tcp_node, &tmp_list);
333 	}
334 	spin_unlock_irq(&rds_tcp_conn_lock);
335 
336 	list_for_each_entry_safe(tc, _tc, &tmp_list, t_tcp_node)
337 		rds_conn_destroy(tc->t_cpath->cp_conn);
338 }
339 
340 static void rds_tcp_exit(void);
341 
342 struct rds_transport rds_tcp_transport = {
343 	.laddr_check		= rds_tcp_laddr_check,
344 	.xmit_path_prepare	= rds_tcp_xmit_path_prepare,
345 	.xmit_path_complete	= rds_tcp_xmit_path_complete,
346 	.xmit			= rds_tcp_xmit,
347 	.recv_path		= rds_tcp_recv_path,
348 	.conn_alloc		= rds_tcp_conn_alloc,
349 	.conn_free		= rds_tcp_conn_free,
350 	.conn_path_connect	= rds_tcp_conn_path_connect,
351 	.conn_path_shutdown	= rds_tcp_conn_path_shutdown,
352 	.inc_copy_to_user	= rds_tcp_inc_copy_to_user,
353 	.inc_free		= rds_tcp_inc_free,
354 	.stats_info_copy	= rds_tcp_stats_info_copy,
355 	.exit			= rds_tcp_exit,
356 	.t_owner		= THIS_MODULE,
357 	.t_name			= "tcp",
358 	.t_type			= RDS_TRANS_TCP,
359 	.t_prefer_loopback	= 1,
360 	.t_mp_capable		= 1,
361 };
362 
363 static int rds_tcp_netid;
364 
365 /* per-network namespace private data for this module */
366 struct rds_tcp_net {
367 	struct socket *rds_tcp_listen_sock;
368 	struct work_struct rds_tcp_accept_w;
369 	struct ctl_table_header *rds_tcp_sysctl;
370 	struct ctl_table *ctl_table;
371 	int sndbuf_size;
372 	int rcvbuf_size;
373 };
374 
375 /* All module specific customizations to the RDS-TCP socket should be done in
376  * rds_tcp_tune() and applied after socket creation.
377  */
378 void rds_tcp_tune(struct socket *sock)
379 {
380 	struct sock *sk = sock->sk;
381 	struct net *net = sock_net(sk);
382 	struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid);
383 
384 	rds_tcp_nonagle(sock);
385 	lock_sock(sk);
386 	if (rtn->sndbuf_size > 0) {
387 		sk->sk_sndbuf = rtn->sndbuf_size;
388 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
389 	}
390 	if (rtn->rcvbuf_size > 0) {
391 		sk->sk_sndbuf = rtn->rcvbuf_size;
392 		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
393 	}
394 	release_sock(sk);
395 }
396 
397 static void rds_tcp_accept_worker(struct work_struct *work)
398 {
399 	struct rds_tcp_net *rtn = container_of(work,
400 					       struct rds_tcp_net,
401 					       rds_tcp_accept_w);
402 
403 	while (rds_tcp_accept_one(rtn->rds_tcp_listen_sock) == 0)
404 		cond_resched();
405 }
406 
407 void rds_tcp_accept_work(struct sock *sk)
408 {
409 	struct net *net = sock_net(sk);
410 	struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid);
411 
412 	queue_work(rds_wq, &rtn->rds_tcp_accept_w);
413 }
414 
415 static __net_init int rds_tcp_init_net(struct net *net)
416 {
417 	struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid);
418 	struct ctl_table *tbl;
419 	int err = 0;
420 
421 	memset(rtn, 0, sizeof(*rtn));
422 
423 	/* {snd, rcv}buf_size default to 0, which implies we let the
424 	 * stack pick the value, and permit auto-tuning of buffer size.
425 	 */
426 	if (net == &init_net) {
427 		tbl = rds_tcp_sysctl_table;
428 	} else {
429 		tbl = kmemdup(rds_tcp_sysctl_table,
430 			      sizeof(rds_tcp_sysctl_table), GFP_KERNEL);
431 		if (!tbl) {
432 			pr_warn("could not set allocate syctl table\n");
433 			return -ENOMEM;
434 		}
435 		rtn->ctl_table = tbl;
436 	}
437 	tbl[RDS_TCP_SNDBUF].data = &rtn->sndbuf_size;
438 	tbl[RDS_TCP_RCVBUF].data = &rtn->rcvbuf_size;
439 	rtn->rds_tcp_sysctl = register_net_sysctl(net, "net/rds/tcp", tbl);
440 	if (!rtn->rds_tcp_sysctl) {
441 		pr_warn("could not register sysctl\n");
442 		err = -ENOMEM;
443 		goto fail;
444 	}
445 	rtn->rds_tcp_listen_sock = rds_tcp_listen_init(net);
446 	if (!rtn->rds_tcp_listen_sock) {
447 		pr_warn("could not set up listen sock\n");
448 		unregister_net_sysctl_table(rtn->rds_tcp_sysctl);
449 		rtn->rds_tcp_sysctl = NULL;
450 		err = -EAFNOSUPPORT;
451 		goto fail;
452 	}
453 	INIT_WORK(&rtn->rds_tcp_accept_w, rds_tcp_accept_worker);
454 	return 0;
455 
456 fail:
457 	if (net != &init_net)
458 		kfree(tbl);
459 	return err;
460 }
461 
462 static void __net_exit rds_tcp_exit_net(struct net *net)
463 {
464 	struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid);
465 
466 	if (rtn->rds_tcp_sysctl)
467 		unregister_net_sysctl_table(rtn->rds_tcp_sysctl);
468 
469 	if (net != &init_net && rtn->ctl_table)
470 		kfree(rtn->ctl_table);
471 
472 	/* If rds_tcp_exit_net() is called as a result of netns deletion,
473 	 * the rds_tcp_kill_sock() device notifier would already have cleaned
474 	 * up the listen socket, thus there is no work to do in this function.
475 	 *
476 	 * If rds_tcp_exit_net() is called as a result of module unload,
477 	 * i.e., due to rds_tcp_exit() -> unregister_pernet_subsys(), then
478 	 * we do need to clean up the listen socket here.
479 	 */
480 	if (rtn->rds_tcp_listen_sock) {
481 		rds_tcp_listen_stop(rtn->rds_tcp_listen_sock);
482 		rtn->rds_tcp_listen_sock = NULL;
483 		flush_work(&rtn->rds_tcp_accept_w);
484 	}
485 }
486 
487 static struct pernet_operations rds_tcp_net_ops = {
488 	.init = rds_tcp_init_net,
489 	.exit = rds_tcp_exit_net,
490 	.id = &rds_tcp_netid,
491 	.size = sizeof(struct rds_tcp_net),
492 };
493 
494 /* explicitly send a RST on each socket, thereby releasing any socket refcnts
495  * that may otherwise hold up netns deletion.
496  */
497 static void rds_tcp_conn_paths_destroy(struct rds_connection *conn)
498 {
499 	struct rds_conn_path *cp;
500 	struct rds_tcp_connection *tc;
501 	int i;
502 	struct sock *sk;
503 
504 	for (i = 0; i < RDS_MPATH_WORKERS; i++) {
505 		cp = &conn->c_path[i];
506 		tc = cp->cp_transport_data;
507 		if (!tc->t_sock)
508 			continue;
509 		sk = tc->t_sock->sk;
510 		sk->sk_prot->disconnect(sk, 0);
511 		tcp_done(sk);
512 	}
513 }
514 
515 static void rds_tcp_kill_sock(struct net *net)
516 {
517 	struct rds_tcp_connection *tc, *_tc;
518 	LIST_HEAD(tmp_list);
519 	struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid);
520 
521 	rds_tcp_listen_stop(rtn->rds_tcp_listen_sock);
522 	rtn->rds_tcp_listen_sock = NULL;
523 	flush_work(&rtn->rds_tcp_accept_w);
524 	spin_lock_irq(&rds_tcp_conn_lock);
525 	list_for_each_entry_safe(tc, _tc, &rds_tcp_conn_list, t_tcp_node) {
526 		struct net *c_net = read_pnet(&tc->t_cpath->cp_conn->c_net);
527 
528 		if (net != c_net || !tc->t_sock)
529 			continue;
530 		if (!list_has_conn(&tmp_list, tc->t_cpath->cp_conn))
531 			list_move_tail(&tc->t_tcp_node, &tmp_list);
532 	}
533 	spin_unlock_irq(&rds_tcp_conn_lock);
534 	list_for_each_entry_safe(tc, _tc, &tmp_list, t_tcp_node) {
535 		rds_tcp_conn_paths_destroy(tc->t_cpath->cp_conn);
536 		rds_conn_destroy(tc->t_cpath->cp_conn);
537 	}
538 }
539 
540 void *rds_tcp_listen_sock_def_readable(struct net *net)
541 {
542 	struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid);
543 
544 	return rtn->rds_tcp_listen_sock->sk->sk_user_data;
545 }
546 
547 static int rds_tcp_dev_event(struct notifier_block *this,
548 			     unsigned long event, void *ptr)
549 {
550 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
551 
552 	/* rds-tcp registers as a pernet subys, so the ->exit will only
553 	 * get invoked after network acitivity has quiesced. We need to
554 	 * clean up all sockets  to quiesce network activity, and use
555 	 * the unregistration of the per-net loopback device as a trigger
556 	 * to start that cleanup.
557 	 */
558 	if (event == NETDEV_UNREGISTER_FINAL &&
559 	    dev->ifindex == LOOPBACK_IFINDEX)
560 		rds_tcp_kill_sock(dev_net(dev));
561 
562 	return NOTIFY_DONE;
563 }
564 
565 static struct notifier_block rds_tcp_dev_notifier = {
566 	.notifier_call        = rds_tcp_dev_event,
567 	.priority = -10, /* must be called after other network notifiers */
568 };
569 
570 /* when sysctl is used to modify some kernel socket parameters,this
571  * function  resets the RDS connections in that netns  so that we can
572  * restart with new parameters.  The assumption is that such reset
573  * events are few and far-between.
574  */
575 static void rds_tcp_sysctl_reset(struct net *net)
576 {
577 	struct rds_tcp_connection *tc, *_tc;
578 
579 	spin_lock_irq(&rds_tcp_conn_lock);
580 	list_for_each_entry_safe(tc, _tc, &rds_tcp_conn_list, t_tcp_node) {
581 		struct net *c_net = read_pnet(&tc->t_cpath->cp_conn->c_net);
582 
583 		if (net != c_net || !tc->t_sock)
584 			continue;
585 
586 		/* reconnect with new parameters */
587 		rds_conn_path_drop(tc->t_cpath);
588 	}
589 	spin_unlock_irq(&rds_tcp_conn_lock);
590 }
591 
592 static int rds_tcp_skbuf_handler(struct ctl_table *ctl, int write,
593 				 void __user *buffer, size_t *lenp,
594 				 loff_t *fpos)
595 {
596 	struct net *net = current->nsproxy->net_ns;
597 	int err;
598 
599 	err = proc_dointvec_minmax(ctl, write, buffer, lenp, fpos);
600 	if (err < 0) {
601 		pr_warn("Invalid input. Must be >= %d\n",
602 			*(int *)(ctl->extra1));
603 		return err;
604 	}
605 	if (write)
606 		rds_tcp_sysctl_reset(net);
607 	return 0;
608 }
609 
610 static void rds_tcp_exit(void)
611 {
612 	rds_info_deregister_func(RDS_INFO_TCP_SOCKETS, rds_tcp_tc_info);
613 	unregister_pernet_subsys(&rds_tcp_net_ops);
614 	if (unregister_netdevice_notifier(&rds_tcp_dev_notifier))
615 		pr_warn("could not unregister rds_tcp_dev_notifier\n");
616 	rds_tcp_destroy_conns();
617 	rds_trans_unregister(&rds_tcp_transport);
618 	rds_tcp_recv_exit();
619 	kmem_cache_destroy(rds_tcp_conn_slab);
620 }
621 module_exit(rds_tcp_exit);
622 
623 static int rds_tcp_init(void)
624 {
625 	int ret;
626 
627 	rds_tcp_conn_slab = kmem_cache_create("rds_tcp_connection",
628 					      sizeof(struct rds_tcp_connection),
629 					      0, 0, NULL);
630 	if (!rds_tcp_conn_slab) {
631 		ret = -ENOMEM;
632 		goto out;
633 	}
634 
635 	ret = register_netdevice_notifier(&rds_tcp_dev_notifier);
636 	if (ret) {
637 		pr_warn("could not register rds_tcp_dev_notifier\n");
638 		goto out;
639 	}
640 
641 	ret = register_pernet_subsys(&rds_tcp_net_ops);
642 	if (ret)
643 		goto out_slab;
644 
645 	ret = rds_tcp_recv_init();
646 	if (ret)
647 		goto out_pernet;
648 
649 	ret = rds_trans_register(&rds_tcp_transport);
650 	if (ret)
651 		goto out_recv;
652 
653 	rds_info_register_func(RDS_INFO_TCP_SOCKETS, rds_tcp_tc_info);
654 
655 	goto out;
656 
657 out_recv:
658 	rds_tcp_recv_exit();
659 out_pernet:
660 	unregister_pernet_subsys(&rds_tcp_net_ops);
661 out_slab:
662 	kmem_cache_destroy(rds_tcp_conn_slab);
663 out:
664 	return ret;
665 }
666 module_init(rds_tcp_init);
667 
668 MODULE_AUTHOR("Oracle Corporation <rds-devel@oss.oracle.com>");
669 MODULE_DESCRIPTION("RDS: TCP transport");
670 MODULE_LICENSE("Dual BSD/GPL");
671 
672