xref: /openbmc/linux/net/rds/tcp.c (revision e6dec923)
1 /*
2  * Copyright (c) 2006 Oracle.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/in.h>
36 #include <linux/module.h>
37 #include <net/tcp.h>
38 #include <net/net_namespace.h>
39 #include <net/netns/generic.h>
40 
41 #include "rds.h"
42 #include "tcp.h"
43 
44 /* only for info exporting */
45 static DEFINE_SPINLOCK(rds_tcp_tc_list_lock);
46 static LIST_HEAD(rds_tcp_tc_list);
47 static unsigned int rds_tcp_tc_count;
48 
49 /* Track rds_tcp_connection structs so they can be cleaned up */
50 static DEFINE_SPINLOCK(rds_tcp_conn_lock);
51 static LIST_HEAD(rds_tcp_conn_list);
52 
53 static struct kmem_cache *rds_tcp_conn_slab;
54 
55 static int rds_tcp_skbuf_handler(struct ctl_table *ctl, int write,
56 				 void __user *buffer, size_t *lenp,
57 				 loff_t *fpos);
58 
59 static int rds_tcp_min_sndbuf = SOCK_MIN_SNDBUF;
60 static int rds_tcp_min_rcvbuf = SOCK_MIN_RCVBUF;
61 
62 static struct ctl_table rds_tcp_sysctl_table[] = {
63 #define	RDS_TCP_SNDBUF	0
64 	{
65 		.procname       = "rds_tcp_sndbuf",
66 		/* data is per-net pointer */
67 		.maxlen         = sizeof(int),
68 		.mode           = 0644,
69 		.proc_handler   = rds_tcp_skbuf_handler,
70 		.extra1		= &rds_tcp_min_sndbuf,
71 	},
72 #define	RDS_TCP_RCVBUF	1
73 	{
74 		.procname       = "rds_tcp_rcvbuf",
75 		/* data is per-net pointer */
76 		.maxlen         = sizeof(int),
77 		.mode           = 0644,
78 		.proc_handler   = rds_tcp_skbuf_handler,
79 		.extra1		= &rds_tcp_min_rcvbuf,
80 	},
81 	{ }
82 };
83 
84 /* doing it this way avoids calling tcp_sk() */
85 void rds_tcp_nonagle(struct socket *sock)
86 {
87 	int val = 1;
88 
89 	kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (void *)&val,
90 			      sizeof(val));
91 }
92 
93 u32 rds_tcp_snd_nxt(struct rds_tcp_connection *tc)
94 {
95 	return tcp_sk(tc->t_sock->sk)->snd_nxt;
96 }
97 
98 u32 rds_tcp_snd_una(struct rds_tcp_connection *tc)
99 {
100 	return tcp_sk(tc->t_sock->sk)->snd_una;
101 }
102 
103 void rds_tcp_restore_callbacks(struct socket *sock,
104 			       struct rds_tcp_connection *tc)
105 {
106 	rdsdebug("restoring sock %p callbacks from tc %p\n", sock, tc);
107 	write_lock_bh(&sock->sk->sk_callback_lock);
108 
109 	/* done under the callback_lock to serialize with write_space */
110 	spin_lock(&rds_tcp_tc_list_lock);
111 	list_del_init(&tc->t_list_item);
112 	rds_tcp_tc_count--;
113 	spin_unlock(&rds_tcp_tc_list_lock);
114 
115 	tc->t_sock = NULL;
116 
117 	sock->sk->sk_write_space = tc->t_orig_write_space;
118 	sock->sk->sk_data_ready = tc->t_orig_data_ready;
119 	sock->sk->sk_state_change = tc->t_orig_state_change;
120 	sock->sk->sk_user_data = NULL;
121 
122 	write_unlock_bh(&sock->sk->sk_callback_lock);
123 }
124 
125 /*
126  * rds_tcp_reset_callbacks() switches the to the new sock and
127  * returns the existing tc->t_sock.
128  *
129  * The only functions that set tc->t_sock are rds_tcp_set_callbacks
130  * and rds_tcp_reset_callbacks.  Send and receive trust that
131  * it is set.  The absence of RDS_CONN_UP bit protects those paths
132  * from being called while it isn't set.
133  */
134 void rds_tcp_reset_callbacks(struct socket *sock,
135 			     struct rds_conn_path *cp)
136 {
137 	struct rds_tcp_connection *tc = cp->cp_transport_data;
138 	struct socket *osock = tc->t_sock;
139 
140 	if (!osock)
141 		goto newsock;
142 
143 	/* Need to resolve a duelling SYN between peers.
144 	 * We have an outstanding SYN to this peer, which may
145 	 * potentially have transitioned to the RDS_CONN_UP state,
146 	 * so we must quiesce any send threads before resetting
147 	 * cp_transport_data. We quiesce these threads by setting
148 	 * cp_state to something other than RDS_CONN_UP, and then
149 	 * waiting for any existing threads in rds_send_xmit to
150 	 * complete release_in_xmit(). (Subsequent threads entering
151 	 * rds_send_xmit() will bail on !rds_conn_up().
152 	 *
153 	 * However an incoming syn-ack at this point would end up
154 	 * marking the conn as RDS_CONN_UP, and would again permit
155 	 * rds_send_xmi() threads through, so ideally we would
156 	 * synchronize on RDS_CONN_UP after lock_sock(), but cannot
157 	 * do that: waiting on !RDS_IN_XMIT after lock_sock() may
158 	 * end up deadlocking with tcp_sendmsg(), and the RDS_IN_XMIT
159 	 * would not get set. As a result, we set c_state to
160 	 * RDS_CONN_RESETTTING, to ensure that rds_tcp_state_change
161 	 * cannot mark rds_conn_path_up() in the window before lock_sock()
162 	 */
163 	atomic_set(&cp->cp_state, RDS_CONN_RESETTING);
164 	wait_event(cp->cp_waitq, !test_bit(RDS_IN_XMIT, &cp->cp_flags));
165 	lock_sock(osock->sk);
166 	/* reset receive side state for rds_tcp_data_recv() for osock  */
167 	cancel_delayed_work_sync(&cp->cp_send_w);
168 	cancel_delayed_work_sync(&cp->cp_recv_w);
169 	if (tc->t_tinc) {
170 		rds_inc_put(&tc->t_tinc->ti_inc);
171 		tc->t_tinc = NULL;
172 	}
173 	tc->t_tinc_hdr_rem = sizeof(struct rds_header);
174 	tc->t_tinc_data_rem = 0;
175 	rds_tcp_restore_callbacks(osock, tc);
176 	release_sock(osock->sk);
177 	sock_release(osock);
178 newsock:
179 	rds_send_path_reset(cp);
180 	lock_sock(sock->sk);
181 	rds_tcp_set_callbacks(sock, cp);
182 	release_sock(sock->sk);
183 }
184 
185 /* Add tc to rds_tcp_tc_list and set tc->t_sock. See comments
186  * above rds_tcp_reset_callbacks for notes about synchronization
187  * with data path
188  */
189 void rds_tcp_set_callbacks(struct socket *sock, struct rds_conn_path *cp)
190 {
191 	struct rds_tcp_connection *tc = cp->cp_transport_data;
192 
193 	rdsdebug("setting sock %p callbacks to tc %p\n", sock, tc);
194 	write_lock_bh(&sock->sk->sk_callback_lock);
195 
196 	/* done under the callback_lock to serialize with write_space */
197 	spin_lock(&rds_tcp_tc_list_lock);
198 	list_add_tail(&tc->t_list_item, &rds_tcp_tc_list);
199 	rds_tcp_tc_count++;
200 	spin_unlock(&rds_tcp_tc_list_lock);
201 
202 	/* accepted sockets need our listen data ready undone */
203 	if (sock->sk->sk_data_ready == rds_tcp_listen_data_ready)
204 		sock->sk->sk_data_ready = sock->sk->sk_user_data;
205 
206 	tc->t_sock = sock;
207 	tc->t_cpath = cp;
208 	tc->t_orig_data_ready = sock->sk->sk_data_ready;
209 	tc->t_orig_write_space = sock->sk->sk_write_space;
210 	tc->t_orig_state_change = sock->sk->sk_state_change;
211 
212 	sock->sk->sk_user_data = cp;
213 	sock->sk->sk_data_ready = rds_tcp_data_ready;
214 	sock->sk->sk_write_space = rds_tcp_write_space;
215 	sock->sk->sk_state_change = rds_tcp_state_change;
216 
217 	write_unlock_bh(&sock->sk->sk_callback_lock);
218 }
219 
220 static void rds_tcp_tc_info(struct socket *rds_sock, unsigned int len,
221 			    struct rds_info_iterator *iter,
222 			    struct rds_info_lengths *lens)
223 {
224 	struct rds_info_tcp_socket tsinfo;
225 	struct rds_tcp_connection *tc;
226 	unsigned long flags;
227 	struct sockaddr_in sin;
228 	int sinlen;
229 	struct socket *sock;
230 
231 	spin_lock_irqsave(&rds_tcp_tc_list_lock, flags);
232 
233 	if (len / sizeof(tsinfo) < rds_tcp_tc_count)
234 		goto out;
235 
236 	list_for_each_entry(tc, &rds_tcp_tc_list, t_list_item) {
237 
238 		sock = tc->t_sock;
239 		if (sock) {
240 			sock->ops->getname(sock, (struct sockaddr *)&sin,
241 					   &sinlen, 0);
242 			tsinfo.local_addr = sin.sin_addr.s_addr;
243 			tsinfo.local_port = sin.sin_port;
244 			sock->ops->getname(sock, (struct sockaddr *)&sin,
245 					   &sinlen, 1);
246 			tsinfo.peer_addr = sin.sin_addr.s_addr;
247 			tsinfo.peer_port = sin.sin_port;
248 		}
249 
250 		tsinfo.hdr_rem = tc->t_tinc_hdr_rem;
251 		tsinfo.data_rem = tc->t_tinc_data_rem;
252 		tsinfo.last_sent_nxt = tc->t_last_sent_nxt;
253 		tsinfo.last_expected_una = tc->t_last_expected_una;
254 		tsinfo.last_seen_una = tc->t_last_seen_una;
255 
256 		rds_info_copy(iter, &tsinfo, sizeof(tsinfo));
257 	}
258 
259 out:
260 	lens->nr = rds_tcp_tc_count;
261 	lens->each = sizeof(tsinfo);
262 
263 	spin_unlock_irqrestore(&rds_tcp_tc_list_lock, flags);
264 }
265 
266 static int rds_tcp_laddr_check(struct net *net, __be32 addr)
267 {
268 	if (inet_addr_type(net, addr) == RTN_LOCAL)
269 		return 0;
270 	return -EADDRNOTAVAIL;
271 }
272 
273 static int rds_tcp_conn_alloc(struct rds_connection *conn, gfp_t gfp)
274 {
275 	struct rds_tcp_connection *tc;
276 	int i;
277 
278 	for (i = 0; i < RDS_MPATH_WORKERS; i++) {
279 		tc = kmem_cache_alloc(rds_tcp_conn_slab, gfp);
280 		if (!tc)
281 			return -ENOMEM;
282 
283 		mutex_init(&tc->t_conn_path_lock);
284 		tc->t_sock = NULL;
285 		tc->t_tinc = NULL;
286 		tc->t_tinc_hdr_rem = sizeof(struct rds_header);
287 		tc->t_tinc_data_rem = 0;
288 
289 		conn->c_path[i].cp_transport_data = tc;
290 		tc->t_cpath = &conn->c_path[i];
291 
292 		spin_lock_irq(&rds_tcp_conn_lock);
293 		list_add_tail(&tc->t_tcp_node, &rds_tcp_conn_list);
294 		spin_unlock_irq(&rds_tcp_conn_lock);
295 		rdsdebug("rds_conn_path [%d] tc %p\n", i,
296 			 conn->c_path[i].cp_transport_data);
297 	}
298 
299 	return 0;
300 }
301 
302 static void rds_tcp_conn_free(void *arg)
303 {
304 	struct rds_tcp_connection *tc = arg;
305 	unsigned long flags;
306 	rdsdebug("freeing tc %p\n", tc);
307 
308 	spin_lock_irqsave(&rds_tcp_conn_lock, flags);
309 	list_del(&tc->t_tcp_node);
310 	spin_unlock_irqrestore(&rds_tcp_conn_lock, flags);
311 
312 	kmem_cache_free(rds_tcp_conn_slab, tc);
313 }
314 
315 static bool list_has_conn(struct list_head *list, struct rds_connection *conn)
316 {
317 	struct rds_tcp_connection *tc, *_tc;
318 
319 	list_for_each_entry_safe(tc, _tc, list, t_tcp_node) {
320 		if (tc->t_cpath->cp_conn == conn)
321 			return true;
322 	}
323 	return false;
324 }
325 
326 static void rds_tcp_destroy_conns(void)
327 {
328 	struct rds_tcp_connection *tc, *_tc;
329 	LIST_HEAD(tmp_list);
330 
331 	/* avoid calling conn_destroy with irqs off */
332 	spin_lock_irq(&rds_tcp_conn_lock);
333 	list_for_each_entry_safe(tc, _tc, &rds_tcp_conn_list, t_tcp_node) {
334 		if (!list_has_conn(&tmp_list, tc->t_cpath->cp_conn))
335 			list_move_tail(&tc->t_tcp_node, &tmp_list);
336 	}
337 	spin_unlock_irq(&rds_tcp_conn_lock);
338 
339 	list_for_each_entry_safe(tc, _tc, &tmp_list, t_tcp_node)
340 		rds_conn_destroy(tc->t_cpath->cp_conn);
341 }
342 
343 static void rds_tcp_exit(void);
344 
345 struct rds_transport rds_tcp_transport = {
346 	.laddr_check		= rds_tcp_laddr_check,
347 	.xmit_path_prepare	= rds_tcp_xmit_path_prepare,
348 	.xmit_path_complete	= rds_tcp_xmit_path_complete,
349 	.xmit			= rds_tcp_xmit,
350 	.recv_path		= rds_tcp_recv_path,
351 	.conn_alloc		= rds_tcp_conn_alloc,
352 	.conn_free		= rds_tcp_conn_free,
353 	.conn_path_connect	= rds_tcp_conn_path_connect,
354 	.conn_path_shutdown	= rds_tcp_conn_path_shutdown,
355 	.inc_copy_to_user	= rds_tcp_inc_copy_to_user,
356 	.inc_free		= rds_tcp_inc_free,
357 	.stats_info_copy	= rds_tcp_stats_info_copy,
358 	.exit			= rds_tcp_exit,
359 	.t_owner		= THIS_MODULE,
360 	.t_name			= "tcp",
361 	.t_type			= RDS_TRANS_TCP,
362 	.t_prefer_loopback	= 1,
363 	.t_mp_capable		= 1,
364 };
365 
366 static unsigned int rds_tcp_netid;
367 
368 /* per-network namespace private data for this module */
369 struct rds_tcp_net {
370 	struct socket *rds_tcp_listen_sock;
371 	struct work_struct rds_tcp_accept_w;
372 	struct ctl_table_header *rds_tcp_sysctl;
373 	struct ctl_table *ctl_table;
374 	int sndbuf_size;
375 	int rcvbuf_size;
376 };
377 
378 /* All module specific customizations to the RDS-TCP socket should be done in
379  * rds_tcp_tune() and applied after socket creation.
380  */
381 void rds_tcp_tune(struct socket *sock)
382 {
383 	struct sock *sk = sock->sk;
384 	struct net *net = sock_net(sk);
385 	struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid);
386 
387 	rds_tcp_nonagle(sock);
388 	lock_sock(sk);
389 	if (rtn->sndbuf_size > 0) {
390 		sk->sk_sndbuf = rtn->sndbuf_size;
391 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
392 	}
393 	if (rtn->rcvbuf_size > 0) {
394 		sk->sk_sndbuf = rtn->rcvbuf_size;
395 		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
396 	}
397 	release_sock(sk);
398 }
399 
400 static void rds_tcp_accept_worker(struct work_struct *work)
401 {
402 	struct rds_tcp_net *rtn = container_of(work,
403 					       struct rds_tcp_net,
404 					       rds_tcp_accept_w);
405 
406 	while (rds_tcp_accept_one(rtn->rds_tcp_listen_sock) == 0)
407 		cond_resched();
408 }
409 
410 void rds_tcp_accept_work(struct sock *sk)
411 {
412 	struct net *net = sock_net(sk);
413 	struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid);
414 
415 	queue_work(rds_wq, &rtn->rds_tcp_accept_w);
416 }
417 
418 static __net_init int rds_tcp_init_net(struct net *net)
419 {
420 	struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid);
421 	struct ctl_table *tbl;
422 	int err = 0;
423 
424 	memset(rtn, 0, sizeof(*rtn));
425 
426 	/* {snd, rcv}buf_size default to 0, which implies we let the
427 	 * stack pick the value, and permit auto-tuning of buffer size.
428 	 */
429 	if (net == &init_net) {
430 		tbl = rds_tcp_sysctl_table;
431 	} else {
432 		tbl = kmemdup(rds_tcp_sysctl_table,
433 			      sizeof(rds_tcp_sysctl_table), GFP_KERNEL);
434 		if (!tbl) {
435 			pr_warn("could not set allocate syctl table\n");
436 			return -ENOMEM;
437 		}
438 		rtn->ctl_table = tbl;
439 	}
440 	tbl[RDS_TCP_SNDBUF].data = &rtn->sndbuf_size;
441 	tbl[RDS_TCP_RCVBUF].data = &rtn->rcvbuf_size;
442 	rtn->rds_tcp_sysctl = register_net_sysctl(net, "net/rds/tcp", tbl);
443 	if (!rtn->rds_tcp_sysctl) {
444 		pr_warn("could not register sysctl\n");
445 		err = -ENOMEM;
446 		goto fail;
447 	}
448 	rtn->rds_tcp_listen_sock = rds_tcp_listen_init(net);
449 	if (!rtn->rds_tcp_listen_sock) {
450 		pr_warn("could not set up listen sock\n");
451 		unregister_net_sysctl_table(rtn->rds_tcp_sysctl);
452 		rtn->rds_tcp_sysctl = NULL;
453 		err = -EAFNOSUPPORT;
454 		goto fail;
455 	}
456 	INIT_WORK(&rtn->rds_tcp_accept_w, rds_tcp_accept_worker);
457 	return 0;
458 
459 fail:
460 	if (net != &init_net)
461 		kfree(tbl);
462 	return err;
463 }
464 
465 static void __net_exit rds_tcp_exit_net(struct net *net)
466 {
467 	struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid);
468 
469 	if (rtn->rds_tcp_sysctl)
470 		unregister_net_sysctl_table(rtn->rds_tcp_sysctl);
471 
472 	if (net != &init_net && rtn->ctl_table)
473 		kfree(rtn->ctl_table);
474 
475 	/* If rds_tcp_exit_net() is called as a result of netns deletion,
476 	 * the rds_tcp_kill_sock() device notifier would already have cleaned
477 	 * up the listen socket, thus there is no work to do in this function.
478 	 *
479 	 * If rds_tcp_exit_net() is called as a result of module unload,
480 	 * i.e., due to rds_tcp_exit() -> unregister_pernet_subsys(), then
481 	 * we do need to clean up the listen socket here.
482 	 */
483 	if (rtn->rds_tcp_listen_sock) {
484 		struct socket *lsock = rtn->rds_tcp_listen_sock;
485 
486 		rtn->rds_tcp_listen_sock = NULL;
487 		rds_tcp_listen_stop(lsock, &rtn->rds_tcp_accept_w);
488 	}
489 }
490 
491 static struct pernet_operations rds_tcp_net_ops = {
492 	.init = rds_tcp_init_net,
493 	.exit = rds_tcp_exit_net,
494 	.id = &rds_tcp_netid,
495 	.size = sizeof(struct rds_tcp_net),
496 };
497 
498 /* explicitly send a RST on each socket, thereby releasing any socket refcnts
499  * that may otherwise hold up netns deletion.
500  */
501 static void rds_tcp_conn_paths_destroy(struct rds_connection *conn)
502 {
503 	struct rds_conn_path *cp;
504 	struct rds_tcp_connection *tc;
505 	int i;
506 	struct sock *sk;
507 
508 	for (i = 0; i < RDS_MPATH_WORKERS; i++) {
509 		cp = &conn->c_path[i];
510 		tc = cp->cp_transport_data;
511 		if (!tc->t_sock)
512 			continue;
513 		sk = tc->t_sock->sk;
514 		sk->sk_prot->disconnect(sk, 0);
515 		tcp_done(sk);
516 	}
517 }
518 
519 static void rds_tcp_kill_sock(struct net *net)
520 {
521 	struct rds_tcp_connection *tc, *_tc;
522 	LIST_HEAD(tmp_list);
523 	struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid);
524 	struct socket *lsock = rtn->rds_tcp_listen_sock;
525 
526 	rtn->rds_tcp_listen_sock = NULL;
527 	rds_tcp_listen_stop(lsock, &rtn->rds_tcp_accept_w);
528 	spin_lock_irq(&rds_tcp_conn_lock);
529 	list_for_each_entry_safe(tc, _tc, &rds_tcp_conn_list, t_tcp_node) {
530 		struct net *c_net = tc->t_cpath->cp_conn->c_net;
531 
532 		if (net != c_net || !tc->t_sock)
533 			continue;
534 		if (!list_has_conn(&tmp_list, tc->t_cpath->cp_conn))
535 			list_move_tail(&tc->t_tcp_node, &tmp_list);
536 	}
537 	spin_unlock_irq(&rds_tcp_conn_lock);
538 	list_for_each_entry_safe(tc, _tc, &tmp_list, t_tcp_node) {
539 		rds_tcp_conn_paths_destroy(tc->t_cpath->cp_conn);
540 		rds_conn_destroy(tc->t_cpath->cp_conn);
541 	}
542 }
543 
544 void *rds_tcp_listen_sock_def_readable(struct net *net)
545 {
546 	struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid);
547 	struct socket *lsock = rtn->rds_tcp_listen_sock;
548 
549 	if (!lsock)
550 		return NULL;
551 
552 	return lsock->sk->sk_user_data;
553 }
554 
555 static int rds_tcp_dev_event(struct notifier_block *this,
556 			     unsigned long event, void *ptr)
557 {
558 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
559 
560 	/* rds-tcp registers as a pernet subys, so the ->exit will only
561 	 * get invoked after network acitivity has quiesced. We need to
562 	 * clean up all sockets  to quiesce network activity, and use
563 	 * the unregistration of the per-net loopback device as a trigger
564 	 * to start that cleanup.
565 	 */
566 	if (event == NETDEV_UNREGISTER_FINAL &&
567 	    dev->ifindex == LOOPBACK_IFINDEX)
568 		rds_tcp_kill_sock(dev_net(dev));
569 
570 	return NOTIFY_DONE;
571 }
572 
573 static struct notifier_block rds_tcp_dev_notifier = {
574 	.notifier_call        = rds_tcp_dev_event,
575 	.priority = -10, /* must be called after other network notifiers */
576 };
577 
578 /* when sysctl is used to modify some kernel socket parameters,this
579  * function  resets the RDS connections in that netns  so that we can
580  * restart with new parameters.  The assumption is that such reset
581  * events are few and far-between.
582  */
583 static void rds_tcp_sysctl_reset(struct net *net)
584 {
585 	struct rds_tcp_connection *tc, *_tc;
586 
587 	spin_lock_irq(&rds_tcp_conn_lock);
588 	list_for_each_entry_safe(tc, _tc, &rds_tcp_conn_list, t_tcp_node) {
589 		struct net *c_net = tc->t_cpath->cp_conn->c_net;
590 
591 		if (net != c_net || !tc->t_sock)
592 			continue;
593 
594 		/* reconnect with new parameters */
595 		rds_conn_path_drop(tc->t_cpath);
596 	}
597 	spin_unlock_irq(&rds_tcp_conn_lock);
598 }
599 
600 static int rds_tcp_skbuf_handler(struct ctl_table *ctl, int write,
601 				 void __user *buffer, size_t *lenp,
602 				 loff_t *fpos)
603 {
604 	struct net *net = current->nsproxy->net_ns;
605 	int err;
606 
607 	err = proc_dointvec_minmax(ctl, write, buffer, lenp, fpos);
608 	if (err < 0) {
609 		pr_warn("Invalid input. Must be >= %d\n",
610 			*(int *)(ctl->extra1));
611 		return err;
612 	}
613 	if (write)
614 		rds_tcp_sysctl_reset(net);
615 	return 0;
616 }
617 
618 static void rds_tcp_exit(void)
619 {
620 	rds_info_deregister_func(RDS_INFO_TCP_SOCKETS, rds_tcp_tc_info);
621 	unregister_pernet_subsys(&rds_tcp_net_ops);
622 	if (unregister_netdevice_notifier(&rds_tcp_dev_notifier))
623 		pr_warn("could not unregister rds_tcp_dev_notifier\n");
624 	rds_tcp_destroy_conns();
625 	rds_trans_unregister(&rds_tcp_transport);
626 	rds_tcp_recv_exit();
627 	kmem_cache_destroy(rds_tcp_conn_slab);
628 }
629 module_exit(rds_tcp_exit);
630 
631 static int rds_tcp_init(void)
632 {
633 	int ret;
634 
635 	rds_tcp_conn_slab = kmem_cache_create("rds_tcp_connection",
636 					      sizeof(struct rds_tcp_connection),
637 					      0, 0, NULL);
638 	if (!rds_tcp_conn_slab) {
639 		ret = -ENOMEM;
640 		goto out;
641 	}
642 
643 	ret = rds_tcp_recv_init();
644 	if (ret)
645 		goto out_slab;
646 
647 	ret = register_pernet_subsys(&rds_tcp_net_ops);
648 	if (ret)
649 		goto out_recv;
650 
651 	ret = register_netdevice_notifier(&rds_tcp_dev_notifier);
652 	if (ret) {
653 		pr_warn("could not register rds_tcp_dev_notifier\n");
654 		goto out_pernet;
655 	}
656 
657 	rds_trans_register(&rds_tcp_transport);
658 
659 	rds_info_register_func(RDS_INFO_TCP_SOCKETS, rds_tcp_tc_info);
660 
661 	goto out;
662 
663 out_pernet:
664 	unregister_pernet_subsys(&rds_tcp_net_ops);
665 out_recv:
666 	rds_tcp_recv_exit();
667 out_slab:
668 	kmem_cache_destroy(rds_tcp_conn_slab);
669 out:
670 	return ret;
671 }
672 module_init(rds_tcp_init);
673 
674 MODULE_AUTHOR("Oracle Corporation <rds-devel@oss.oracle.com>");
675 MODULE_DESCRIPTION("RDS: TCP transport");
676 MODULE_LICENSE("Dual BSD/GPL");
677 
678