xref: /openbmc/linux/net/rds/tcp.c (revision 74ba9207e1adf1966c57450340534ae9742d00af)
1 /*
2  * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/in.h>
36 #include <linux/module.h>
37 #include <net/tcp.h>
38 #include <net/net_namespace.h>
39 #include <net/netns/generic.h>
40 #include <net/addrconf.h>
41 
42 #include "rds.h"
43 #include "tcp.h"
44 
45 /* only for info exporting */
46 static DEFINE_SPINLOCK(rds_tcp_tc_list_lock);
47 static LIST_HEAD(rds_tcp_tc_list);
48 
49 /* rds_tcp_tc_count counts only IPv4 connections.
50  * rds6_tcp_tc_count counts both IPv4 and IPv6 connections.
51  */
52 static unsigned int rds_tcp_tc_count;
53 #if IS_ENABLED(CONFIG_IPV6)
54 static unsigned int rds6_tcp_tc_count;
55 #endif
56 
57 /* Track rds_tcp_connection structs so they can be cleaned up */
58 static DEFINE_SPINLOCK(rds_tcp_conn_lock);
59 static LIST_HEAD(rds_tcp_conn_list);
60 static atomic_t rds_tcp_unloading = ATOMIC_INIT(0);
61 
62 static struct kmem_cache *rds_tcp_conn_slab;
63 
64 static int rds_tcp_skbuf_handler(struct ctl_table *ctl, int write,
65 				 void __user *buffer, size_t *lenp,
66 				 loff_t *fpos);
67 
68 static int rds_tcp_min_sndbuf = SOCK_MIN_SNDBUF;
69 static int rds_tcp_min_rcvbuf = SOCK_MIN_RCVBUF;
70 
71 static struct ctl_table rds_tcp_sysctl_table[] = {
72 #define	RDS_TCP_SNDBUF	0
73 	{
74 		.procname       = "rds_tcp_sndbuf",
75 		/* data is per-net pointer */
76 		.maxlen         = sizeof(int),
77 		.mode           = 0644,
78 		.proc_handler   = rds_tcp_skbuf_handler,
79 		.extra1		= &rds_tcp_min_sndbuf,
80 	},
81 #define	RDS_TCP_RCVBUF	1
82 	{
83 		.procname       = "rds_tcp_rcvbuf",
84 		/* data is per-net pointer */
85 		.maxlen         = sizeof(int),
86 		.mode           = 0644,
87 		.proc_handler   = rds_tcp_skbuf_handler,
88 		.extra1		= &rds_tcp_min_rcvbuf,
89 	},
90 	{ }
91 };
92 
93 /* doing it this way avoids calling tcp_sk() */
94 void rds_tcp_nonagle(struct socket *sock)
95 {
96 	int val = 1;
97 
98 	kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (void *)&val,
99 			      sizeof(val));
100 }
101 
102 u32 rds_tcp_write_seq(struct rds_tcp_connection *tc)
103 {
104 	/* seq# of the last byte of data in tcp send buffer */
105 	return tcp_sk(tc->t_sock->sk)->write_seq;
106 }
107 
108 u32 rds_tcp_snd_una(struct rds_tcp_connection *tc)
109 {
110 	return tcp_sk(tc->t_sock->sk)->snd_una;
111 }
112 
113 void rds_tcp_restore_callbacks(struct socket *sock,
114 			       struct rds_tcp_connection *tc)
115 {
116 	rdsdebug("restoring sock %p callbacks from tc %p\n", sock, tc);
117 	write_lock_bh(&sock->sk->sk_callback_lock);
118 
119 	/* done under the callback_lock to serialize with write_space */
120 	spin_lock(&rds_tcp_tc_list_lock);
121 	list_del_init(&tc->t_list_item);
122 #if IS_ENABLED(CONFIG_IPV6)
123 	rds6_tcp_tc_count--;
124 #endif
125 	if (!tc->t_cpath->cp_conn->c_isv6)
126 		rds_tcp_tc_count--;
127 	spin_unlock(&rds_tcp_tc_list_lock);
128 
129 	tc->t_sock = NULL;
130 
131 	sock->sk->sk_write_space = tc->t_orig_write_space;
132 	sock->sk->sk_data_ready = tc->t_orig_data_ready;
133 	sock->sk->sk_state_change = tc->t_orig_state_change;
134 	sock->sk->sk_user_data = NULL;
135 
136 	write_unlock_bh(&sock->sk->sk_callback_lock);
137 }
138 
139 /*
140  * rds_tcp_reset_callbacks() switches the to the new sock and
141  * returns the existing tc->t_sock.
142  *
143  * The only functions that set tc->t_sock are rds_tcp_set_callbacks
144  * and rds_tcp_reset_callbacks.  Send and receive trust that
145  * it is set.  The absence of RDS_CONN_UP bit protects those paths
146  * from being called while it isn't set.
147  */
148 void rds_tcp_reset_callbacks(struct socket *sock,
149 			     struct rds_conn_path *cp)
150 {
151 	struct rds_tcp_connection *tc = cp->cp_transport_data;
152 	struct socket *osock = tc->t_sock;
153 
154 	if (!osock)
155 		goto newsock;
156 
157 	/* Need to resolve a duelling SYN between peers.
158 	 * We have an outstanding SYN to this peer, which may
159 	 * potentially have transitioned to the RDS_CONN_UP state,
160 	 * so we must quiesce any send threads before resetting
161 	 * cp_transport_data. We quiesce these threads by setting
162 	 * cp_state to something other than RDS_CONN_UP, and then
163 	 * waiting for any existing threads in rds_send_xmit to
164 	 * complete release_in_xmit(). (Subsequent threads entering
165 	 * rds_send_xmit() will bail on !rds_conn_up().
166 	 *
167 	 * However an incoming syn-ack at this point would end up
168 	 * marking the conn as RDS_CONN_UP, and would again permit
169 	 * rds_send_xmi() threads through, so ideally we would
170 	 * synchronize on RDS_CONN_UP after lock_sock(), but cannot
171 	 * do that: waiting on !RDS_IN_XMIT after lock_sock() may
172 	 * end up deadlocking with tcp_sendmsg(), and the RDS_IN_XMIT
173 	 * would not get set. As a result, we set c_state to
174 	 * RDS_CONN_RESETTTING, to ensure that rds_tcp_state_change
175 	 * cannot mark rds_conn_path_up() in the window before lock_sock()
176 	 */
177 	atomic_set(&cp->cp_state, RDS_CONN_RESETTING);
178 	wait_event(cp->cp_waitq, !test_bit(RDS_IN_XMIT, &cp->cp_flags));
179 	lock_sock(osock->sk);
180 	/* reset receive side state for rds_tcp_data_recv() for osock  */
181 	cancel_delayed_work_sync(&cp->cp_send_w);
182 	cancel_delayed_work_sync(&cp->cp_recv_w);
183 	if (tc->t_tinc) {
184 		rds_inc_put(&tc->t_tinc->ti_inc);
185 		tc->t_tinc = NULL;
186 	}
187 	tc->t_tinc_hdr_rem = sizeof(struct rds_header);
188 	tc->t_tinc_data_rem = 0;
189 	rds_tcp_restore_callbacks(osock, tc);
190 	release_sock(osock->sk);
191 	sock_release(osock);
192 newsock:
193 	rds_send_path_reset(cp);
194 	lock_sock(sock->sk);
195 	rds_tcp_set_callbacks(sock, cp);
196 	release_sock(sock->sk);
197 }
198 
199 /* Add tc to rds_tcp_tc_list and set tc->t_sock. See comments
200  * above rds_tcp_reset_callbacks for notes about synchronization
201  * with data path
202  */
203 void rds_tcp_set_callbacks(struct socket *sock, struct rds_conn_path *cp)
204 {
205 	struct rds_tcp_connection *tc = cp->cp_transport_data;
206 
207 	rdsdebug("setting sock %p callbacks to tc %p\n", sock, tc);
208 	write_lock_bh(&sock->sk->sk_callback_lock);
209 
210 	/* done under the callback_lock to serialize with write_space */
211 	spin_lock(&rds_tcp_tc_list_lock);
212 	list_add_tail(&tc->t_list_item, &rds_tcp_tc_list);
213 #if IS_ENABLED(CONFIG_IPV6)
214 	rds6_tcp_tc_count++;
215 #endif
216 	if (!tc->t_cpath->cp_conn->c_isv6)
217 		rds_tcp_tc_count++;
218 	spin_unlock(&rds_tcp_tc_list_lock);
219 
220 	/* accepted sockets need our listen data ready undone */
221 	if (sock->sk->sk_data_ready == rds_tcp_listen_data_ready)
222 		sock->sk->sk_data_ready = sock->sk->sk_user_data;
223 
224 	tc->t_sock = sock;
225 	tc->t_cpath = cp;
226 	tc->t_orig_data_ready = sock->sk->sk_data_ready;
227 	tc->t_orig_write_space = sock->sk->sk_write_space;
228 	tc->t_orig_state_change = sock->sk->sk_state_change;
229 
230 	sock->sk->sk_user_data = cp;
231 	sock->sk->sk_data_ready = rds_tcp_data_ready;
232 	sock->sk->sk_write_space = rds_tcp_write_space;
233 	sock->sk->sk_state_change = rds_tcp_state_change;
234 
235 	write_unlock_bh(&sock->sk->sk_callback_lock);
236 }
237 
238 /* Handle RDS_INFO_TCP_SOCKETS socket option.  It only returns IPv4
239  * connections for backward compatibility.
240  */
241 static void rds_tcp_tc_info(struct socket *rds_sock, unsigned int len,
242 			    struct rds_info_iterator *iter,
243 			    struct rds_info_lengths *lens)
244 {
245 	struct rds_info_tcp_socket tsinfo;
246 	struct rds_tcp_connection *tc;
247 	unsigned long flags;
248 
249 	spin_lock_irqsave(&rds_tcp_tc_list_lock, flags);
250 
251 	if (len / sizeof(tsinfo) < rds_tcp_tc_count)
252 		goto out;
253 
254 	list_for_each_entry(tc, &rds_tcp_tc_list, t_list_item) {
255 		struct inet_sock *inet = inet_sk(tc->t_sock->sk);
256 
257 		if (tc->t_cpath->cp_conn->c_isv6)
258 			continue;
259 
260 		tsinfo.local_addr = inet->inet_saddr;
261 		tsinfo.local_port = inet->inet_sport;
262 		tsinfo.peer_addr = inet->inet_daddr;
263 		tsinfo.peer_port = inet->inet_dport;
264 
265 		tsinfo.hdr_rem = tc->t_tinc_hdr_rem;
266 		tsinfo.data_rem = tc->t_tinc_data_rem;
267 		tsinfo.last_sent_nxt = tc->t_last_sent_nxt;
268 		tsinfo.last_expected_una = tc->t_last_expected_una;
269 		tsinfo.last_seen_una = tc->t_last_seen_una;
270 		tsinfo.tos = tc->t_cpath->cp_conn->c_tos;
271 
272 		rds_info_copy(iter, &tsinfo, sizeof(tsinfo));
273 	}
274 
275 out:
276 	lens->nr = rds_tcp_tc_count;
277 	lens->each = sizeof(tsinfo);
278 
279 	spin_unlock_irqrestore(&rds_tcp_tc_list_lock, flags);
280 }
281 
282 #if IS_ENABLED(CONFIG_IPV6)
283 /* Handle RDS6_INFO_TCP_SOCKETS socket option. It returns both IPv4 and
284  * IPv6 connections. IPv4 connection address is returned in an IPv4 mapped
285  * address.
286  */
287 static void rds6_tcp_tc_info(struct socket *sock, unsigned int len,
288 			     struct rds_info_iterator *iter,
289 			     struct rds_info_lengths *lens)
290 {
291 	struct rds6_info_tcp_socket tsinfo6;
292 	struct rds_tcp_connection *tc;
293 	unsigned long flags;
294 
295 	spin_lock_irqsave(&rds_tcp_tc_list_lock, flags);
296 
297 	if (len / sizeof(tsinfo6) < rds6_tcp_tc_count)
298 		goto out;
299 
300 	list_for_each_entry(tc, &rds_tcp_tc_list, t_list_item) {
301 		struct sock *sk = tc->t_sock->sk;
302 		struct inet_sock *inet = inet_sk(sk);
303 
304 		tsinfo6.local_addr = sk->sk_v6_rcv_saddr;
305 		tsinfo6.local_port = inet->inet_sport;
306 		tsinfo6.peer_addr = sk->sk_v6_daddr;
307 		tsinfo6.peer_port = inet->inet_dport;
308 
309 		tsinfo6.hdr_rem = tc->t_tinc_hdr_rem;
310 		tsinfo6.data_rem = tc->t_tinc_data_rem;
311 		tsinfo6.last_sent_nxt = tc->t_last_sent_nxt;
312 		tsinfo6.last_expected_una = tc->t_last_expected_una;
313 		tsinfo6.last_seen_una = tc->t_last_seen_una;
314 
315 		rds_info_copy(iter, &tsinfo6, sizeof(tsinfo6));
316 	}
317 
318 out:
319 	lens->nr = rds6_tcp_tc_count;
320 	lens->each = sizeof(tsinfo6);
321 
322 	spin_unlock_irqrestore(&rds_tcp_tc_list_lock, flags);
323 }
324 #endif
325 
326 static int rds_tcp_laddr_check(struct net *net, const struct in6_addr *addr,
327 			       __u32 scope_id)
328 {
329 	struct net_device *dev = NULL;
330 #if IS_ENABLED(CONFIG_IPV6)
331 	int ret;
332 #endif
333 
334 	if (ipv6_addr_v4mapped(addr)) {
335 		if (inet_addr_type(net, addr->s6_addr32[3]) == RTN_LOCAL)
336 			return 0;
337 		return -EADDRNOTAVAIL;
338 	}
339 
340 	/* If the scope_id is specified, check only those addresses
341 	 * hosted on the specified interface.
342 	 */
343 	if (scope_id != 0) {
344 		rcu_read_lock();
345 		dev = dev_get_by_index_rcu(net, scope_id);
346 		/* scope_id is not valid... */
347 		if (!dev) {
348 			rcu_read_unlock();
349 			return -EADDRNOTAVAIL;
350 		}
351 		rcu_read_unlock();
352 	}
353 #if IS_ENABLED(CONFIG_IPV6)
354 	ret = ipv6_chk_addr(net, addr, dev, 0);
355 	if (ret)
356 		return 0;
357 #endif
358 	return -EADDRNOTAVAIL;
359 }
360 
361 static void rds_tcp_conn_free(void *arg)
362 {
363 	struct rds_tcp_connection *tc = arg;
364 	unsigned long flags;
365 
366 	rdsdebug("freeing tc %p\n", tc);
367 
368 	spin_lock_irqsave(&rds_tcp_conn_lock, flags);
369 	if (!tc->t_tcp_node_detached)
370 		list_del(&tc->t_tcp_node);
371 	spin_unlock_irqrestore(&rds_tcp_conn_lock, flags);
372 
373 	kmem_cache_free(rds_tcp_conn_slab, tc);
374 }
375 
376 static int rds_tcp_conn_alloc(struct rds_connection *conn, gfp_t gfp)
377 {
378 	struct rds_tcp_connection *tc;
379 	int i, j;
380 	int ret = 0;
381 
382 	for (i = 0; i < RDS_MPATH_WORKERS; i++) {
383 		tc = kmem_cache_alloc(rds_tcp_conn_slab, gfp);
384 		if (!tc) {
385 			ret = -ENOMEM;
386 			goto fail;
387 		}
388 		mutex_init(&tc->t_conn_path_lock);
389 		tc->t_sock = NULL;
390 		tc->t_tinc = NULL;
391 		tc->t_tinc_hdr_rem = sizeof(struct rds_header);
392 		tc->t_tinc_data_rem = 0;
393 
394 		conn->c_path[i].cp_transport_data = tc;
395 		tc->t_cpath = &conn->c_path[i];
396 		tc->t_tcp_node_detached = true;
397 
398 		rdsdebug("rds_conn_path [%d] tc %p\n", i,
399 			 conn->c_path[i].cp_transport_data);
400 	}
401 	spin_lock_irq(&rds_tcp_conn_lock);
402 	for (i = 0; i < RDS_MPATH_WORKERS; i++) {
403 		tc = conn->c_path[i].cp_transport_data;
404 		tc->t_tcp_node_detached = false;
405 		list_add_tail(&tc->t_tcp_node, &rds_tcp_conn_list);
406 	}
407 	spin_unlock_irq(&rds_tcp_conn_lock);
408 fail:
409 	if (ret) {
410 		for (j = 0; j < i; j++)
411 			rds_tcp_conn_free(conn->c_path[j].cp_transport_data);
412 	}
413 	return ret;
414 }
415 
416 static bool list_has_conn(struct list_head *list, struct rds_connection *conn)
417 {
418 	struct rds_tcp_connection *tc, *_tc;
419 
420 	list_for_each_entry_safe(tc, _tc, list, t_tcp_node) {
421 		if (tc->t_cpath->cp_conn == conn)
422 			return true;
423 	}
424 	return false;
425 }
426 
427 static void rds_tcp_set_unloading(void)
428 {
429 	atomic_set(&rds_tcp_unloading, 1);
430 }
431 
432 static bool rds_tcp_is_unloading(struct rds_connection *conn)
433 {
434 	return atomic_read(&rds_tcp_unloading) != 0;
435 }
436 
437 static void rds_tcp_destroy_conns(void)
438 {
439 	struct rds_tcp_connection *tc, *_tc;
440 	LIST_HEAD(tmp_list);
441 
442 	/* avoid calling conn_destroy with irqs off */
443 	spin_lock_irq(&rds_tcp_conn_lock);
444 	list_for_each_entry_safe(tc, _tc, &rds_tcp_conn_list, t_tcp_node) {
445 		if (!list_has_conn(&tmp_list, tc->t_cpath->cp_conn))
446 			list_move_tail(&tc->t_tcp_node, &tmp_list);
447 	}
448 	spin_unlock_irq(&rds_tcp_conn_lock);
449 
450 	list_for_each_entry_safe(tc, _tc, &tmp_list, t_tcp_node)
451 		rds_conn_destroy(tc->t_cpath->cp_conn);
452 }
453 
454 static void rds_tcp_exit(void);
455 
456 static u8 rds_tcp_get_tos_map(u8 tos)
457 {
458 	/* all user tos mapped to default 0 for TCP transport */
459 	return 0;
460 }
461 
462 struct rds_transport rds_tcp_transport = {
463 	.laddr_check		= rds_tcp_laddr_check,
464 	.xmit_path_prepare	= rds_tcp_xmit_path_prepare,
465 	.xmit_path_complete	= rds_tcp_xmit_path_complete,
466 	.xmit			= rds_tcp_xmit,
467 	.recv_path		= rds_tcp_recv_path,
468 	.conn_alloc		= rds_tcp_conn_alloc,
469 	.conn_free		= rds_tcp_conn_free,
470 	.conn_path_connect	= rds_tcp_conn_path_connect,
471 	.conn_path_shutdown	= rds_tcp_conn_path_shutdown,
472 	.inc_copy_to_user	= rds_tcp_inc_copy_to_user,
473 	.inc_free		= rds_tcp_inc_free,
474 	.stats_info_copy	= rds_tcp_stats_info_copy,
475 	.exit			= rds_tcp_exit,
476 	.get_tos_map		= rds_tcp_get_tos_map,
477 	.t_owner		= THIS_MODULE,
478 	.t_name			= "tcp",
479 	.t_type			= RDS_TRANS_TCP,
480 	.t_prefer_loopback	= 1,
481 	.t_mp_capable		= 1,
482 	.t_unloading		= rds_tcp_is_unloading,
483 };
484 
485 static unsigned int rds_tcp_netid;
486 
487 /* per-network namespace private data for this module */
488 struct rds_tcp_net {
489 	struct socket *rds_tcp_listen_sock;
490 	struct work_struct rds_tcp_accept_w;
491 	struct ctl_table_header *rds_tcp_sysctl;
492 	struct ctl_table *ctl_table;
493 	int sndbuf_size;
494 	int rcvbuf_size;
495 };
496 
497 /* All module specific customizations to the RDS-TCP socket should be done in
498  * rds_tcp_tune() and applied after socket creation.
499  */
500 void rds_tcp_tune(struct socket *sock)
501 {
502 	struct sock *sk = sock->sk;
503 	struct net *net = sock_net(sk);
504 	struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid);
505 
506 	rds_tcp_nonagle(sock);
507 	lock_sock(sk);
508 	if (rtn->sndbuf_size > 0) {
509 		sk->sk_sndbuf = rtn->sndbuf_size;
510 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
511 	}
512 	if (rtn->rcvbuf_size > 0) {
513 		sk->sk_sndbuf = rtn->rcvbuf_size;
514 		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
515 	}
516 	release_sock(sk);
517 }
518 
519 static void rds_tcp_accept_worker(struct work_struct *work)
520 {
521 	struct rds_tcp_net *rtn = container_of(work,
522 					       struct rds_tcp_net,
523 					       rds_tcp_accept_w);
524 
525 	while (rds_tcp_accept_one(rtn->rds_tcp_listen_sock) == 0)
526 		cond_resched();
527 }
528 
529 void rds_tcp_accept_work(struct sock *sk)
530 {
531 	struct net *net = sock_net(sk);
532 	struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid);
533 
534 	queue_work(rds_wq, &rtn->rds_tcp_accept_w);
535 }
536 
537 static __net_init int rds_tcp_init_net(struct net *net)
538 {
539 	struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid);
540 	struct ctl_table *tbl;
541 	int err = 0;
542 
543 	memset(rtn, 0, sizeof(*rtn));
544 
545 	/* {snd, rcv}buf_size default to 0, which implies we let the
546 	 * stack pick the value, and permit auto-tuning of buffer size.
547 	 */
548 	if (net == &init_net) {
549 		tbl = rds_tcp_sysctl_table;
550 	} else {
551 		tbl = kmemdup(rds_tcp_sysctl_table,
552 			      sizeof(rds_tcp_sysctl_table), GFP_KERNEL);
553 		if (!tbl) {
554 			pr_warn("could not set allocate sysctl table\n");
555 			return -ENOMEM;
556 		}
557 		rtn->ctl_table = tbl;
558 	}
559 	tbl[RDS_TCP_SNDBUF].data = &rtn->sndbuf_size;
560 	tbl[RDS_TCP_RCVBUF].data = &rtn->rcvbuf_size;
561 	rtn->rds_tcp_sysctl = register_net_sysctl(net, "net/rds/tcp", tbl);
562 	if (!rtn->rds_tcp_sysctl) {
563 		pr_warn("could not register sysctl\n");
564 		err = -ENOMEM;
565 		goto fail;
566 	}
567 
568 #if IS_ENABLED(CONFIG_IPV6)
569 	rtn->rds_tcp_listen_sock = rds_tcp_listen_init(net, true);
570 #else
571 	rtn->rds_tcp_listen_sock = rds_tcp_listen_init(net, false);
572 #endif
573 	if (!rtn->rds_tcp_listen_sock) {
574 		pr_warn("could not set up IPv6 listen sock\n");
575 
576 #if IS_ENABLED(CONFIG_IPV6)
577 		/* Try IPv4 as some systems disable IPv6 */
578 		rtn->rds_tcp_listen_sock = rds_tcp_listen_init(net, false);
579 		if (!rtn->rds_tcp_listen_sock) {
580 #endif
581 			unregister_net_sysctl_table(rtn->rds_tcp_sysctl);
582 			rtn->rds_tcp_sysctl = NULL;
583 			err = -EAFNOSUPPORT;
584 			goto fail;
585 #if IS_ENABLED(CONFIG_IPV6)
586 		}
587 #endif
588 	}
589 	INIT_WORK(&rtn->rds_tcp_accept_w, rds_tcp_accept_worker);
590 	return 0;
591 
592 fail:
593 	if (net != &init_net)
594 		kfree(tbl);
595 	return err;
596 }
597 
598 static void rds_tcp_kill_sock(struct net *net)
599 {
600 	struct rds_tcp_connection *tc, *_tc;
601 	LIST_HEAD(tmp_list);
602 	struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid);
603 	struct socket *lsock = rtn->rds_tcp_listen_sock;
604 
605 	rtn->rds_tcp_listen_sock = NULL;
606 	rds_tcp_listen_stop(lsock, &rtn->rds_tcp_accept_w);
607 	spin_lock_irq(&rds_tcp_conn_lock);
608 	list_for_each_entry_safe(tc, _tc, &rds_tcp_conn_list, t_tcp_node) {
609 		struct net *c_net = read_pnet(&tc->t_cpath->cp_conn->c_net);
610 
611 		if (net != c_net)
612 			continue;
613 		if (!list_has_conn(&tmp_list, tc->t_cpath->cp_conn)) {
614 			list_move_tail(&tc->t_tcp_node, &tmp_list);
615 		} else {
616 			list_del(&tc->t_tcp_node);
617 			tc->t_tcp_node_detached = true;
618 		}
619 	}
620 	spin_unlock_irq(&rds_tcp_conn_lock);
621 	list_for_each_entry_safe(tc, _tc, &tmp_list, t_tcp_node)
622 		rds_conn_destroy(tc->t_cpath->cp_conn);
623 }
624 
625 static void __net_exit rds_tcp_exit_net(struct net *net)
626 {
627 	struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid);
628 
629 	rds_tcp_kill_sock(net);
630 
631 	if (rtn->rds_tcp_sysctl)
632 		unregister_net_sysctl_table(rtn->rds_tcp_sysctl);
633 
634 	if (net != &init_net)
635 		kfree(rtn->ctl_table);
636 }
637 
638 static struct pernet_operations rds_tcp_net_ops = {
639 	.init = rds_tcp_init_net,
640 	.exit = rds_tcp_exit_net,
641 	.id = &rds_tcp_netid,
642 	.size = sizeof(struct rds_tcp_net),
643 };
644 
645 void *rds_tcp_listen_sock_def_readable(struct net *net)
646 {
647 	struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid);
648 	struct socket *lsock = rtn->rds_tcp_listen_sock;
649 
650 	if (!lsock)
651 		return NULL;
652 
653 	return lsock->sk->sk_user_data;
654 }
655 
656 /* when sysctl is used to modify some kernel socket parameters,this
657  * function  resets the RDS connections in that netns  so that we can
658  * restart with new parameters.  The assumption is that such reset
659  * events are few and far-between.
660  */
661 static void rds_tcp_sysctl_reset(struct net *net)
662 {
663 	struct rds_tcp_connection *tc, *_tc;
664 
665 	spin_lock_irq(&rds_tcp_conn_lock);
666 	list_for_each_entry_safe(tc, _tc, &rds_tcp_conn_list, t_tcp_node) {
667 		struct net *c_net = read_pnet(&tc->t_cpath->cp_conn->c_net);
668 
669 		if (net != c_net || !tc->t_sock)
670 			continue;
671 
672 		/* reconnect with new parameters */
673 		rds_conn_path_drop(tc->t_cpath, false);
674 	}
675 	spin_unlock_irq(&rds_tcp_conn_lock);
676 }
677 
678 static int rds_tcp_skbuf_handler(struct ctl_table *ctl, int write,
679 				 void __user *buffer, size_t *lenp,
680 				 loff_t *fpos)
681 {
682 	struct net *net = current->nsproxy->net_ns;
683 	int err;
684 
685 	err = proc_dointvec_minmax(ctl, write, buffer, lenp, fpos);
686 	if (err < 0) {
687 		pr_warn("Invalid input. Must be >= %d\n",
688 			*(int *)(ctl->extra1));
689 		return err;
690 	}
691 	if (write)
692 		rds_tcp_sysctl_reset(net);
693 	return 0;
694 }
695 
696 static void rds_tcp_exit(void)
697 {
698 	rds_tcp_set_unloading();
699 	synchronize_rcu();
700 	rds_info_deregister_func(RDS_INFO_TCP_SOCKETS, rds_tcp_tc_info);
701 #if IS_ENABLED(CONFIG_IPV6)
702 	rds_info_deregister_func(RDS6_INFO_TCP_SOCKETS, rds6_tcp_tc_info);
703 #endif
704 	unregister_pernet_device(&rds_tcp_net_ops);
705 	rds_tcp_destroy_conns();
706 	rds_trans_unregister(&rds_tcp_transport);
707 	rds_tcp_recv_exit();
708 	kmem_cache_destroy(rds_tcp_conn_slab);
709 }
710 module_exit(rds_tcp_exit);
711 
712 static int rds_tcp_init(void)
713 {
714 	int ret;
715 
716 	rds_tcp_conn_slab = kmem_cache_create("rds_tcp_connection",
717 					      sizeof(struct rds_tcp_connection),
718 					      0, 0, NULL);
719 	if (!rds_tcp_conn_slab) {
720 		ret = -ENOMEM;
721 		goto out;
722 	}
723 
724 	ret = rds_tcp_recv_init();
725 	if (ret)
726 		goto out_slab;
727 
728 	ret = register_pernet_device(&rds_tcp_net_ops);
729 	if (ret)
730 		goto out_recv;
731 
732 	rds_trans_register(&rds_tcp_transport);
733 
734 	rds_info_register_func(RDS_INFO_TCP_SOCKETS, rds_tcp_tc_info);
735 #if IS_ENABLED(CONFIG_IPV6)
736 	rds_info_register_func(RDS6_INFO_TCP_SOCKETS, rds6_tcp_tc_info);
737 #endif
738 
739 	goto out;
740 out_recv:
741 	rds_tcp_recv_exit();
742 out_slab:
743 	kmem_cache_destroy(rds_tcp_conn_slab);
744 out:
745 	return ret;
746 }
747 module_init(rds_tcp_init);
748 
749 MODULE_AUTHOR("Oracle Corporation <rds-devel@oss.oracle.com>");
750 MODULE_DESCRIPTION("RDS: TCP transport");
751 MODULE_LICENSE("Dual BSD/GPL");
752