xref: /openbmc/linux/net/rds/send.c (revision fd589a8f)
1 /*
2  * Copyright (c) 2006 Oracle.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <net/sock.h>
35 #include <linux/in.h>
36 #include <linux/list.h>
37 
38 #include "rds.h"
39 #include "rdma.h"
40 
41 /* When transmitting messages in rds_send_xmit, we need to emerge from
42  * time to time and briefly release the CPU. Otherwise the softlock watchdog
43  * will kick our shin.
44  * Also, it seems fairer to not let one busy connection stall all the
45  * others.
46  *
47  * send_batch_count is the number of times we'll loop in send_xmit. Setting
48  * it to 0 will restore the old behavior (where we looped until we had
49  * drained the queue).
50  */
51 static int send_batch_count = 64;
52 module_param(send_batch_count, int, 0444);
53 MODULE_PARM_DESC(send_batch_count, " batch factor when working the send queue");
54 
55 /*
56  * Reset the send state. Caller must hold c_send_lock when calling here.
57  */
58 void rds_send_reset(struct rds_connection *conn)
59 {
60 	struct rds_message *rm, *tmp;
61 	unsigned long flags;
62 
63 	if (conn->c_xmit_rm) {
64 		/* Tell the user the RDMA op is no longer mapped by the
65 		 * transport. This isn't entirely true (it's flushed out
66 		 * independently) but as the connection is down, there's
67 		 * no ongoing RDMA to/from that memory */
68 		rds_message_unmapped(conn->c_xmit_rm);
69 		rds_message_put(conn->c_xmit_rm);
70 		conn->c_xmit_rm = NULL;
71 	}
72 	conn->c_xmit_sg = 0;
73 	conn->c_xmit_hdr_off = 0;
74 	conn->c_xmit_data_off = 0;
75 	conn->c_xmit_rdma_sent = 0;
76 
77 	conn->c_map_queued = 0;
78 
79 	conn->c_unacked_packets = rds_sysctl_max_unacked_packets;
80 	conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes;
81 
82 	/* Mark messages as retransmissions, and move them to the send q */
83 	spin_lock_irqsave(&conn->c_lock, flags);
84 	list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
85 		set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
86 		set_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags);
87 	}
88 	list_splice_init(&conn->c_retrans, &conn->c_send_queue);
89 	spin_unlock_irqrestore(&conn->c_lock, flags);
90 }
91 
92 /*
93  * We're making the concious trade-off here to only send one message
94  * down the connection at a time.
95  *   Pro:
96  *      - tx queueing is a simple fifo list
97  *   	- reassembly is optional and easily done by transports per conn
98  *      - no per flow rx lookup at all, straight to the socket
99  *   	- less per-frag memory and wire overhead
100  *   Con:
101  *      - queued acks can be delayed behind large messages
102  *   Depends:
103  *      - small message latency is higher behind queued large messages
104  *      - large message latency isn't starved by intervening small sends
105  */
106 int rds_send_xmit(struct rds_connection *conn)
107 {
108 	struct rds_message *rm;
109 	unsigned long flags;
110 	unsigned int tmp;
111 	unsigned int send_quota = send_batch_count;
112 	struct scatterlist *sg;
113 	int ret = 0;
114 	int was_empty = 0;
115 	LIST_HEAD(to_be_dropped);
116 
117 	/*
118 	 * sendmsg calls here after having queued its message on the send
119 	 * queue.  We only have one task feeding the connection at a time.  If
120 	 * another thread is already feeding the queue then we back off.  This
121 	 * avoids blocking the caller and trading per-connection data between
122 	 * caches per message.
123 	 *
124 	 * The sem holder will issue a retry if they notice that someone queued
125 	 * a message after they stopped walking the send queue but before they
126 	 * dropped the sem.
127 	 */
128 	if (!mutex_trylock(&conn->c_send_lock)) {
129 		rds_stats_inc(s_send_sem_contention);
130 		ret = -ENOMEM;
131 		goto out;
132 	}
133 
134 	if (conn->c_trans->xmit_prepare)
135 		conn->c_trans->xmit_prepare(conn);
136 
137 	/*
138 	 * spin trying to push headers and data down the connection until
139 	 * the connection doens't make forward progress.
140 	 */
141 	while (--send_quota) {
142 		/*
143 		 * See if need to send a congestion map update if we're
144 		 * between sending messages.  The send_sem protects our sole
145 		 * use of c_map_offset and _bytes.
146 		 * Note this is used only by transports that define a special
147 		 * xmit_cong_map function. For all others, we create allocate
148 		 * a cong_map message and treat it just like any other send.
149 		 */
150 		if (conn->c_map_bytes) {
151 			ret = conn->c_trans->xmit_cong_map(conn, conn->c_lcong,
152 						conn->c_map_offset);
153 			if (ret <= 0)
154 				break;
155 
156 			conn->c_map_offset += ret;
157 			conn->c_map_bytes -= ret;
158 			if (conn->c_map_bytes)
159 				continue;
160 		}
161 
162 		/* If we're done sending the current message, clear the
163 		 * offset and S/G temporaries.
164 		 */
165 		rm = conn->c_xmit_rm;
166 		if (rm != NULL &&
167 		    conn->c_xmit_hdr_off == sizeof(struct rds_header) &&
168 		    conn->c_xmit_sg == rm->m_nents) {
169 			conn->c_xmit_rm = NULL;
170 			conn->c_xmit_sg = 0;
171 			conn->c_xmit_hdr_off = 0;
172 			conn->c_xmit_data_off = 0;
173 			conn->c_xmit_rdma_sent = 0;
174 
175 			/* Release the reference to the previous message. */
176 			rds_message_put(rm);
177 			rm = NULL;
178 		}
179 
180 		/* If we're asked to send a cong map update, do so.
181 		 */
182 		if (rm == NULL && test_and_clear_bit(0, &conn->c_map_queued)) {
183 			if (conn->c_trans->xmit_cong_map != NULL) {
184 				conn->c_map_offset = 0;
185 				conn->c_map_bytes = sizeof(struct rds_header) +
186 					RDS_CONG_MAP_BYTES;
187 				continue;
188 			}
189 
190 			rm = rds_cong_update_alloc(conn);
191 			if (IS_ERR(rm)) {
192 				ret = PTR_ERR(rm);
193 				break;
194 			}
195 
196 			conn->c_xmit_rm = rm;
197 		}
198 
199 		/*
200 		 * Grab the next message from the send queue, if there is one.
201 		 *
202 		 * c_xmit_rm holds a ref while we're sending this message down
203 		 * the connction.  We can use this ref while holding the
204 		 * send_sem.. rds_send_reset() is serialized with it.
205 		 */
206 		if (rm == NULL) {
207 			unsigned int len;
208 
209 			spin_lock_irqsave(&conn->c_lock, flags);
210 
211 			if (!list_empty(&conn->c_send_queue)) {
212 				rm = list_entry(conn->c_send_queue.next,
213 						struct rds_message,
214 						m_conn_item);
215 				rds_message_addref(rm);
216 
217 				/*
218 				 * Move the message from the send queue to the retransmit
219 				 * list right away.
220 				 */
221 				list_move_tail(&rm->m_conn_item, &conn->c_retrans);
222 			}
223 
224 			spin_unlock_irqrestore(&conn->c_lock, flags);
225 
226 			if (rm == NULL) {
227 				was_empty = 1;
228 				break;
229 			}
230 
231 			/* Unfortunately, the way Infiniband deals with
232 			 * RDMA to a bad MR key is by moving the entire
233 			 * queue pair to error state. We cold possibly
234 			 * recover from that, but right now we drop the
235 			 * connection.
236 			 * Therefore, we never retransmit messages with RDMA ops.
237 			 */
238 			if (rm->m_rdma_op
239 			 && test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags)) {
240 				spin_lock_irqsave(&conn->c_lock, flags);
241 				if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags))
242 					list_move(&rm->m_conn_item, &to_be_dropped);
243 				spin_unlock_irqrestore(&conn->c_lock, flags);
244 				rds_message_put(rm);
245 				continue;
246 			}
247 
248 			/* Require an ACK every once in a while */
249 			len = ntohl(rm->m_inc.i_hdr.h_len);
250 			if (conn->c_unacked_packets == 0
251 			 || conn->c_unacked_bytes < len) {
252 				__set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
253 
254 				conn->c_unacked_packets = rds_sysctl_max_unacked_packets;
255 				conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes;
256 				rds_stats_inc(s_send_ack_required);
257 			} else {
258 				conn->c_unacked_bytes -= len;
259 				conn->c_unacked_packets--;
260 			}
261 
262 			conn->c_xmit_rm = rm;
263 		}
264 
265 		/*
266 		 * Try and send an rdma message.  Let's see if we can
267 		 * keep this simple and require that the transport either
268 		 * send the whole rdma or none of it.
269 		 */
270 		if (rm->m_rdma_op && !conn->c_xmit_rdma_sent) {
271 			ret = conn->c_trans->xmit_rdma(conn, rm->m_rdma_op);
272 			if (ret)
273 				break;
274 			conn->c_xmit_rdma_sent = 1;
275 			/* The transport owns the mapped memory for now.
276 			 * You can't unmap it while it's on the send queue */
277 			set_bit(RDS_MSG_MAPPED, &rm->m_flags);
278 		}
279 
280 		if (conn->c_xmit_hdr_off < sizeof(struct rds_header) ||
281 		    conn->c_xmit_sg < rm->m_nents) {
282 			ret = conn->c_trans->xmit(conn, rm,
283 						  conn->c_xmit_hdr_off,
284 						  conn->c_xmit_sg,
285 						  conn->c_xmit_data_off);
286 			if (ret <= 0)
287 				break;
288 
289 			if (conn->c_xmit_hdr_off < sizeof(struct rds_header)) {
290 				tmp = min_t(int, ret,
291 					    sizeof(struct rds_header) -
292 					    conn->c_xmit_hdr_off);
293 				conn->c_xmit_hdr_off += tmp;
294 				ret -= tmp;
295 			}
296 
297 			sg = &rm->m_sg[conn->c_xmit_sg];
298 			while (ret) {
299 				tmp = min_t(int, ret, sg->length -
300 						      conn->c_xmit_data_off);
301 				conn->c_xmit_data_off += tmp;
302 				ret -= tmp;
303 				if (conn->c_xmit_data_off == sg->length) {
304 					conn->c_xmit_data_off = 0;
305 					sg++;
306 					conn->c_xmit_sg++;
307 					BUG_ON(ret != 0 &&
308 					       conn->c_xmit_sg == rm->m_nents);
309 				}
310 			}
311 		}
312 	}
313 
314 	/* Nuke any messages we decided not to retransmit. */
315 	if (!list_empty(&to_be_dropped))
316 		rds_send_remove_from_sock(&to_be_dropped, RDS_RDMA_DROPPED);
317 
318 	if (conn->c_trans->xmit_complete)
319 		conn->c_trans->xmit_complete(conn);
320 
321 	/*
322 	 * We might be racing with another sender who queued a message but
323 	 * backed off on noticing that we held the c_send_lock.  If we check
324 	 * for queued messages after dropping the sem then either we'll
325 	 * see the queued message or the queuer will get the sem.  If we
326 	 * notice the queued message then we trigger an immediate retry.
327 	 *
328 	 * We need to be careful only to do this when we stopped processing
329 	 * the send queue because it was empty.  It's the only way we
330 	 * stop processing the loop when the transport hasn't taken
331 	 * responsibility for forward progress.
332 	 */
333 	mutex_unlock(&conn->c_send_lock);
334 
335 	if (conn->c_map_bytes || (send_quota == 0 && !was_empty)) {
336 		/* We exhausted the send quota, but there's work left to
337 		 * do. Return and (re-)schedule the send worker.
338 		 */
339 		ret = -EAGAIN;
340 	}
341 
342 	if (ret == 0 && was_empty) {
343 		/* A simple bit test would be way faster than taking the
344 		 * spin lock */
345 		spin_lock_irqsave(&conn->c_lock, flags);
346 		if (!list_empty(&conn->c_send_queue)) {
347 			rds_stats_inc(s_send_sem_queue_raced);
348 			ret = -EAGAIN;
349 		}
350 		spin_unlock_irqrestore(&conn->c_lock, flags);
351 	}
352 out:
353 	return ret;
354 }
355 
356 static void rds_send_sndbuf_remove(struct rds_sock *rs, struct rds_message *rm)
357 {
358 	u32 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
359 
360 	assert_spin_locked(&rs->rs_lock);
361 
362 	BUG_ON(rs->rs_snd_bytes < len);
363 	rs->rs_snd_bytes -= len;
364 
365 	if (rs->rs_snd_bytes == 0)
366 		rds_stats_inc(s_send_queue_empty);
367 }
368 
369 static inline int rds_send_is_acked(struct rds_message *rm, u64 ack,
370 				    is_acked_func is_acked)
371 {
372 	if (is_acked)
373 		return is_acked(rm, ack);
374 	return be64_to_cpu(rm->m_inc.i_hdr.h_sequence) <= ack;
375 }
376 
377 /*
378  * Returns true if there are no messages on the send and retransmit queues
379  * which have a sequence number greater than or equal to the given sequence
380  * number.
381  */
382 int rds_send_acked_before(struct rds_connection *conn, u64 seq)
383 {
384 	struct rds_message *rm, *tmp;
385 	int ret = 1;
386 
387 	spin_lock(&conn->c_lock);
388 
389 	list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
390 		if (be64_to_cpu(rm->m_inc.i_hdr.h_sequence) < seq)
391 			ret = 0;
392 		break;
393 	}
394 
395 	list_for_each_entry_safe(rm, tmp, &conn->c_send_queue, m_conn_item) {
396 		if (be64_to_cpu(rm->m_inc.i_hdr.h_sequence) < seq)
397 			ret = 0;
398 		break;
399 	}
400 
401 	spin_unlock(&conn->c_lock);
402 
403 	return ret;
404 }
405 
406 /*
407  * This is pretty similar to what happens below in the ACK
408  * handling code - except that we call here as soon as we get
409  * the IB send completion on the RDMA op and the accompanying
410  * message.
411  */
412 void rds_rdma_send_complete(struct rds_message *rm, int status)
413 {
414 	struct rds_sock *rs = NULL;
415 	struct rds_rdma_op *ro;
416 	struct rds_notifier *notifier;
417 
418 	spin_lock(&rm->m_rs_lock);
419 
420 	ro = rm->m_rdma_op;
421 	if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags)
422 	 && ro && ro->r_notify && ro->r_notifier) {
423 		notifier = ro->r_notifier;
424 		rs = rm->m_rs;
425 		sock_hold(rds_rs_to_sk(rs));
426 
427 		notifier->n_status = status;
428 		spin_lock(&rs->rs_lock);
429 		list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
430 		spin_unlock(&rs->rs_lock);
431 
432 		ro->r_notifier = NULL;
433 	}
434 
435 	spin_unlock(&rm->m_rs_lock);
436 
437 	if (rs) {
438 		rds_wake_sk_sleep(rs);
439 		sock_put(rds_rs_to_sk(rs));
440 	}
441 }
442 EXPORT_SYMBOL_GPL(rds_rdma_send_complete);
443 
444 /*
445  * This is the same as rds_rdma_send_complete except we
446  * don't do any locking - we have all the ingredients (message,
447  * socket, socket lock) and can just move the notifier.
448  */
449 static inline void
450 __rds_rdma_send_complete(struct rds_sock *rs, struct rds_message *rm, int status)
451 {
452 	struct rds_rdma_op *ro;
453 
454 	ro = rm->m_rdma_op;
455 	if (ro && ro->r_notify && ro->r_notifier) {
456 		ro->r_notifier->n_status = status;
457 		list_add_tail(&ro->r_notifier->n_list, &rs->rs_notify_queue);
458 		ro->r_notifier = NULL;
459 	}
460 
461 	/* No need to wake the app - caller does this */
462 }
463 
464 /*
465  * This is called from the IB send completion when we detect
466  * a RDMA operation that failed with remote access error.
467  * So speed is not an issue here.
468  */
469 struct rds_message *rds_send_get_message(struct rds_connection *conn,
470 					 struct rds_rdma_op *op)
471 {
472 	struct rds_message *rm, *tmp, *found = NULL;
473 	unsigned long flags;
474 
475 	spin_lock_irqsave(&conn->c_lock, flags);
476 
477 	list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
478 		if (rm->m_rdma_op == op) {
479 			atomic_inc(&rm->m_refcount);
480 			found = rm;
481 			goto out;
482 		}
483 	}
484 
485 	list_for_each_entry_safe(rm, tmp, &conn->c_send_queue, m_conn_item) {
486 		if (rm->m_rdma_op == op) {
487 			atomic_inc(&rm->m_refcount);
488 			found = rm;
489 			break;
490 		}
491 	}
492 
493 out:
494 	spin_unlock_irqrestore(&conn->c_lock, flags);
495 
496 	return found;
497 }
498 EXPORT_SYMBOL_GPL(rds_send_get_message);
499 
500 /*
501  * This removes messages from the socket's list if they're on it.  The list
502  * argument must be private to the caller, we must be able to modify it
503  * without locks.  The messages must have a reference held for their
504  * position on the list.  This function will drop that reference after
505  * removing the messages from the 'messages' list regardless of if it found
506  * the messages on the socket list or not.
507  */
508 void rds_send_remove_from_sock(struct list_head *messages, int status)
509 {
510 	unsigned long flags = 0; /* silence gcc :P */
511 	struct rds_sock *rs = NULL;
512 	struct rds_message *rm;
513 
514 	local_irq_save(flags);
515 	while (!list_empty(messages)) {
516 		rm = list_entry(messages->next, struct rds_message,
517 				m_conn_item);
518 		list_del_init(&rm->m_conn_item);
519 
520 		/*
521 		 * If we see this flag cleared then we're *sure* that someone
522 		 * else beat us to removing it from the sock.  If we race
523 		 * with their flag update we'll get the lock and then really
524 		 * see that the flag has been cleared.
525 		 *
526 		 * The message spinlock makes sure nobody clears rm->m_rs
527 		 * while we're messing with it. It does not prevent the
528 		 * message from being removed from the socket, though.
529 		 */
530 		spin_lock(&rm->m_rs_lock);
531 		if (!test_bit(RDS_MSG_ON_SOCK, &rm->m_flags))
532 			goto unlock_and_drop;
533 
534 		if (rs != rm->m_rs) {
535 			if (rs) {
536 				spin_unlock(&rs->rs_lock);
537 				rds_wake_sk_sleep(rs);
538 				sock_put(rds_rs_to_sk(rs));
539 			}
540 			rs = rm->m_rs;
541 			spin_lock(&rs->rs_lock);
542 			sock_hold(rds_rs_to_sk(rs));
543 		}
544 
545 		if (test_and_clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) {
546 			struct rds_rdma_op *ro = rm->m_rdma_op;
547 			struct rds_notifier *notifier;
548 
549 			list_del_init(&rm->m_sock_item);
550 			rds_send_sndbuf_remove(rs, rm);
551 
552 			if (ro && ro->r_notifier
553 			   && (status || ro->r_notify)) {
554 				notifier = ro->r_notifier;
555 				list_add_tail(&notifier->n_list,
556 						&rs->rs_notify_queue);
557 				if (!notifier->n_status)
558 					notifier->n_status = status;
559 				rm->m_rdma_op->r_notifier = NULL;
560 			}
561 			rds_message_put(rm);
562 			rm->m_rs = NULL;
563 		}
564 
565 unlock_and_drop:
566 		spin_unlock(&rm->m_rs_lock);
567 		rds_message_put(rm);
568 	}
569 
570 	if (rs) {
571 		spin_unlock(&rs->rs_lock);
572 		rds_wake_sk_sleep(rs);
573 		sock_put(rds_rs_to_sk(rs));
574 	}
575 	local_irq_restore(flags);
576 }
577 
578 /*
579  * Transports call here when they've determined that the receiver queued
580  * messages up to, and including, the given sequence number.  Messages are
581  * moved to the retrans queue when rds_send_xmit picks them off the send
582  * queue. This means that in the TCP case, the message may not have been
583  * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked
584  * checks the RDS_MSG_HAS_ACK_SEQ bit.
585  *
586  * XXX It's not clear to me how this is safely serialized with socket
587  * destruction.  Maybe it should bail if it sees SOCK_DEAD.
588  */
589 void rds_send_drop_acked(struct rds_connection *conn, u64 ack,
590 			 is_acked_func is_acked)
591 {
592 	struct rds_message *rm, *tmp;
593 	unsigned long flags;
594 	LIST_HEAD(list);
595 
596 	spin_lock_irqsave(&conn->c_lock, flags);
597 
598 	list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
599 		if (!rds_send_is_acked(rm, ack, is_acked))
600 			break;
601 
602 		list_move(&rm->m_conn_item, &list);
603 		clear_bit(RDS_MSG_ON_CONN, &rm->m_flags);
604 	}
605 
606 	/* order flag updates with spin locks */
607 	if (!list_empty(&list))
608 		smp_mb__after_clear_bit();
609 
610 	spin_unlock_irqrestore(&conn->c_lock, flags);
611 
612 	/* now remove the messages from the sock list as needed */
613 	rds_send_remove_from_sock(&list, RDS_RDMA_SUCCESS);
614 }
615 EXPORT_SYMBOL_GPL(rds_send_drop_acked);
616 
617 void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in *dest)
618 {
619 	struct rds_message *rm, *tmp;
620 	struct rds_connection *conn;
621 	unsigned long flags, flags2;
622 	LIST_HEAD(list);
623 	int wake = 0;
624 
625 	/* get all the messages we're dropping under the rs lock */
626 	spin_lock_irqsave(&rs->rs_lock, flags);
627 
628 	list_for_each_entry_safe(rm, tmp, &rs->rs_send_queue, m_sock_item) {
629 		if (dest && (dest->sin_addr.s_addr != rm->m_daddr ||
630 			     dest->sin_port != rm->m_inc.i_hdr.h_dport))
631 			continue;
632 
633 		wake = 1;
634 		list_move(&rm->m_sock_item, &list);
635 		rds_send_sndbuf_remove(rs, rm);
636 		clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
637 
638 		/* If this is a RDMA operation, notify the app. */
639 		__rds_rdma_send_complete(rs, rm, RDS_RDMA_CANCELED);
640 	}
641 
642 	/* order flag updates with the rs lock */
643 	if (wake)
644 		smp_mb__after_clear_bit();
645 
646 	spin_unlock_irqrestore(&rs->rs_lock, flags);
647 
648 	if (wake)
649 		rds_wake_sk_sleep(rs);
650 
651 	conn = NULL;
652 
653 	/* now remove the messages from the conn list as needed */
654 	list_for_each_entry(rm, &list, m_sock_item) {
655 		/* We do this here rather than in the loop above, so that
656 		 * we don't have to nest m_rs_lock under rs->rs_lock */
657 		spin_lock_irqsave(&rm->m_rs_lock, flags2);
658 		rm->m_rs = NULL;
659 		spin_unlock_irqrestore(&rm->m_rs_lock, flags2);
660 
661 		/*
662 		 * If we see this flag cleared then we're *sure* that someone
663 		 * else beat us to removing it from the conn.  If we race
664 		 * with their flag update we'll get the lock and then really
665 		 * see that the flag has been cleared.
666 		 */
667 		if (!test_bit(RDS_MSG_ON_CONN, &rm->m_flags))
668 			continue;
669 
670 		if (conn != rm->m_inc.i_conn) {
671 			if (conn)
672 				spin_unlock_irqrestore(&conn->c_lock, flags);
673 			conn = rm->m_inc.i_conn;
674 			spin_lock_irqsave(&conn->c_lock, flags);
675 		}
676 
677 		if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) {
678 			list_del_init(&rm->m_conn_item);
679 			rds_message_put(rm);
680 		}
681 	}
682 
683 	if (conn)
684 		spin_unlock_irqrestore(&conn->c_lock, flags);
685 
686 	while (!list_empty(&list)) {
687 		rm = list_entry(list.next, struct rds_message, m_sock_item);
688 		list_del_init(&rm->m_sock_item);
689 
690 		rds_message_wait(rm);
691 		rds_message_put(rm);
692 	}
693 }
694 
695 /*
696  * we only want this to fire once so we use the callers 'queued'.  It's
697  * possible that another thread can race with us and remove the
698  * message from the flow with RDS_CANCEL_SENT_TO.
699  */
700 static int rds_send_queue_rm(struct rds_sock *rs, struct rds_connection *conn,
701 			     struct rds_message *rm, __be16 sport,
702 			     __be16 dport, int *queued)
703 {
704 	unsigned long flags;
705 	u32 len;
706 
707 	if (*queued)
708 		goto out;
709 
710 	len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
711 
712 	/* this is the only place which holds both the socket's rs_lock
713 	 * and the connection's c_lock */
714 	spin_lock_irqsave(&rs->rs_lock, flags);
715 
716 	/*
717 	 * If there is a little space in sndbuf, we don't queue anything,
718 	 * and userspace gets -EAGAIN. But poll() indicates there's send
719 	 * room. This can lead to bad behavior (spinning) if snd_bytes isn't
720 	 * freed up by incoming acks. So we check the *old* value of
721 	 * rs_snd_bytes here to allow the last msg to exceed the buffer,
722 	 * and poll() now knows no more data can be sent.
723 	 */
724 	if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) {
725 		rs->rs_snd_bytes += len;
726 
727 		/* let recv side know we are close to send space exhaustion.
728 		 * This is probably not the optimal way to do it, as this
729 		 * means we set the flag on *all* messages as soon as our
730 		 * throughput hits a certain threshold.
731 		 */
732 		if (rs->rs_snd_bytes >= rds_sk_sndbuf(rs) / 2)
733 			__set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
734 
735 		list_add_tail(&rm->m_sock_item, &rs->rs_send_queue);
736 		set_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
737 		rds_message_addref(rm);
738 		rm->m_rs = rs;
739 
740 		/* The code ordering is a little weird, but we're
741 		   trying to minimize the time we hold c_lock */
742 		rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 0);
743 		rm->m_inc.i_conn = conn;
744 		rds_message_addref(rm);
745 
746 		spin_lock(&conn->c_lock);
747 		rm->m_inc.i_hdr.h_sequence = cpu_to_be64(conn->c_next_tx_seq++);
748 		list_add_tail(&rm->m_conn_item, &conn->c_send_queue);
749 		set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
750 		spin_unlock(&conn->c_lock);
751 
752 		rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n",
753 			 rm, len, rs, rs->rs_snd_bytes,
754 			 (unsigned long long)be64_to_cpu(rm->m_inc.i_hdr.h_sequence));
755 
756 		*queued = 1;
757 	}
758 
759 	spin_unlock_irqrestore(&rs->rs_lock, flags);
760 out:
761 	return *queued;
762 }
763 
764 static int rds_cmsg_send(struct rds_sock *rs, struct rds_message *rm,
765 			 struct msghdr *msg, int *allocated_mr)
766 {
767 	struct cmsghdr *cmsg;
768 	int ret = 0;
769 
770 	for (cmsg = CMSG_FIRSTHDR(msg); cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) {
771 		if (!CMSG_OK(msg, cmsg))
772 			return -EINVAL;
773 
774 		if (cmsg->cmsg_level != SOL_RDS)
775 			continue;
776 
777 		/* As a side effect, RDMA_DEST and RDMA_MAP will set
778 		 * rm->m_rdma_cookie and rm->m_rdma_mr.
779 		 */
780 		switch (cmsg->cmsg_type) {
781 		case RDS_CMSG_RDMA_ARGS:
782 			ret = rds_cmsg_rdma_args(rs, rm, cmsg);
783 			break;
784 
785 		case RDS_CMSG_RDMA_DEST:
786 			ret = rds_cmsg_rdma_dest(rs, rm, cmsg);
787 			break;
788 
789 		case RDS_CMSG_RDMA_MAP:
790 			ret = rds_cmsg_rdma_map(rs, rm, cmsg);
791 			if (!ret)
792 				*allocated_mr = 1;
793 			break;
794 
795 		default:
796 			return -EINVAL;
797 		}
798 
799 		if (ret)
800 			break;
801 	}
802 
803 	return ret;
804 }
805 
806 int rds_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg,
807 		size_t payload_len)
808 {
809 	struct sock *sk = sock->sk;
810 	struct rds_sock *rs = rds_sk_to_rs(sk);
811 	struct sockaddr_in *usin = (struct sockaddr_in *)msg->msg_name;
812 	__be32 daddr;
813 	__be16 dport;
814 	struct rds_message *rm = NULL;
815 	struct rds_connection *conn;
816 	int ret = 0;
817 	int queued = 0, allocated_mr = 0;
818 	int nonblock = msg->msg_flags & MSG_DONTWAIT;
819 	long timeo = sock_rcvtimeo(sk, nonblock);
820 
821 	/* Mirror Linux UDP mirror of BSD error message compatibility */
822 	/* XXX: Perhaps MSG_MORE someday */
823 	if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_CMSG_COMPAT)) {
824 		printk(KERN_INFO "msg_flags 0x%08X\n", msg->msg_flags);
825 		ret = -EOPNOTSUPP;
826 		goto out;
827 	}
828 
829 	if (msg->msg_namelen) {
830 		/* XXX fail non-unicast destination IPs? */
831 		if (msg->msg_namelen < sizeof(*usin) || usin->sin_family != AF_INET) {
832 			ret = -EINVAL;
833 			goto out;
834 		}
835 		daddr = usin->sin_addr.s_addr;
836 		dport = usin->sin_port;
837 	} else {
838 		/* We only care about consistency with ->connect() */
839 		lock_sock(sk);
840 		daddr = rs->rs_conn_addr;
841 		dport = rs->rs_conn_port;
842 		release_sock(sk);
843 	}
844 
845 	/* racing with another thread binding seems ok here */
846 	if (daddr == 0 || rs->rs_bound_addr == 0) {
847 		ret = -ENOTCONN; /* XXX not a great errno */
848 		goto out;
849 	}
850 
851 	rm = rds_message_copy_from_user(msg->msg_iov, payload_len);
852 	if (IS_ERR(rm)) {
853 		ret = PTR_ERR(rm);
854 		rm = NULL;
855 		goto out;
856 	}
857 
858 	rm->m_daddr = daddr;
859 
860 	/* rds_conn_create has a spinlock that runs with IRQ off.
861 	 * Caching the conn in the socket helps a lot. */
862 	if (rs->rs_conn && rs->rs_conn->c_faddr == daddr)
863 		conn = rs->rs_conn;
864 	else {
865 		conn = rds_conn_create_outgoing(rs->rs_bound_addr, daddr,
866 					rs->rs_transport,
867 					sock->sk->sk_allocation);
868 		if (IS_ERR(conn)) {
869 			ret = PTR_ERR(conn);
870 			goto out;
871 		}
872 		rs->rs_conn = conn;
873 	}
874 
875 	/* Parse any control messages the user may have included. */
876 	ret = rds_cmsg_send(rs, rm, msg, &allocated_mr);
877 	if (ret)
878 		goto out;
879 
880 	if ((rm->m_rdma_cookie || rm->m_rdma_op)
881 	 && conn->c_trans->xmit_rdma == NULL) {
882 		if (printk_ratelimit())
883 			printk(KERN_NOTICE "rdma_op %p conn xmit_rdma %p\n",
884 				rm->m_rdma_op, conn->c_trans->xmit_rdma);
885 		ret = -EOPNOTSUPP;
886 		goto out;
887 	}
888 
889 	/* If the connection is down, trigger a connect. We may
890 	 * have scheduled a delayed reconnect however - in this case
891 	 * we should not interfere.
892 	 */
893 	if (rds_conn_state(conn) == RDS_CONN_DOWN
894 	 && !test_and_set_bit(RDS_RECONNECT_PENDING, &conn->c_flags))
895 		queue_delayed_work(rds_wq, &conn->c_conn_w, 0);
896 
897 	ret = rds_cong_wait(conn->c_fcong, dport, nonblock, rs);
898 	if (ret)
899 		goto out;
900 
901 	while (!rds_send_queue_rm(rs, conn, rm, rs->rs_bound_port,
902 				  dport, &queued)) {
903 		rds_stats_inc(s_send_queue_full);
904 		/* XXX make sure this is reasonable */
905 		if (payload_len > rds_sk_sndbuf(rs)) {
906 			ret = -EMSGSIZE;
907 			goto out;
908 		}
909 		if (nonblock) {
910 			ret = -EAGAIN;
911 			goto out;
912 		}
913 
914 		timeo = wait_event_interruptible_timeout(*sk->sk_sleep,
915 					rds_send_queue_rm(rs, conn, rm,
916 							  rs->rs_bound_port,
917 							  dport,
918 							  &queued),
919 					timeo);
920 		rdsdebug("sendmsg woke queued %d timeo %ld\n", queued, timeo);
921 		if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT)
922 			continue;
923 
924 		ret = timeo;
925 		if (ret == 0)
926 			ret = -ETIMEDOUT;
927 		goto out;
928 	}
929 
930 	/*
931 	 * By now we've committed to the send.  We reuse rds_send_worker()
932 	 * to retry sends in the rds thread if the transport asks us to.
933 	 */
934 	rds_stats_inc(s_send_queued);
935 
936 	if (!test_bit(RDS_LL_SEND_FULL, &conn->c_flags))
937 		rds_send_worker(&conn->c_send_w.work);
938 
939 	rds_message_put(rm);
940 	return payload_len;
941 
942 out:
943 	/* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly.
944 	 * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN
945 	 * or in any other way, we need to destroy the MR again */
946 	if (allocated_mr)
947 		rds_rdma_unuse(rs, rds_rdma_cookie_key(rm->m_rdma_cookie), 1);
948 
949 	if (rm)
950 		rds_message_put(rm);
951 	return ret;
952 }
953 
954 /*
955  * Reply to a ping packet.
956  */
957 int
958 rds_send_pong(struct rds_connection *conn, __be16 dport)
959 {
960 	struct rds_message *rm;
961 	unsigned long flags;
962 	int ret = 0;
963 
964 	rm = rds_message_alloc(0, GFP_ATOMIC);
965 	if (rm == NULL) {
966 		ret = -ENOMEM;
967 		goto out;
968 	}
969 
970 	rm->m_daddr = conn->c_faddr;
971 
972 	/* If the connection is down, trigger a connect. We may
973 	 * have scheduled a delayed reconnect however - in this case
974 	 * we should not interfere.
975 	 */
976 	if (rds_conn_state(conn) == RDS_CONN_DOWN
977 	 && !test_and_set_bit(RDS_RECONNECT_PENDING, &conn->c_flags))
978 		queue_delayed_work(rds_wq, &conn->c_conn_w, 0);
979 
980 	ret = rds_cong_wait(conn->c_fcong, dport, 1, NULL);
981 	if (ret)
982 		goto out;
983 
984 	spin_lock_irqsave(&conn->c_lock, flags);
985 	list_add_tail(&rm->m_conn_item, &conn->c_send_queue);
986 	set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
987 	rds_message_addref(rm);
988 	rm->m_inc.i_conn = conn;
989 
990 	rds_message_populate_header(&rm->m_inc.i_hdr, 0, dport,
991 				    conn->c_next_tx_seq);
992 	conn->c_next_tx_seq++;
993 	spin_unlock_irqrestore(&conn->c_lock, flags);
994 
995 	rds_stats_inc(s_send_queued);
996 	rds_stats_inc(s_send_pong);
997 
998 	queue_delayed_work(rds_wq, &conn->c_send_w, 0);
999 	rds_message_put(rm);
1000 	return 0;
1001 
1002 out:
1003 	if (rm)
1004 		rds_message_put(rm);
1005 	return ret;
1006 }
1007